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Abstract

According to A. Bayer, if a smooth projective variety X has semi-simple quantum cohomology, then the
blow-up of X at any number of points also has semi-simple quantum cohomology. Therefore, new semi-
simple quantum cohomology algebras can be constructed by applying blow-up operation. The notion of
a reflection vector in quantum cohomology and more generally in the theory of semi-simple Frobenius
manifolds is motivated by mirror symmetry. Namely, under the mirror symmetry phenomenon reflec-
tion vectors correspond to vanishing cycles. They have all the properties of a root system, except that
the invariant bilinear pairing does not have to be positive definite. The most general goal is to classify
the system of reflection vectors associated with semi-simple Frobenius manifolds. The starting point of
my thesis was to investigate the effect of applying the blow-up operation on the set of reflection vec-
tors. The definition of a reflection vector for a semi-simple Frobenius manifold is given via the so called
2nd structure connection. The latter, under mirror symmetry corresponds to the Gauss—Manin connec-
tion. It turns out that in order to understand the general case, one has to understand the contribution
to the second structure connection coming from genus-0 Gromov-Witten invariants whose degree is
supported in the exceptional divisor. Such invariants depend only on a tubular neighborhood of the
exceptional divisor, so we can understand them by considering a specific example. In my thesis, I took
the simplest possible target, that is, the projective space IP". Suppose that Q; = efl and Q, = e are the
Novikov variables. Put W (E) :== e""1P1"2P2W(E), where W : K°(BI(IP")) — H*(BI(IP")) is Iritani’s I'-class
modification of the Chern character map. Our main result is that W, (O) is a reflection vector, where O

is the structure sheaf of BI(IP").
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CHAPTER 1

Introduction

One of the main reasons why Frobenius manifold are important comes from the examples of Quan-
tum Cohomology in Gromov-Witten theory. The latter gives us a Frobenius manifold structure. Under
the semi-simplicity condition the Frobenius structure determines all higher-genus Gromov-Witten in-
variants. This was conjectured by Givental, who proved several special cases using fixed point local-
ization. Teleman proved Givental’s conjecture in general. The resulting theory is known as Givental-
Teleman higher-genus reconstruction. The higher-genus reconstruction can be defined for any semi-
simple Frobenius manifold. The generating function for Gromov-Witten invariants is called total de-
scendant potential. According to the Givental-Teleman reconstruction, the generating function is ex-
pressed in terms of a differential operator, constructed from Dubrovin connection, and a product of
tau-functions of the KdV hierarchy. These tau-functions come from the generating function of Gromov-
Witten invariants for the point. One of the problems in general that we would like to solve is to construct
a system of Hirota bilinear equations for the total descendent potential. In fact, there is a general con-
struction of vertex operators suggested by Givental in his paper [12]. Givental’s construction is straight-
forward to generalize for any semi-simple Frobenius manifold. The vertex operators corresponding to
reflection vectors are the ones that conjugate to the vertex operators for the KdV hierarchy. Therefore
we expect that the vertex operators corresponding to the reflection vectors would play a key role in
constructing Hirota quadratic equations. Hence, it comes our interest in classifying reflection vectors
corresponding to semi-simple Frobenius manifolds. We expect that vertex operators corresponding to
reflection vector should be used to construct integrable hierarchies in the form of Hirota bilinear equa-
tions for the total descendent potential of Givental.

Besides the above motivation, the problem of classifying reflection vectors has some other appli-
cations too. The reflection vectors would allow us to compute the monodromy group of the Frobenius
manifold. The invariant theory of the monodromy group is a key to understanding the analytic prop-
erties of the semi-simple Frobenius manifold. The main examples of Frobenius manifolds come from
Quantum cohomology and singularity theory. Especially, the reflection vectors in singularity theory
satisfy almost all axioms of a root system. More precisely, the only axiom that fails is that the invariant
bilinear form is positive definite.

We know form [15] that if X has semi-simple quantum cohomology then HP(H;C) = 0 for p # q.
Combined with the result of Bayer proved in [2]] we have that

Tueorem 1.1. [2] Whenever X has semi-simple quantum cohomology, the same is true for the blow-up

of X at any number of points.
Furthermore, Bayer conjectured that

ConNJeCTURE 1.2. Whenever X has semi-simple quantum cohomology, the same is true for the blow-up of

X at any subvariety that itself has semi-simple quantum cohomology.
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Therefore Blow-up operation gives a tool to construct new semi-simple Quantum cohomology alge-
bras. We would like to investigate whether this construction can be performed abstractly in the category
of semi-simple Frobenius manifolds. Moreover, we would like to understand how the set of reflection

vectors changes under the blow-up operation. Suppose that

X := manifold with a semi-simple quantum cohomoly

X :=Bl,(X) note that H*(X) = H*(X)® H"*(E) where E € X is the exceptional divisor

Every reflection vector decomposes into two parts: a cohomology class in H*(X) and a cohomology
class in H*(E). The second part is essentially independent of X. Therefore, in order to compute it, we
can work with any target manifold X. The simplest possible choice is X = IP". The main goal of this
thesis will be to determine the set of reflection vector for the blow-up of IP” at one point. Unfortunately,
we could not achieve completely our goal. We still need to construct an integration cycle for a certain
oscillatory integral corresponding to the structure sheaf Op of the exceptional divisor. Nevertheless
after a little bit of work, we should be able to overcome the difficulty.

Givental’s mirror symmetry results for Fano-toric manifolds imply that there exists an isomorphism.
E:Ag— K (X)®C
such that,
J = eny s s 0.0 -2 e 1)
where
Ac:=H, ((C")",Re(f(x,Q)) > M;C) = C",

where M > 0, p is given by classical cup product multiplication by c¢;(T BI(IP")). The calibration
S(t,Q,z), the hodge grading operator 6, and the Givental mirror ((C*)",f,w) for BI(IP") are defined in

Chapter[2|Subsection Section

Our main result can be stated as follows.

THEOREM 1.3. (Theorem Suppose that Q = elrl, Q, = €™ where 11, T, € R Put W, = e 1P172P2Y(E)
if z€ Reg. Then

f el 0 0 = (2m)7 (-2)1(5(0,Q,2)(~2)1 (~2)° ) L(O), 1)
R,
R € A.
Theorem[1.3|was proved also by Iritani [16]. We give a different proof which in some sense is simpler

and we believe that our argument can be generalized for non-Fano toric manifolds. Let us denote by
Az :=H,((C)",Re(f(x,Q)) > M;Z) = ZN.

Using Theorem [1.3|Iritani proved (see [16])) that £ induces an isomorphism

(1) & Ay — KO(X).

We would like to prove a stronger result. Namely, the lattice A has a Z-basis consisting of Lefschetz
thimbles I; (1 < i < N) constructed via Morse theory. More precisely, I; is the uion of the gradient

trajectories of Re(f(z)) flowing into the critical point corresponding to the critical value u;. Our goal is
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to determine the images of I} in K°(X) via . The Lefschetz thimble I; can be constructed as follows.
Let us choose a path C; from A° to u; in the A-plane. Using the map

f(C)"->C
we lift each C; to a cycle I; € Ay. Using Morse theory, it can be proved that
Az=0),Z L.

Our goal is to prove that if we have a full exceptional collections Ey, ---, Ey then we can find paths C;
(1 <i < N)such that E; = £;.. Note that JT; € H,_1(f1(A°);Z) is a vanishing cycle ( vanishes along the
path C;). Picard-Lefschetz theory (1] implies that W, (E;) is a reflection vector corresponding to the path
C;. Therefore, we can say that Ay is the reflection lattice, i.e. lattice spanned over Z by the reflection
vectors. Analytic continuations along Q; = 0 and Q, = 0 acts on the set {#1(Q), -+, un(Q)} of critical
values of f by permutations. This action has two orbits {#(Q),---,u,,1(Q)} and {u,,>(Q),---, un(Q)}.
We prove that I} = [RY,] € Az corresponds to C; = [uy,A°] and &, = O(structure sheaf) It is easy to see
that by using analytic continuation along Q; = 0 and Q, = 0 we can construct cycles I} (2 <i<n+1)
corresponding to critical values u; (2 <i < n+ 1); I is obtained from I by parallel transport along an
appropriate chosen contour around Q;Q; = 0. We could not find cycles corresponding to the second
orbit {u,,5(Q), -, un(Q)} of the monodromy action. We expect that there is a cycle [},,, corresponding
to u,,, such that &, , = O (structure sheaf of the exceptional divisor E). Using monodromy transfor-
mations we can construct the remaining cycles I; (n+2 <i < N) from I},;,. Therefore, what is left is to
find a cycle T, such that the identity in Theorem|[I.3[holds for RZ replaced by I},,, and O replaced by
Ok.



CHAPTER 2

Background

1. Frobenius manifolds

Following Dubrovin [7]), we recall the notion of a Frobenius manifold. Then we proceed by defining

the so-called second structure connection and reflection vectors of a semi-simple Frobenius manifold.

1.1. Definition. Suppose that M is a complex manifold and 7, is the sheaf of holomorphic vector

fields on M. The manifold M is equipped with the following structures:

(F1) A non-degenerate symmetric bilinear pairing
() : T Ty — Oy
(F2) A Frobenius multiplication: commutative associative multiplication
-0 Ty @Ty — Ty,

such that (v; e w,vy) = (v, w e vy) Yvy, vy, w € Ty
(F3) A unit vector field: global vector field 1 € 7;(M) such that

lev=uy, V%'C'l =0, VveTly,

where V¢ is the Levi-Civita connection of the pairing (-,).
(F4) An Euler vector field E € 7j;(M) such that

E(vy,v2) = ([E,v1],v2) = (v1, [E,v2]) = (2= n)(vy, v2)

for some constant n € C.

Given the data (F1)-(F4), we define the so called Dubrovin’s connection on the vector bundle TM x C* —
MxC*
Vv, = V%’C' —z7lve, wve M,
d
Vosoz = 5 210 +27°Fe,

where z is the standard coordinate on C* = C \ {0}, where ve is an endomorphism of 7); defined by the
Frobenius multiplication by the vector field v, and where 6 : 7;; — Ty, is an Op-modules morphism
defined by

0(v):= V-C (E) - (1 - %)v.

DEeriniTION 2.1. The data ((-,-),e,1,E), satisfying the properties (F1)— (F4), is said to be a Frobenius

structure of conformal dimension # if the corresponding Dubrovin connection is flat.

Let us proceed with recalling the notion of 2nd structure connection and reflection vectors. We
follow the exposition from [19]. We are going to work only with Frobenius manifolds satisfying the

following 4 additional conditions:
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(i) The tangent bundle TM is trivial and it admits a trivialization given by a frame of global flat
vector fields.
(ii) Recall that the operator

adp: Ty > Ty, v [E,v]

preserves the space of flat vector fields. We require that the restriction of adg to the space
of flat vector fields is a diagonalizable operator with rational eigenvalues.
(iii) The Frobenius manifold has a calibration (see Section [1.2).
(iv) The Frobenius manifold has a direct product decomposition M = C x B such that if we denote

by t; : M — C the projection along B, then dt; is a flat 1-form and (d#;,1) = 1.

Conditions (i)—(iv) are satisfied for all Frobenius manifolds constructed by quantum cohomology or by
the primitive forms in singularity theory.

Let us fix a base point t° € M and a basis {(j)i}f\il of the reference tangent space H := T;o M. Further-
more, let (¢,...,ty5) be a local flat coordinate system on an open neighborhood of t° such that d/dt; = ¢;
in H. The flat vector fields d/dt; (1 <i < N) extend to global flat vector fields on M and provide a triv-
ialization of the tangent bundle TM = M x H. This allows us to identify the Frobenius multiplication
e with a family of associative commutative multiplications e; : H ® H — H depending analytically on

t € M. Modifying our choice of {¢;}%Y

i.; and {t; I | if necessary we may arrange that

N
E= ((1—di)t1~+rl~)8/9ti,

i=1

where d/dt; coincides with the unit vector field 1 and the numbers

are symmetric with respect to the middle of the interval [0, 7]. The number D is known as the conformal
dimension of M. The operator 8 : 7); — 7)1 defined above preserves the subspace of flat vector fields. It
induces a linear operator on H, known to be skew symmetric with respect to the Frobenius pairing (, ).
Following Givental, we refer to 6 as the Hodge grading operator.

There are two flat connections that one can associate with the Frobenius structure. The first one is

the Dubrovin connection — defined above. The Dubrovin connection in flat coordinates takes the follow-

ing form:
J
Vo, = g—zlqbz"
1
Vos = S4zl0-27F
oz = -tz z °Ee

where z is the standard coordinate on C* = C - {0} and for v € I'(M, 7)) we denote by ve : H — H the
linear operator of Frobenius multiplication by v.

Our main interest is in the 2nd structure connection

d

Vb = 2ot (A=Ee) (gre)(0-n-1/2)
) 9 ;
Vo = o5~ (A=Ee)(0-n-1/2)

where n € Cis a complex parameter. This is a connection on the trivial bundle

(MxC) xH— (MxC),
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where
(M xC) ={(t,A)| det(A—Ee,)=0}.
The hypersurface det(1 — Ee;) = 0 in M x C is called the discriminant.

1.2. Period vectors. The definition of the period map depends on the choice of a calibration S(t,z)
of M. By definition (see [11])), the calibration is an operator series S =1+ ;2 Sk(t)z7%, S, € End(H),

such that the Dubrovin’s connection has a fundamental solution near z = oo of the form
S(t, z)zez*p,
where p € End(H) is a nilpotent operator, [0, p] = —p, and the following symplectic condition holds
S(t,2)S(t,—z)T =1,

where T denotes transposition with respect to the Frobenius pairing.
Let us fix a reference point (t°, A°) € (M xC)’ such that A° is a sufficiently large real number. It is easy

to check that the following functions provide a fundamental solution to the 2nd structure connection

tA :Z ﬂ'(n+k)(/\)
k=0
where
O-m—1
ﬂm)(/\):e_paAam(—/\ e )
I(O-m+3)

The 2nd structure connection has a Fuchsian singularity at infinity, therefore the series I'")(t, ) is con-
vergent for all (t, 1) sufficiently close to (t°,A°). Using the differential equations we extend I to a
multi-valued analytic function on (M x C)’. We define the following multi-valued functions taking val-

ues in H:

;n)(t,/\) = I(”)(t, Aa, a€eH, neZ.
These functions will be called period vectors. Using analytic continuation we get a representation
(2) T (M xC)',(t°,A%)) — GL(H)

called the monodromy representation of the Frobenius manifold. The image W of the monodromy repre-
sentation is called the monodromy group.

Under the semi-simplicity assumption, we may choose a generic reference point t° on M, such
that the Frobenius multiplication e;. is semi-simple and the operator Ee;c has N pairwise different
eigenvalues u? (1 <i < N). The fundamental group 7;((M x C)’,(¢°, 1°)) fits into the following exact

sequence

3) T () — ety (M X CY, (82, 4%) 2 70, (M, 1) —— 1,

where p : (M x C)’ — M is the projection on M, F° = p~!(t°) = C \ {u7,...,uy;} is the fiber over t°,
and i : F°* — (M x C)’ is the natural inclusion. For a proof we refer to [22], Proposition 5.6.4 or [21],
Lemma 1.5 C. Using the exact sequence (3) we get that the monodromy group W is generated by the
monodromy transformations representing the lifts of the generators of 71 (M, t°) in 7ty (M x C)’, (¢°, A°))

and the generators of 7ty (F°, A°).
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The image of 71 (F°, A°) under the monodromy representation is a reflection group that can be de-
scribed as follows. Using the differential equations of the 2nd structure connection it is easy to prove
that the pairing

0)

(4) (alb) := (11" (, A), (A = E)I” (1, 1))

is independent of ¢t and A. This pairing is known as the intersection pairing. Suppose now that y is
a simple loop in F°, i.e., a loop that starts at A°, approaches one of the punctures u; along a path y’
. . . ,
that ends at a point sufficiently close to u;, goes around u;, and finally returns back to A° along »’. By
analyzing the second structure connection near A = u; it is easy to see that up to a sign there exists a
unique a € H such that (ala) = 2 and the monodromy transformation of a along y is —a. The monodromy

transformation representing y € 11 (F°, A°) is the reflection defined by the following formula:
(3) wa(x) = x —(alx)a.

Let us denote by R the set of all a € H as above determined by all possible choices of simple loops in F°.

We refer to the elements of R as reflection vectors.

2. Quantum cohomology of the blow up
Let X be a smooth projective variety of dimension .

2.1. Cones: ample, nef, and curve. Let us recall some standard facts about divisors and line bun-
dles on X that are needed for the definition of quantum cohomology. The main reference for further
details is [[17].

Let us denote by Div(X) the group of Cartier divisors on X. If D € Div(X), then there is an associated
line bundle, i.e., locally free sheaf Ox (D), defined as follows: if U C X is an open subset, such that, the
Cartier divisor has a representative f € I'(U,Ox), then Ox(D)|y = f'Ox|y. By definition, Ox(D) is a
subsheaf of the sheaf of meromorphic functions on X. Sometimes, if no confusion is likely to occure, we

drop X and denote the structure sheaf Oy of X simply by O.

DeriNttion 2.2. If Dy, D, € Div(X), then

a) We say that Dy and D, are linearly equivalent and write Dy =y, D, if O(D; — D,) is a trivial
bundle.

b) We say that Dy and D, are numerically equivalent and write Dy =,y D, if
Di-Ci= [ alom= | @) =D;-C
(C] [C]
for every irreducible curve C in X. O

Let us denote by NS!(X) = Div(X)/Num(X), where Num(X) is the subgroup of Div(X) consisting of
divisors numerically equivalent to 0. It is known that NS!(X) is a free Abelian group of finite rank. The
group NS!(X) is known as the Neron—Severi group of X and its rank r is called the Picard number of X.
Since, we assume that X is smooth, we have also the following cohomological interpretatoion: the map

D+ ¢;(O(D)) induses an isomorphism
NS!(X) ——= H2(X;Z)ys NH(X)

where for an Abelian group A, we denote by A, ¢ the torsion free part of A.
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DEerinITION 2.3. a) A line bundle L on X is said to be very ample if there is a closed embedding of
X in PN such that L = Opn(1)|x. Furthermore, L is called ample if there exists an integer m € Z., such
that, L®" is very ample.

b) A divisor D € Div(X) is said to be ample (resp. very ample) if the corresponding line bundle O(D)

is ample (resp. very ample). O
The following proposition is known as Cartan-Serre-Grothendieck theorem.

ProrosritioN 2.4. If X is a projective variety and L is a line bundle on X, then the following conditions
are equivalent:
(i) Lis ample.
(ii) If F is a coherent sheaf on X, then there exists an integer my (depending on F ), such that, Hi(X,f®
L™y =0 foralli>0and m > m.
(iii) If F is a coherent sheaf on X, then there exists an integer m, (depending on F ), such that, F ® L&
is generated by global sections for all m > m,.

(iv) There exists an integer mz € Z, such that, L™ is very ample for every m > ms. O

If k is one of the fields R or Q, then let us define Div;(X) := Div(X) ®z k and Num(X) C Div(X) to
be the subvector space consisting of elements ) c;A;, ¢; € k, A; € Div(X), such that, } ;c;(A; - C) = 0 for

all irreducible curves C C X. We have the following relation
NS (X)g := Divy(X)/Numy(X) = NS' (X) ®y k.
A divisor D € Divy(X) is said to be ample if D =}, ¢;A; with ¢; > 0 and A; € Div(X) is ample.

ProrposritioN 2.5. If H € Divy(X) is an ample divisor and E € Divy(X) is arbitrary, then H + €E is ample

for0<e<x 1.

Let us recall that a divisor D € Divy(X) is called nef if D - C > 0 for all irreducible curves C C X. A
line bundle L is said to be nef if IC c1(L) = 0 for all irreducible curves C C X. The following proposition

is known as the Kleiman theorem.

ProrosiTioN 2.6. If L is a nef line bundle, then

J Cl(L)dim(V) >0
\%

for every irreducible subvariety V C X.
Proposition 2.6 has the following corollary.

CoroLLarY 2.7. a) If D € Divg(X) is nef and H € Divr(X) is ample, then D + eH is ample for every
€>0.

b) If D,H e Divg(X) and D + €eH is ample for every 0 < € < 1, then D is nef.

c) Suppose that H € Divr(X) is an ample divisor. Then a divisor D € Divg(X) is ample if and only if there

exists an € > 0, such that, % > € for every irreducible curve C C X.

Under the canonical quotient map Divg(X) — NS!(X)g , the set of all ample divisors in Div(X)
maps to a cone Amp(X) € NS!(X)g, called the ample cone of X. Similarly, the image of the set of nef di-
visors is a cone Nef(X) C NS!(X)g, called the nef cone of X. Using Corollary we get that Nef(X) is a
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closed subset and Amp(X) is the interior of Nef(X), that is, a divisor on X is ample if and only if, it is in
the interior of the nef cone.

The nef cone can be characterized also as the dual of the cone of curves. Let us denote by N; (X)
the quotient of the free Abelian group generated by the irreducible curves C C X modulo numerical
equivalence. Recall that C'=};a;C/and C" =} ; a}’C]f’ are numerically equivalent if jc' ci(L) = JC,, c1(L)

for every line bundle L on X. There is a natural isomorphism
(6) Ni(X) — Hy(X;Z)yy, \P.D.(H* "7 (X))

given by mapping an irreducible curve C to its homology class [C] € Hy(X;Z). Here P.D. : H**"%(X;C) —
H,(X;C) is the Poincare isomorphism. Let us denote by NE(X) the subset of Ny (X) consisting of elements
that can be represented by ) ;a;C;, where C; C X is an irreducible curve and 4; > 0 is a non-negative
integer. The image of NE(X) in Hy(X,Z).y. via (6) will be denoted by Eff(X) — the cone of effective curve
classes. Similarly, by replacing integer with real coefficients, we define N;(X)r and NE(X)g. The set
NE(X)R is a cone in Ny (X)R, called the curve cone of X. It turns out that the closure of the curve cone is

the dual of the nef cone, that is,

NEX)g={y eN;(X)r|0-y=0 V¥ 6eNef(X)}.
LemmMma 2.8. If X is a smooth projective variety, then there exists a set of ample divisors Dy,..., D, whose

numerical equivalence classes form a Z-basis of NS (X).

Proor. Suppose that H € Div(X) is an ample divisor whose class in NSl(X) is primitive, that is,
H = nH’ for some H’ € NS!(X) implies that n = +1. We claim that NS!(X)/ZH is a free Abelian group of
rank r— 1. Indeed, we have to prove that the quotient is torsion free. Suppose that it is not. Then there
exists E € NS'(X) and m € Z, such that, mE = nH for some n € Z. Since NS!(X) is torsion free, we may

assume that m and n are relatively prime. Therefore, there exist k, [, such that, km + [n = 1 and we have
ImE=InH=(1-km)H = H=m(lE+kH).

Since H is primitive, we get m = +1, that is, E € ZH - this proves that we can not have torsion elements
in NS'(X)/ZH.

Let us choose Ey,...,E,_; € NS!(X) that represent a Z-basis of NS!(X)/ZH. Let us choose 1 > 0 such
that E; + nH is ample for all 1 <i <r—1. Itis easy to check that D; =E; +nH (1 <i<r-1),D,=H isan
ample Z-basis of NS!(X). |

2.2. Cohomology of the blow up. Let us fix a point x° € X and denote by X the blow up of X at the
point x°. Let 7t : X — X be the canonical projection map and E := 7t~ (x°) the exceptional fiber. Clearly
E is a Weyl divisor in X and hence a Cartier divisor because X is smooth. Let e = ¢;(O(E)) = P.D.(E).
Using a Mayer—Vietories sequence argument, it is easy to prove the following two facts:

(1) The pullback map n*: H*(X;C) —— H*(X;C) is injective, so we can view the cohomology
H*(X;C) as a subvector space of H*(X;C).

(2) We have a direct sum decomposition

HY(X;C) = H*(X;C)@é_é@ei.
i=1
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The Poincare pairing of X can be computed as follows. Let us choose a basis ¢; (1 <i < N) of H*(X;C),
such that,

(i) ¢1 =1and ¢5 =P.D.(x°),

(ii) Pip1 =c1(O(D;)) (1 <i <), where D; (1 <i<r)isanample Z-basis of NS!(X) (see Lemma.

Lemma 2.9. Let (, )5Z and (, )X be the Poincare pairings on respectively X and X. Then we have
a) (i, @)% = (s, ;) forall 1 <i,j < N.

b) (¢, e )X =0for1<i<Nand1<k<n-1.

c) e" = (=1)"Lpy and (&5, en k)X = (—1)m1,

Proor. Parts a) and b) follow easily by the projection formula and Poincare duality. The second part
of c) is a consequence of the first part, so we need only to prove that e” = (—1)""1¢;. We have " = cdy
for dimension reasons. Note that E = P"~! and O(E)|g = Opn-1(~1). Therefore, ez = ¢;(O(E)|g) = —p,
where p = ¢;(Opn-1(1)) is the standard hyperplane class of P"~!. We get

c= j~ e = J en—l — f (_p)n—l — (_1)71—1.
[Xx] (E] (Pr1]

The ring structure of H*(X;C) with respect to the cup product is also easy to compute. We have
(1) H*(X;C) is a subring of H*(X;C).
(2) p;Uek=0,1<i<N,1<k<n-1.
(3)

k+1

e ifk+1l<n,

fue =-1)ylgy  ifk+l=n,

0 if k+1>n.

Property (1) follows from the fact that pullback in cohomology is a ring homomorphism. The formulas
in (3) follow from Lemma part ¢). Finally, (2) follows from (1), (3) and Lemma part b).

2.3. K-ring of the blow up. Let us compute the topological K-ring of X. We will be interested
only in manifolds X, such that, the corresponding quantum cohomology is semi-simple. Such X are
known to have cohomology classes of Hodge type (p,p) only. In particular, K!(X)® Q = 0. To simplify
the exposition, let us assume that K'(X) = 0. In our arguments below we will have to work with non-
compact manifolds. However, in all cases the non-compact manifolds are homotopy equivalent to finite
CW-complexes, so we define the corresponding K-groups by taking the K-groups of the corresponding
finite CW-complexes, i.e., in the case of non-compact manifolds we choose the homotopical version of

topological K-theory.

Prorosttion 2.10. a) The K-theoretic pullback 1 : KO(X) — KO(X) is injective.
b) We have

KO(X) = KO(X)@é_éZOj,
j=1

where K°(X) is viewed as a subring of K°(X) via the K-theoretic pullback 1" and O := O — O(~E) is the

structure sheaf of the exceptional divisor.
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Proor. Let U C X be a small open neighborhood of the center of the blow up x° and V := X \ {x°}.
Note that {U, V} is a covering of X. Put U=nYU)and V := w~}(V), then {U,V} is a covering of X.
Let us compare the reduced K-theoretic Mayer—Vietories sequences of these two coverings. We have the

following commutative diagram:

0 — K'(X) —= K Y(V)eK }(U) —= K H(U\x°) —= K’(X) —= K(V)@K°(U) —= 0

| | | | |

0 — K(X) — K (V)oK (U) —— K Y(U\E) — K%X) — K°(V)®aK'(U) — 0
where the vertical arrows in the above diagram are induced by the K-theoretic pullback 7* and the
vanishing KeV(U\x°) = K%(U\E) = 0 follows from the fact that U\ E = U \ x° is homotopic to $?"~! — the
(2n —1)-dimensional sphere. Note that K~}(U) = K°%U) = 0, because U is contractible and K-1(U) = 0,
because U is homotopy equivalent to E = IP"~1. We get that the second vertical arrow is an isomorphism
(V = V) and hence, recalling the 5-lemma, we get K'(X)=K'(X)=0. A straightforward diagram
chasing shows that the 4th vertical arrow is injective, i.e., we proved a).

Note that the above diagram yields the following short exact sequence

le

(7) 0 —= RO(X) = RO(X) —— RO(P"!) —= 0,

where the map [ is the restriction to the exceptional divisor E = IP"~!. The above exact sequence splits,
because KO(IP"~1) = Z" ! is a free module. Note that O|p = Opr-1 —Opn-1(1) is the generator of K*(IP""1),
so part b) follows from the exactness of (7). ]

Let us compute the K-theoretic product. Note that 7,(Ox) = Ox. Therefore, 7, 7*(F) = F for every
F € K%(X). Let us compute O ® *F for F € K°(X). The restriction of O ® *F to E is 0. Recalling the
exact sequence (7)) we get Op ® *F = 7*G for some G € K°(X). Taking pushforward, we get

G=1(Og®T'F) =1, (Op)®F = 1,0 (C)® F = rk(F)1,(C) = 0,
where 1,0 (C) is the skyscraper sheaf on X and in the 3rd equality we used the exact sequence
0 — O(-E) — O —— 1,(Opn-1) —— 0,

where 1 : P""! — X is the embedding whose image is the exceptional divisor. This sequence implies

Of = 1,0pn-1 = 11,0 = (10 01),Opn-1 = 1,.(C). We proved that
Or®m'F=0, VFeK’X).

It remains only to compute Of. The restriction of Of to E is (1 = Opn-1(-1))" = 0. Therefore, Op = *F.
The Chern character ch(O}) = (1 —exp(—c;(O(E))))" = e" = (-1)""1 ¢, where we used Lemma part
c). On the other hand, the Chern character of the skyscraper sheaf can be computed easily with the

Grothendieck-Riemann-Roch formula. Namely, we have
ch(1(C)) Utd(X) = 17 (ch(C) Utd(x°)) = 17 (1) = P.D.(x°) = ¢n,

where 1° : x° — X is the natural inclusion of the point x°. The above formula implies ch(1,.(C)) = ¢y.

Camparing with the formula for ch(Op), we get

O = (-1)""'1,o(C) mod ker(ch).
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Finally, let us finish this section by quoting the formula for the K-theoretic class of the tangent bundle
(see [8], Lemma 15.4):

(8) TX = TX —n—-1+nO(-E) +O(E).

2.4. Gromov-Witten theory. Let us recall some basics on Gromov-Witten (GW) theory. For fur-
ther details we refer to [18]. The main object is the moduli space of stable maps ﬂg,k(X,ﬂ), where g,k
are non-negative integers and S € Eff(X). By definition, a stable map consists of the following data

X, z1,e0z1 )

¥ is a Riemann surface with at most nodal singular points.

3) f:X — X isaholomorphic map, such that, £,[X] = .

(1)

(2) zy,...,2, are marked points, that is, smooth pairwise-distinct points on X.
(3)

(4) The map is stable, i.e., the automorphism group of (X, z;,...,2, f) is finite.

Two stable maps (X, zy,...,2, f) and (X', z,...,2;, ') are called equivalent if there exists a biholomor-
phism ¢ : ¥ — ¥, such that, ¢(z;) = z; and f’ o ¢ = f. The moduli space of equivalence classes of stable
maps is known to be a proper Delign-Mumford stack with respect to the etale topology on the category
of schemes (see [3[]). The corresponding coarse moduli space Mgrk(X,ﬁ) has a structure of a projective

variety, which however could be very singular. We have the following diagram:

i €Vi+1
M1 (X, p) —— X

I

ox(X, X (1<i<k)

l

where ev;(%,zy,...,2, f) := f(z;), 7 is the map forgetting the last marked point an contracting all un-
stable components, and ft is the map forgetting the holomorphic map f and contracting all unsta-
ble components. The moduli space has natural orbifold line bundles L; (1 < i < k) whose fiber at a
point (X,z1,...,2, f) is the cotangent line T ¥ equipped with the action of the automorphism group of
(X,21,...,2 f). Let ¢; = c1(L;) be the first Chern class. The most involved construction in GW theory is
the construction of the so called virtual fundamental cycle. The construction has as an input the complex
(Rmt,evy,, TX)" which gives rise to a perfect obstruction theory on Mg,k(X, B) relative to ﬂg,k (see [[4,[5])

and yields a homology cycle in Mg'k(X, B) of complex dimension
3g-3+k+n(l-g)+(c1(TX),p)

known as the virtual fundamental cycle. GW invariants are by definition the following correlators:

<a1¢i%...,ak¢1k>g,k,ﬁ=f evi(ar)-evi(agph -k,

[Mg,i(X, )]t

where ay,...,a; € H*(X;C) and I;,..., I are non-negative integers.
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2.5. Quantum cohomology of X. Let g; (1 <i <) be formal variables. If § € Eff(X), then we put
qf = qiqbz’ﬁ) . ~~q§¢”1'ﬁ>. The group ring C[Eff(X)] is called the Novikov ring of X and the variables g; are
called Novikov variables. Note that the Novikov variables determine an embedding of the Novikov ring
into the ring of formal power series C[[q1,...,4,]]-

Recall the basis ¢; (1 <i < N) of H*(X;C). We will assume that the basis is homogeneous and
let t = (t1,...,ty) be the corresponding linear coordinates. The quantum cup product e;, of X is a

deformation of the classical cup product defined by

a B
(Pa ®tq (Pb; (Pc (qu (Ph;(l) )0 3 Z Z q_!<¢w ¢br ¢CI L., t>0,3+m,[5-

m=0 BeEff(X)
Using string and divisor equation, we get that the structure constants of the quantum cup product, i.e.,

the 3-point genus-0 correlators in the above formula are independent of #; and are formal power series

in the following variables:

t t
q1e?,...,q,€ "t tN-

Let us also denote the calibration
S(Q2)=1+) Sk(tQ)z"!
k=1
where

®  NHd
(SK(f)r(;bb) =< ¢ 710 (f)b >02 Z Z% < (Paﬂbkilld)brtl"' ,t >0,1+2,d

deEff(X
We are going to consider only manifolds X, such that, the quantum cup product is analytic. More
precisely, let us allow for the Novikov variables to take values 0 < |g;| <1 (1 <i <r). Then we will
assume that there exists an € > 0, such that, the structure constants of the quantum cup product are

convergent power series for all  satisfying
(9) Re(tj)<loge (2<i<r+1), |tjl<e r+1<j<N.

The inequalities (9) define an open subset M ¢ H*(X;C). The main fact about genus-0 GW invariants is
that M has a Frobenius structure, such that, the Frobenius pairing is the Poincare pairing, the Frobenius
multiplication is the quantum cup product, the unit 1 = ¢1, and the Euler vector field is

r+1

E= Z1 d;) Zat+Zc1TX Lol

where d; is the complex degree of ¢;, that is, ¢; € H?%(X;C) and ¢/ (1 <j < N) is the basis of H*(X;C)
dual to ¢; (1 <i < N) with respect to the Poincare pairing. Let us point out that under our assumption
K'(X) = 0 the cohomology groups H°34(X;C) = 0. Otherwise, M has to be given the structure of a super-
manifold (see [18]). The conformal dimension of M is n = dim¢(X) and the Hodge grading operator

takes the form

If the Frobenius manifold M corresponding to quantum cohomology is semi-simple, then there is a con-

jectural description of the set of reflection vectors, which can be viewed as part of Dubrovin’s conjecture.
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Let us give a precise statement. Let us denote by D?(X) the derived category of the category of bounded

complexes of coherent sheaves on X, that is, the bounded derived category of X.

DEeriniTION 2.11. a) A sequence (&y,...,EN) of objects in DY(X) is called an exceptional collection if
RHom(Ei,Ej) =0fori >j and RHOWI(EI',EZ‘) = C[O]
b) An exceptional collection (&, ...,Ey) is called full exceptional collection if the smallest subcategory

of DY(X) that contains & (1 <i < N) and is closed under isomorphisms, shifts, and cones, is Db(X) itself.

Let us recall also Iritani’s integral structure (see [16]):
(10) Wy KO(X)ys, > H'(X;C)

defined by

—

1- r
2 T(X) U e Lz Pilosdi | (27i)9¢8 (ch(E)),

W,(E) = (270)

where deg is the complex degree operator, that is, deg(¢) = i¢ for ¢ € H*(X;C), i := V-1, n = dimg(X),

and I'(X) =T(TX) is the Gamma-class of X. Recall that for a vector bundle E with Chern roots x1,...,x,
the I'-class of E is defined by

T(E) = ]_[m +x;).
i=1

ConNjecTURE 2.12. If the Frobenius manifold M corresponding to quantum cohomology is semi-simple,

then the image of \V; in H*(X;C) coincides with the Z-span of the set of all reflection vectors.

The above conjecture is motivated by Iritani’s results in [16], which give a confirmative answer for
the case of weak Fano toric orbifolds. Moreover, motivated by Dubrovin’s conjecture, it is natural to

make the following stronger version of Conjecture

Conjecture 2.13. If (&1,...,EN) is a full exceptional collection in D¥(X), then W, ([&;]) is a reflection

vector forall 1 <i < N.

Let us make several remarks.

(1) Conjecture implies Conjecture[2.12}
(2) Conjecture gives us a method for computing all reflection vectors in quantum cohomol-

ogy: the set of all reflection vectors coincides with the smallest set that contains a; := W, ([&;])
for 1 <i < N and is closed under the action of the reflections Wa, (1 <j <N) defined by (5).
(3) Recall that the Euler pairing is defined by

n

x(E,F)= Z(-l)i dim Ext'(E, F),
i=0

for complex vector bundles E and F on X. The above definition induces a non-degenerate
integral pairing on K°(X),¢. The intersection pairing (4) coincides with the symmetrization of

the Euler pairing under the map W, that is,
(W, (E)|W,(F)) = x(E,F)+ x(F,E), VE,FeK°X).

Our main goal is to prove that if Conjecture is true for X, then it is true for the blow up X.
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2.6. Quantum cohomology of the blow up. Let us first compare the effective curve cones Eff(X)

and Eff(X). We have an exact sequence
0 —— Hy(P"Z) —— Hy(X;Z) ——> H,(X;Z) — 0,

where 1 : IP""! — X is the natural closed embedding of the exceptional divisor. The proof of the exactness
is similar to the proof of (7). In particular, since the torsion free part of the above sequence splits, we

get
Hy(X;Z)s. = Hy(X;Z) . ®ZC,

where £ € Hy(E;Z) is the class of a line in the exceptional divisor. The cone of effective curve classes
Eff(X) C Eff(X) ® Z¢. The Novikov variables of the blow up will be fixed to be the Novikov variables of
X and an extra variable corresponding to the line bundle O(E). In other words, for E: p+dle Eff(X),
put

9 = qﬁqiill ):B) q<d)z,ﬁ> <¢>y+1 ﬂ>q;f1

Note that O(E) is not an ample line bundle: for example, £-E = -1 < 0. Our choice of g,,; makes the
structure constants formal Laurent (not power) series in ¢q,,;. Following Bayer (see [2]) we write g,,1 =
Q™! for some formal variable Q. Let us recall the basis ¢; (1 <i < N) of H*(X;C). Put ¢y = ek (1<
k<n-1). Then¢; (1<i< N:=N+n- 1) is a basis of H*(X;(E). Let t = (t,...,t5) be the corresponding
linear coordinate system on H*(X;C). The structure constants of the quantum cohomology of X take

the form

B
(o wu b 60) = Bt dos®= Y T L bty
m= 0‘3 (B.d)

3. Toric manifolds

First let us fix some basic notation.

(a) Matrix M: M = (m;j)1<i<r 1<j<N, Where m;; € Z.
(b) Moment map: p: CN — R" defined by

N

2

Zl/ " Zp) = Zmljlzj ’ "rzmrjlzjl )
=1

(c) Complex torus: T¢ = (C*)" acting on CN by

te(zy,,2y) = ]_ItiMHZl"“’l_[timiNzN ,

where t € Tg.

DerNiTION 2.14. @ € R is called regular value if p~'(w) is a manifold. i.e ¥z € p~Y(w) dp: T,CN —

T,R" is surjective.

Let us denote IR,, := {the set of the regular values}. For I = {i},---,i;} C{1,---,N}, define

7€g

C! =Span{e;};c; where e; = (0,---,1,---,0) only i*" is 1
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A point w is not a regular value, iff there exists I = (iy,--+,i,_1), such that w € u(C'), which means that

R’,, = R"\ J; p#(C!). The connected components of IR,, will be called chambers. Let K C R.,, be one of

reg
the chambers. Then, the quotient

reg

Xk = p (K)/ T

is called a toric variety.

Let us define line bundles
Li:=p  (K)xC/Tg,
where
t-[z,v]=[t -z tv] (veC).
We have an R-linear isomorphism
R = H*XR)

pi +— ci(Ly),

where p; =(0,---,1,---,0) with 1 on the i-th place. Put u; = Y i pimij.

Remark 2.15. There are line bundles
Uj— Xpi (i<j<N)

U; = 1 (K)xC\ T¢

where t € T¢ acts by
;
mi;
t-[z,v] = [t-v,]_[ti v].
i=1
Note that U; = LTij ®-~®L:nyj. Therefore, u; = Y, mijcy(Li) = cq

R" - R"

;
Ej > Llj = Zplmlj
i=1
If I =(iy,ip,--,ix) C{1,2,---,N},then let us define
oy = ]Rzouil +"'+1R20Mik.
Note that

Rl := R\ U u(ch).
Lidim p(Cl)=r-1

It is well know that

H*(X:R)=R[py, -, p )/ Imx

where Iy is the ideal generated by the monomials [[jcfouj, I C {1,2,--

I°={1,2,---,n}\I.

reg

,n} such that o; 2 K, and
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Remark 2.17. If I’ ¢ I” and 077 2 K, then o 2 K. We also have that, [;¢(;7). u; divides [Tjg(pyo ;-
Therefore, [ ;¢ #j € Imx implies [Tjepyo 1; € In,x- Hence, Ip x is generated by [[;efo uj, where I C

{1,2,---,n}is a maximal subset such that o; 2 K.

The toric variety Xy x is compact iff the system

N
)=
j=1
xll Tty xN > 0
has only the trivial solution
xp=--=x,=0.

It is known that Xj; ¢ is a manifold iff for every subset | = (j;,---, j,) such that o7 O K, the determinant

det(m;j)1<i<, jej = +1. For toric manifolds the map
pi+— ci(L;)
induces an isomorphism

7" - H*(X;Z)

Eff(Xp 1) := Ky :={d € (ZM)|<d,w>>0, Yo € K}.

Under the isomorphism R" = HZ(XM xR), the chamber K is identified with the kahler cone of X x and
K, € Hy(Xp,x;Z) is the cone of curves of X k. Let {e ei}i_; CHy(X;Z) = (Z")" be the basis dual to {p;}/_,
Then (Z")Y = Z" and

Eff(Xy x) = {d € z’|Zd w; >0VYw = (wy,++,w,) €K}.
Let Q =(Qq, -+, Q,) be the Novikov variables as usual,
Qt:=Qft-.qf,
for d € Eff(X)y ). Then apply [9], the I-fuction of Xy, g is defined by

(11) hix@Q2):= Y le_[ <;/d>”f+’”z).

dekff(Xy k) j=1 [ Iz co(uj +mz2)

According to Givental (see [16] and [6]]), if X);  is a Fano toric manifold, that is,

Cl(TX): T/l]'EK,

-

j=1
then Iy x(Q,~2) = $(0,Q,2)7! - 1,

Jx(t,Q.2) =—z+t+ZZ<¢a¢ >0.1 (09" (~2) ' = ~z-5(t,Q.2)!

a=1 u=

Usually Jx(t, Q,—z) is called J-function of X.
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We are going to work with the toric variety corresponding to M = [

We have that

Xp x = (C™\0) x (C\0)/(C")?,

where the action of t € (C*)? is given by
t- (Z, /\1, /\2) = (t - Z, t;l tzAl, tz/\z).

Let us consider the following diagram:

where the maps 7,_1, 7, and j are defined by

o1z, A, Ag) i= 21 10 2],

70, (2, A, A) = [z i 0 Az, 0 A,

j([zl peeeizy]) = (21,000,240, 1)

Put E := j(P"!) C Xjs k- Note that

and that
Xm x = Bljg:...0:1)(P").

Put

Ly =1, (Opn-1(1)), Ly =15,(Opn(1)).
Recall that

Opn-1(1) = (C™"\0) x C/C",
we get that,
Ly = (C"\0) x (C*\0) x C/(C")?,

where the action of t € (C*)? is given by

t-(z, A1, Ao, ) = (t-2, 17ty Ay, ta Ay, £y ).
In other words, L is the line bundle corresponding to the character

X : Tg—C,

Xy (t1,tp) = t.

0 2
and K = RS,
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Similarly, L, is the line bundle corresponding to the character
Xz : Tcz —> C*,
X(t1, 1) = .

We get ¢1(L1) = py and ¢1(L2) = pa.
Recall the Remark and Remark In our case I in Remark are [ = {1,2,---,n} and

I ={n+1,n+2}. Therefore,

H* (BL(P")) = H*(Xp,x) = Clp1,p2]/{p2(p2 = p1) = 0, pi =0).

Let e; = a class of line in E = j(IP""!), e, = 7;;! ( line in IP" avoiding [0:---: 0: 1], We can get,
pren=(aer= | alOpain=1,
Tty-1(e1)
pred=@iner= [ apm=1

mty-1(e2)=m-1(e1)

(paer) = (e1(La)er) = f e1(Oprs (1)) = 0,

7,(e1)=0

(pe2) = (c1(La) e2) = f e (Oprs (1)) = 1.

7, (ep)=e3=lin in P"

Suppose that O(E) = L’ng. We have that

(1 (O(E)) e1) = f e, |E—j (1O (-1)) = -1

(c1(O(E)),e2) = J (O

Which means that, a=-1, a+ b =0. Thus, a = -1, b = 1.Therefore, we have that E = p, — p;.
Let us denote that ®; ; be the basis of H® (Bl(IP")), where 0 <i <n, j=1,2and ®;; pl1 1p]2 ' For

IBI(IP”) E" = (-1)""!, we have that

f En:f (=1)(p2—p1)" ' p1 :"':f (-1)"'pi~ I(Pz—pl):J- (-1)"'pi1p,
BI(P") BI(P") BI(P") BI(P")

Which means JBI(H)n)p’f‘lpz =1

. ; . 4_ ; '_1
J- piph= J pipa—p1+p1)ipy = J pi’ P
BI(P") BI(P") BI(P")

Thereforeif i +j=mn, IBI(IP)pIip]Z' =1
Let us specialize formula to BI(IP"). Recall that
Uy =-=uUy=p
Un+1 =~P1+P2
U2 = P2

If (u;,d) < 0 for i < n, then we will have p{ in the numerator, i.e. the terms for which (u;,d) < 0 vanish. In

other words, (u;,d) > 0forall 1 <i < n. If (u,,,d) <0, we also have (u, . 1,d) = (U0, d)—(uy,d) <0, that
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is, we have p,(p, —p1) in the numerator. Hence, (u,,,,,d) > 0. If we let (u;,d) = Dy, (i < n), (U,32,d) = Dy,
-n 0

then we have that (u,_,,d) = D, — D;. Let us introduce the notation [] m = [I (pp—p1+mz2)
m=1 m=-n+1
for n>0and ]_[ m = 1. The I-function for the blow-up of P" is
Dy D
Ql 1 Qz 2
I x(Q2) = Z D, D, D,-D,
PeD220 T (py +mz)" T1 (p2+mz) T1 (p2=p1+mz2)
m=1 m=1 m=1

4. Mirror of blow-up

According to Givental, the mirror of BI(IP") is given by the restricion of f(x):=xy +---+x,,, to the
m,]

. . _1
j=1% = Q; (i=1,2). Since xq -+ X, X, ;1 = Q1, Xy41Xp42 = Q2. We have

XX 01Q;

Q1 Xy Xy

complex torus x € (C*)"*2: [N

fxX)=x1++x,+
Put w = % A A dxﬂ. Then ((C*)”*z,f, w) is a mirror model of BI(IP") in the sense of Givental
If X is a Projective manifold, let us recall Definition
W : K°(X)/torsion — H*(X;C)

1-D
2

W(E) = (21) 2 [(X)U(2mi)®8 ch(E),

where I'(X) = (T X) and for a vector bundle E, Chern roots x1,---.x, we denote by

:]_[F(l +x;)

its I' — class.
In our case the F(BI(IP”)) IF'(1+p)"T(1+p)I(1+py—p1)
5. J-function and quantum cohomology

Recall that @, (1 < a < N) are the basis of H*(X;C). For 1 <i <r, ®; ;1 = c;(O(D;)), where D; are
ample Z-basis of NS'(X). Let us denote ®;,; = p;. We assume that H*(X;C) is generated as an algebra

by p1,---,p,. Using divisor equations, which are

z

i S(t,Q,z) =2Q;dg,S(t,Q,2) + S(t,Q,2)p; U,
atiJrl '

we have

z

-1 _ -1 0 1
From STt Q,2)=-S"(t,Q,2) (zatiﬂ S(t, Q,z))S (t,Q,2)

(t,Q,2)(2Qidg,S(1,Q,2) + S(£,Q,2)p;U) S (1,Q,2)
“H(t,Q,2)2Qi90,5(1,Q,2)S 7! (1,Q,2) - pi U ST (1, Q, 2)
=2Q;dq. ST (£,Q,2) - p; US™(t,Q,2)
= (2Qidg, - piV) ST (£, Q,2).

Recall that J(t,Q,z) = -zS(¢, Q, z)_1 -1, where 5(0,Q,z) = Z;f:l Sk (0, Q,z)z‘k is the calibration. We have

25 (1 Q2) = (2Qidq, - piV) (1, Q.2)
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For 1 <a < N, we have

0 d (-
25 (6Q2) = 2-2) 5= (57(1.Q.2)- 1)

= —z(—s—l(t, Q,z)z%S(t, Q,2)S7 (¢, Q,z)) -1

=-z(-S7'(t,Q 2)(Dg0)) - 1
=2571(t,Q,2)D, e.

Tueorewm 2.18. Given a polynomial F(&y,---,&,) € Cl[&,-+-,&, ], F(p1U-2Q1dg,,--+,p,U-2Q1dg,) =
0. Then

Proor. We have

Then,
J _df dg
(5ior0)stn=Fger-%
Thus,
0 af J
5 of=5+f =
Hence,
0 1 J ( J _1) J ( _; 9S _1) J 22 0 1
S S = +S ST )= +S|-S——8""|= + S = ——p;e.
° dtisy ° dtis1 dtis1 It dtisy dtiy1 Ity dtisy zpl *
Therefore,

d d
0=F(p -—za—tl,~~~,p2-—za—t2)-1 =F(p1e,---,pre)-1+0(2).

Put z =0, we have

Il
(e}

F(pre,---,pre)

Let us denote
A;=S(t,Q,2) 0 (p; U-2Q;dg,) 0 S7!(£,Q,2) = p; #—2Q; g,
Put
DOy = Falp1,--opr) 1<as<N,
where F, are polynomials of p; (1 <i <r). We have
P29, b~ 2000, )1(0,Q.2) = 570, QA (AL, ANy

Let M be a N x N matrix whose a-th column is —%.7-; (p1 -2Q19q,,**,P1 —eraQr)](O, Q,2).

My =~ (¥4, 7 (p1 ~2Q1 90, pr - 20,90, )1(0,Q,2)).
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Let U be a N x N matrix whose a-th column is F(A,---,.A,)®;, that is
Ugp = (®F, F( Ay, APy ).

We have M(0,Q,z) = 5‘1(0, Q,z)---U(0,Q, z), where entries of (5‘1(0, Q,2) —I) are O(z‘l) and entries of
U(0,Q,z) are in C[z]. Therefore, s-1 (0,Q, 2z) can be found via the Birkhoff factorization of M(0, Q, z).

ReMARK 2.19. Let us denote M = M,,z"™ + M,,_1z""! +---, where M,,z™ is the highest order term of

M. If m =0, then M(0,Q,z) = S71(0,Q,z) - M,.
If we know 5(0,Q,z), using divisor equation, we have that
pie= zQia%su, Q2)87(t,Q,2) + 5(1,Q,2)p; US™ (1, Q.2)
=500, 21201557 (1,0,2)+5(1,Q,20p;US ™ (,Q.2

=5(0,0,9)prU-2Q: 35 |51,
The equation above means that,
STt Q,z)pie = (pi U —zQii)Sl (t,Q,2)
JQ;
By comparing the coefficient of z°, we have that
(12) pi® =p; U-2Q;d0,51(0,Q,2).

Recall that the basis of H*(BI(IP")) are @;; = pi’lpjl;l (0<i<mn j=1,2). Since H*(BI(IP")) is
generated as an algebra by p; and p,, we can compute S from J-fuctioin. Then we can compute the
quantum cup product by . For 1 <i <, let us denote ®; = p:~! and @,,,, = pi~!p,. The S| we get by

this definition is not the usual on. But we still get quantum product correctly.

Remark 2.20.

-2 =—[z*1]§1%=—[z°] A :—A[zo]i(g)i:—A
z i=0

a
a-z 1-3
Let 1 <a < n. There are two cases ®, and ©,,,,. For @,

1
M(D,) = —;(Pl ~2Q19q,)"'J(0,Q,2)

Dy AD,
B Q'
=(p1 _ZQlan )* Z Dy D, Dy-Dy
Dub220 T (py —mz)" [] (pp—mz) [1 (p2—p1—mz)
m=1 m=1 m=1
— Dy ~AD
_ (p1—Dy2)* 1Q11Q22 4 pa-1
= D, D, D,-Dy b1
D=0, D220 T (py —mz)" ] (p2—mz) [1 (p2—p1—mz)
m=1 m=1 m=1
—1 D1 AD
- (p1—-Di2)*'Q1"Q5” +pi!
= B D, ) pr -
Di>0: D220 T (py —mz)" [ (pp—mz) [1 (p2—p1-m2)
m=1 m=1 m=1

Let Ord be the order of the highest order term of the first part, where D; > 0 and D, > 0. For (D, > D; >
0), wehave Ord =a—-1-Dyn—Dy,—-Dy+D; =-Dy(n—-1)-2D,+a—-1<-2. For 0 < D, < Dy, we have
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Ord=a4-1-Dyn—-D,—-1-Dy+D; =-Dy(n—-1)-2Dy+a—-2 < -1. When Ord = -1, we have D, =0, D; =1

and a = n. Then,

- Dyz)*1QPr1 Qb -
)y PP O 1 2R g, )

[T (p1—m2)" T1 (p2—mz) T1 (p2—p1—mz)

m=1 m=1 m=1
Thus,

Sap + O(z72) a<norb=2,n+1,
Mgy = Qiz'+0(z?) a=nb=2,
~Qiz'+0(z?) a=nb=n+l.
For ®,.,,,
M(Pyyy) =— %(Pl —2Q19g,)" ! (p2 —2Q,90,)](0,Q,2)
Q' Q3"

_ a—1
—(P1—2Q19Q1) (Pz—ZQZQQz) Z Dy D, D,-Dy
DD T (py = m2)” 1 (p2=m2) T1(pa=p1 = m2)

m=1 =1

m=
0
(p1 - D12 p,Q0" [1 (ps—p1—m2)

- D
_ Z P I(Pz—Dzz)sz N Z m=1-D;
D, D, Dy
D220 TT (py —=mz) T1 (p2—p1 —mz) DP1>0 [1 (p1 —mz)"
m=1 m=1 m=1
(p1—D12)* M (py - Dzz)Q?l lejz a-1
* Dy D, D,-D; +p1 P2,
D120, D220 T (py —mz)" ] (p2—mz) 1 (p2—p1—m2)
m=1 m=1 m=1

which has four parts. Let Ord; be the order of the highest order term of the first part, where D, > 0. We
have Ord; =-2D; +1 < —-1. When Ord; = -1 we have D, = 1. Then,

o i~ (p2 — D,2)Q5” Lo
(2] = ——=-p; Q.
D, D, (p2—-p1-2)
[T (p2—mz) [] (p2 —p1 —mz)
m=1 m=1

Let Ord, be the order of the highest order term of the second part, where D; > 0. We have Ord, =
Dy—-1-Din+a—-1=Dy(n-1)+a-2<-1. When Ord, = -1, we have D; =1 and a = n. Then,

0
(p1=Di2)" 'p2Q" 11 (p2=p1=m2)

[z7!] 113_1[ ( ~ D; Z[Zl](;))f—?lz)zpz(Pz—Pl)Ql =0.
I p1 —mz)

Let Ordj be the order of the highest order term of the third part, where D; > 0 and D, > 0.When D, < D;
we have Ordy3 =a—-Dyn—Dy+ Dy —D,—1<-1. When D, > D; we have Ord; =a—-Dyn—D, - D, + D; =
a—2Dy—D;(n—1)<-1. Ord; = -1 when D; =D, = -1 and a = n. Then,

—D,z)%1 -D Dy D,
[Zﬁl] 5 (Pl IDZZ) (Pz DZZZ_)E?II Q2 _ [Z—l] (;211(_22) — _Ql Q2'
[T (pr=m2)" 11 (p2=mz) T (p2=p1=m2)

Thus,
Oarnp —0ayQ2  a<mnorb=l,n,
M(a+n)b = -010, a=n,b=1,

-Qy a=mn, b=n
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Hence, M = I + O(z!). We have M, = I. By Remark we get M(0,Q,z) =S™1-1=5"1. By , for
the quantum product, we have
1) pye®;; =D, wherei <n-1,j=1,2.
2
3

)

) ppe®;1 =D;,, wherei <n.
)
4) p1e®, =019 ;.
)
)

Pr0Dir =D+ QD 1, where i <n-1.

5) p1e®@,1 =Q1D,-Q1Dy ;.
6) pre®,5=0P,; +Q10Q,D; ;.
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CHAPTER 3

Main result

1. Theorem 1.3

In this section we will prove Theorem by calculating both sides of the identity. For the right

hand side we will prove a residue formula for the blow-up and then use this formula to prove that right

hand side equal to a summation of Gamma-funcion. For the left hand we will list some basic properties

of Gamma-function and then prove Lemma3.4} which will be useful in the proof that the residue of the

LHS equal to the RHS. Then by some estimation we will finish the proof of Theorem[I.3|
TueoreM 3.1. Suppose that Qq = efl, Q, =e" Put W (E) = e 11" 2P2W(E) if z € R, then

[ et - 25 (=214 (510,0.2)-2" (-2 9110 1)
RZ,
Let us calculate RHS and LHS separately.
1.1. Right hand side.
RHS = (271)7 (~2)* ((~2)°(~2)° - %, (0),5(0,Q,2)" - 1)
we also have that
50,097 1=500,0,-2)" 1= Jx(0,0,-2) = 1(Q.2).
ReMARK 3.2. since
(-2)%pi = (-2) %pi(-2)°(=2) " = (~zp)(-2)  and (-2) 7 -1 = (-2)?

we have that

Dy 4D
(-2)5(0,Q,2) " -1 = Z 5 5, A L 5D (—z)°?
PrP220 T (—zpy + mz2)" T] (-zpy +mz) [1 (-zps+2zp +m2)
m=1 m=1 m=1
IR — _7)~(n=1)\Dy —-\"2\D2
RHS = (210)"T Z I(D‘nylg?),( 2)P(Qi( 731 ) (QzD(2 97
o=t T (pa=pr=m) T (pr=m)" T1 (p2=m)

by Iy =T(1+py)"T(1+po)[(1+py—py),

Dy
= e P1T1P2T2(_z)P (eTl (_Z)—(n—l)) (ETZ (zz_z))
— n
RHS = Z_ (P +p1)"T(1+ pIT(L 4 p2 = p1) - -
Dy,D,=0 I1 (pa—p1—m) I1 (p1 —m)" I1 (pp —m)
m=1 m=1 m=1

= Z (Pl(r(Pl—Dl))n(Pzr(Pz—Dz))((PZ—Pl)r(Pz—Pl—D2+D1)):€g)
Dy,D,=0
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Where, g = —(p; — Dy)(11 — (n—1)log(~z)) - (p2 — Dy)(1, — 2log(~z)) and E = p, — p1,
we have that [ E" = (=1)""1, (py = p1)" = (p2 = p1)" " (p2 = p1) = (-1)" ' p{ M (p2 —p1)and p} 'p, =1
H° (BL(IP")) = C[p1,p2]/{p2 (p2 — p1) = 0. pj = 0), Poincare pairing

(viopd)= [ ipd=

1,if0<i<mni+j=n
Bl

0, othermise

Therefore, if

flprp2) =) fipipheClpipal,
ij=0

then
n—1
J.f(Pl'Pz) = Zfi,n—i
(Bl) i=0

Then we have that

’ ( y n
ReSPFO Respzilﬁ M = ReSPFO M = Zfi,n—i

n _ -1
p1(p2=p1)p2 Y —
also
f(p1,p2) f(p1,0) f(p1,0)
Res, _gRes, g ————— =Res, .o =———-~=—-Res, .o ———— = —
R Tl R e

Adding up the two residues we get

( )
pi(p2—p1)p2

i

n—1
1,2
( Res plZORes Pr=p1 +Resp1:O Respzzo) fp—p Zfi,nfi = J-f (p,p2)
=0 B

We proved the following residue formula:

f(p1,p2)

,p2) =|Res, _gRes, _, +Res, _gRes, o) ——=—.
f f(p1p2 ( p1=02€Spy=p; p1=01€5p, 0)p1(p2_p1)p2

(BI(IP")]
Thus,
= _ _ _ n — —P1T1=P2T2
= =p,— -
(13)  RHS= ) ) Res,_p,(Res, _p, p, +Res,,—p,)(p1))"T(p2)T(p2 ~ p1)e dpydp,
D1:0D2:0
1.2. Left hand side.

_ T+ \ 1
Xt xy e T xy eexy, + )z dx dx
LHS = e( " R A R P .
X1 Xn

First we let x; = —ze¥, then we let 7@ = (—z)"le™™ and % = (efl;:fl T — EZLZZ Using the substitu-
-z

tion x; = —ze¥ (1 <i < n), we get that :

LHS = fexp (_ (eyl 4o eyn) - e_fl"'yl FotVn efl+f2_(yl +"'}7n))dy_
Let us define

I(ty, tp) = Jexp (—(eyl +oeeen) — e VI et1+t2‘(3’1+'"3’"))dy,

I(El, &, tl, tz) = 681t1+£2t21(t1, tz).
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Fourier inversion formula yields

Ay, Ay
1(81,82, tl,tz) (271 A 11412nj>+wj J J-Je ti=s1)ér+ tz_SZ)'EZI(e],52,51,52)d$1d$2d51d52
A-A; R R
Thus,
Ay Ay
I(t;,t,) = ( lim f jJJ-ei(tl_Sl)él+€1(Sl_tlHi(tz_sz)62+€2(52_t2)1(51:52)d51d52d61d62~
27'( A1,Ay—>+00

Put py = €1 —i&y, pp =€, —i&,, we have d&y = idpy, d&, = idp,. Thus,
Ex+ico £1+i00

2
I(tl,tz) = (%) J j €7p2t27p1t1 ffeplsl+p2521(51,Sz)dSIdSdeldpz,

£p—i00 £1—100

where

eP1o1tP252 [ (), 5,)ds  dsy

exp P151 + sy — (V1 4 -ee ) — eI 651+52_(y1+my”))d32d51dsz.

%g -~ |
B B

IRH
Let us do the substitution s; = y1+-+*+¥;,,11, S2 = V42— Vus1, and recall that fexp(py—ey)dy = Ie‘ttp‘ldt =
R R

I'(p). Then we get

JJep151+p2521(51,52)d51d52
R R

:ffjexp(m(}/l ot Y) (1= P2)Vnet + PaVnsn — €L -+ eV 2) dyy - dy,,
R R R"

=I'(p1)"T(p2 - p1)L(p2)

2£1+iooez+ioo
1 Doty
e =(5-) [ [ e - porpn dpadp,

£1—100 £y—ico

In order to transform the LHS in the form of residue, we need some estimates for the I'-function.

ProrosiTiON 3.3. We have

1) T'(z+1) = zI'(2).

2) |r( )l bsmh(nb)

3) IN(=N +bi)l* = jotss [T = NeN.
4) |T(a+b1)| Ir( )|21_[k 1b2a+a]:_)k)

5) [F(a+bi)| <[I(a)l.

6) I'(z)T(1-z)= —Sm’(‘m)

7) IT(1+N +bi)]> = smhnb ]_[k 1 (k 2+b®)neNN.

Proor. The above properties are well known, so we omit the proof. O
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Lemma 3.4. Forall a,b € R, |b| > 1, let us define m € Z, such that, -m <a < -m+ 1. Then, |I'(a+ bi)| <
C|T(-m+ 1 + bi)|, where C = 2.

Proor. For a, > a; > 2 we have that I'(a, + bi)| > [['(a; + bi)|. For 2>a>1,T(a) <T(1) =T(2). Thus,
we can check the lemma easily when a > 1.

Suppose that a < 1. To begin with, note b # 0, |['(2+bi)|> = |[(-=m+1+bi)|? [ i ! (j2+b?) by Proposition
1). Similarly, using Propositio 1), for —-m<a<-m+1, let @ = a+ m we have that

m m
1 (a+1+k)?
T(a+bi)? =T 1b'2|| 12|| ||
IFa+bi)l" =T +1+bi) is0 (@—j)2+b2 Ha+1)l [ b2+ (a+1+k)? ][ +b2]

j=
Since 0 <a <1, we get

e+ )= 1 |1

2

T (a + bi)|? 2)| [I_[bz (2+ k)2 ] ]_[j2+b2]b_2
j=0

(b+1)2
2
Therefore, [T'(a+ bi)| < C|T(—m + 1 + bi)| where C = 2, for -m <a <-m+ 1 when |b| > 1.

=|T(1 —m+bi)]?

Remark 3.5. Using Proposition 2), 3) and 5), for integer N < 0 and |b| > 1 we have that,

T

2 2 -\ 12
bsmh wb) | k2+b2 bsinh(ep) — TG < PAIT(bi) =01+ bi).

IC(=N + bi)]? =

Next, for all g,b € R, a <1 and |b| > 1, such that, -m<a<-m+1 (meZ), using Lemma we get
[T(a+ bi)|> < 4T (—=m + bi)|*> < 4T(1 + bi)*.

Then, let us consider the derivative of |T(1 + bi)|?,

d ( bn )_ nesinh(7th) — 702 cosh(mb)

db \sinh(rb) | ~ sinh?(rch)
When b>1,
nsinh(rtb) — 0%b cosh(rch) < 7t(sinh(7tb) — cosh(7th)) _ —me”? <o
sinh?(7cb) - sinh?(7cb) sinh?(7ch)

Finally, since |T'(1 + bi)| = [T(1 - bi)|, for |b] > 1, we get
ID(1+bi)> <|T(1+i).
We would like to prove that if p; € €1 + iR, then
J;ZHIR e P22 (py)"T(p2 = p1)T(p2)dps = lim. L(N e 22T (py)"T(p2 = p)T(p2)dp2,

where L,(N) is the contour consisting of Lyg = (e — Ni,e5 + Ni), Ly; = (e + Ni,-N + 0 + Ni), Ly, =
(-N+6+Ni,-N+0-Ni)and L3 =(-N +6—Ni, e, —Ni), and ¢ is a real number such that —Z <6< —%
For every ¢; € (0,1), there exists a 0 satisfying the condition above such that i <leg—o0-1]< 3. We

will prove that hm I e P22T(py)"T(py — p1)T(p2)dp, = 0 (i = 1,2,3). Suppose that N is so big that
L21
|Imp,| < N —1. Let us estimate the integrals using Lemma

First let us consider the integral on (¢,Ni,—N + 6 + Ni) and (-N + 6 — Ni,&, — Ni). The estimations

are similar on those two parts. Let us consider only the integral on (¢, + Ni,—N + 0 + Ni). Put
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—-N+6+Ni
)1 = J- e"P22T(py)L(p2 — p1)dp2
Ni
Let py =a+bi. We have a = ¢; <¢; and || < N —1 according to the choice of N from above. Suppose
that p, belongs to L,;. We estimate the integral in two steps.

i) When |t,| < 7, we have

T(p2)T(p2 —p1)l < 4T(1+ Ni)['(1 +1)],

where we need Remark [3.5land Lemma 3.4} By Proposition[3.3} as t, is a real number, we get

1
2 2
; N e(N+Dlt] o Y NN+l — of N7
|]21|s4(N+2)(Nr(Nz)r(1+z)e |S4(N+2)N(Nsinh(nN)) T(1+i)e O(e(’;ltzl)N)

obviously [J,1] = 0 when N — +oc0

i) When |t > %.

Let us divide the J,; into two parts by dividing the integration contour with point A = Ni — 24’|It |1N .
Note that since |t,| > %, =L < 1. We get

=27 4t
A —-N+0+Ni
Jo1 = f e P22 (po)T(py — py)dpa + J e P22 ()T (py — p1)dpa.
€2+Ni A

Let us consider the first integral, which we denote by J,11. Since Re(p,) € [4, €5]), we get

2n-1
|le 22T (p2)T(p2 — p1)dpa| < ™ MT(p2)T(p2 - p1)l.

Using the Lemma 3.4land Proposition [3.3|we have that

2t -1 2l ) )
[J211] <4 ( a6 N+1) NINT(N)T(1 +i)|

1

2n—-1 1y Nm |2
<[—N+1 _
_( [£5] - ) (sinh(T(N))

3 2n-1
Nz2e 1+ N
o[
e 2

Obviously, |[J>11| — 0 when N — +oo.
Then, let us consider the second integral, which we denote by J,;,. We can let N big enough such
that e, —a— Z=LN < 0and let B=| Z=LN]. By Lemmaand Remark we have

4|t,| 4|ty
—~N+0+Ni
1B f e P22T(py)L(py — p1)dpy| < ANeW DI D(1 — B+ Ni)I(1 - B+i)).
A

Using Proposition [3.3] we get

Ua1o] <4NeN VRN (1 B+ Ni)[(1 - B+i)|

. B-1 ~1+B 3
4NN+l °
Ne N sinh(nN) ]_1[ +N?) smh I_I k2+1

obviously [J51,] = 0 when N — +c0.
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Then let us consider the integral on (N + 6+ Ni,—N + 6 — Ni). By using Proposition

22l < 2NN+l |(r(—N +8)T(-N +6—a))|

1

< 2NN+t - -
e ) e T (0=

_ O NetzN '
(NO(N-o-1+a]l)

Obviously, |[J;11] = 0 when N — +oo. Therefore,
dim [ P T - pDpddps = [ PRI T (o)
—+00 J1,(N) &y+Ri

On the other hand,

f ¢ P2T(py)"T(p - p1)T(p2)dps
Ly(N)

or N+1
:[ZResz:m+ Z Resp2:p1m]e_pztz_p]tlr(p2)r(p2_pl)r(pl)ndp2'
m=0

m=0
Therefore,
£2+ioo

1 ot

5= | PP (pa)l(pa —p1)T(p1)"dpo
&p—ioo

= Z(Respz:—m +Respzzpl_m)e_pm—plt1 C(p2)T(pr —p1)T(p1)"dp,

m=0

€1+100
I(ty,t) = f Z -P”‘r )" (e T PIRT (< + py) + eI 2T(—j = py) ) dpy

61 ico ]

By Proposition [3.3] when Rep; = ¢ for all j.

e PUIT(py )" (e TPVET (< 4 py) + eI 2T(—j - py ))’

<le7ethT(g)" (e(_j”l)tzl“(—j +e1)+e T (—j - 51))'

et " el—j+en)t e it
=l il@)| —————T(e)+ ————T(-&)
l_[kzl(—k‘*'é‘l) l'lkzl(—k—el)
el=i+er)t e it

S eeltlr(el)n(

gfjtz e*]'tz
‘O(<j—1>!)+o( i )

[(er)+ TF(—El))

(-1 -ep)

This means that the function of p; in the integral is uniformly absolutely-convergent when Rep; = ¢;.

Therefore, the order of summation } 72 and integration Lé‘lt,:,o is interchangeable.
-

&1+ioco &1+ioco

Let us consider J e P1(t1+h)=j2(p )" T (—j + p;)dp; and J e P1h=IaT (p )" T (—j — p1)dp, (j € N¥,

&1—ic0 &1—ic0
n>2,¢e <1).

Let L1(N) (N > 10) be the contour consisting of Lg = (¢ —Ni,&; + Ni), L1; = (61 + Ni,—N + 0 + Nii),
Li,=(-N+0+Ni,—-N+6-Ni)and L;3 = (-N +6—-Ni,e; — Ni). We have 0 is a real number such that

3 S 1
dcs<-L
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Firstly, let us consider the first integral. By Proporsition T(=j+p1)l = |r(p1)nf (=K +p1)7Y <
-jt2

(- 12)!(1*81)|'

Thus, we can get that limy_,., Jle e P1ti)=i T (p V'T(=k + p1)dp; = 0 (j = 1,2,3) by the similar way we

did on L,. Which means

|]-1—!|F(p1)|, when p; € L,. Therefore, we get that |e P11 +12)=/2(p,)'T (= j+p; )| < [e P1{1+t2) (pl)”Jr1

£1+i00

1 . i 4 C . i ,
(14) (Z) j e Piltitt) 12T (p)"T (=] + p1)dpy = ZResm:,me pilti+tz) 2T (py)"T(=j + p1)dpy.
61—1‘00 m=0
. —jt * !
RemaArk 3.6. Because hm]-_m(j_ﬁl—zlz_m = 0, there is a M(t,,&;) such that Vj € IN % <

M(ty,€1).Which means |eP1(1+02)72T (p )" T (=] + py )| < [e P11+2)T(p, )" M(t,, €1 )|. Hence the speed of

the integral convergent to residue does not depend on j.

E1+100 )
Then let us consider J e P1hi=I2T(p)"T'(—j — p1)dp;. By Proposition 1) and 6), we have

£1—ioco

that [T(p1)"T(=j = py)l = IC(p)" ™ by ﬂ 1(~k = p1)"'|. When p; € Lyx(k = 1,3), [(p1)"T(~j - py)| <
(

|F(p1)”‘1m| and |sin(rp;)| > 7 because of N > 10. Thus, [[(p;)"T(—j — p1)| < T(p1)" ' (n > 2).
Then, by the similar way we have done on L,, we have that limy_,, Ile e P1h=IRT (p) )" T (—=j — p1)dp; =
0 (k =1,3). When p; € Ly,, |sin(p;)| > s1r1( ) and ]_[ |—k—p1|‘1 < 16, because of —% <0< i
Therefore [['(py)'T(—j —p1)| < : 1(6”n)F(p1)" 1(n > 2). Hence
in 1

€1+ioo oo
15 1 —Pii=jb (V' T (=i dp: = R —P1i=jR T (VT (=i d
(15) e e (p1)"T(=j =p1) pl—Z eSp=—m¢ (p1)"T(=j = p1)dp

. m=0
e1—ico

Remark 3.7. The speed of this integral convergent to residue is not depend on j because the inequal-

ity we used to estimate the integral does not include j in it.

By , ,Remark Remark and Z] 0 ],' < o0, we get

(16)  I(ty,tp) = ZZResplz_J Resp,—+Resp,—_kup, )¢ P22 P (py)T(py = p1)T(p1)"dpadp
j=0 k=0

By(13), we proved Theorem [3.1}

2. Lemma[3.8|

Let us denote that Q; := e € R >0, Q, := ¢ € R > 0. The function g, .,(x) := f(x,71,72) =

X1+ x, + le o 4 811%2 defines a real-valued function on R, with minimal value u(7, 7;) achieved

at a unique critical point v = (vy,---,v,). Put @) = {x € RY;|gy, ,(x) < A}. For all m € Q let us define

) -
15(1y,75,4) ::f A-flxn o) w
ay) F(Wl+ %)

Lemwma 3.8. If A is sufficient close to u(ty, 1), then

n-1

1My, 15, 4) = (A= (11, 12) 7 ™ (colT1, 1) + €1 (T, T)(A = (11, 1)) +--0).

A el
Proor. Let ay q,, = {x € R{y|f(x,71,72) = p}, we have that 1em = J (/r\(_n’il)z dp j %
u(TllTZ) 2 a’tl,'tz,‘u
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Let us define A := {x € R |y < f(x,71,72) < p+ ¢}. The function f induces a locally trivial smooth

fibration f : A — [0,¢]. This can be proved by using gradient flow for real part of f. In particular we

have a diffeomorphism A = [0, ] X ay, ¢, ,- There exists 1 such that

w =df Ay,

where 71 can be viewed as a holomorphic form in a neighborhood of Q) p 0 (CF)"

Then we have that

pte
j dlow = Jw = J j ndf,
JA Stokes” J4  Fubini’s " .
which means that
agf dlow= J L
JdA Ay oy
On the other hand, we have that
aej d’la):aﬂ d'lw.
JA Ay 1y
Therefore,
A ol
I(—m) — J dl/l J (/\ - ”l) 2 2
C(m+ 1) df
u(1,72)  Qrmpp
A A m 1
—y)ym-z
_ f A=pm? ( W, j dwdp
I'(m+ 5
M(T],Tz) 2 ) aTl,rz,y
Then let us integrate by parts, we get
(-t
=m = j Lla" J d'wdp
I'(m+ >
u(11,72) ( 2) ey, rp,p
(- A -
= J K J d_lwdy + f a f w |dpu.
r (m + %) T (m - %)
u(ty,75) Ay ry u(t1,02) u(ty,72) 1,108
Note that when y= A, p— A = 0. When p = u(1(,75), fa d'w=0. Thus,
T H
C -
T (i Y
T(m-1
M(T],Tz) ( 2 ) aTl,TZ,}A
If x is a critical point, then we have that xi% = 0, which means, for all i, x; + % - % =
Therefore, for each critical point there exist a number t such that v; =t for all i and ¢+ é—nl - % =0.

Let us calculate the second derivative of f.

Pf o+ iz
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We also know that

t"2 L1Q 201Q; "2 Q10 1 40
Ql pn+2 n+2 - Ql pn+2 - 2
Therefore, f is a Morse function.
If A is sufficient close to u(t(,7,), then by the complex version of Morse Lemma [20]] there exit
coordinates zy,---,z, such that
xl e xn eT1+T2

2 2
X1+ +Xx,+ + =ult,tv)+zy+---+z,,
1 n Tl Xq X, ( 1 2) 1 n

where x; = v; + gi(21,---,2,), where g;(z1,--+,2,) is at least linear in z,---,z,, and we have that w =

dada
X1 X,

Let z; = (M—M(Tl:’fz))%fi (i=1,---,n)

Co(T1,T2) +0(z1,°+,2,))

[ee]
[o- [ @mwramoiede= [ Y amooeeum o) a,
Fp 2tz <p—u(Ty,75) |21

where ¢ is homogeneous of degree k in z.

Note that
ntk _ B n+k
Je‘k(rl,rz,z)(u—u(rl,rz)) g = Jckm,rz,—z)(y—u(n,rz)) # dz
<1 <1
sk
- (1)t J G(t1, T2, ) (u— ey, 1)) F dz
lzI<1

which means k should be even.

Hence,

Nl

Jw=tu=ntm et |avoltzr s DY [t e 2zt uter, e

a lzl<1

Let y=u(ty, 1)+ x(A —u(7y,75)), which means A — y = (A — u(7ty, 72))(1 — x) Therefore

1
A— m—3 ) . s n n
‘I\(LIZ(H_”(TI’Tz))ZJrde :j %xf*k(,\_”)mf%rfrkﬂ dx
Fin=3) 0 r(m-3)
=(A-u(t T2))m+k+”51 B(m - %,%+k+ 1)
F(m=13)
=(A=u(ry, )" T (A= u(ty, 1)

which means

1M (1,15, 4) = (A= u(1y, 7)) T 7 (co(T1, T2) + €1 (11, T2) (A — (17, ) + -+ ).

3. Lemma[3.9]

LeMMa 3.9. We have
o flx,7q,10)
j 6%1(7171)(’1’1,”[2,/\)(1/\: (—z)’”*éj e W,
u(t1,72) RZ,

where 11, 1) € R, z€ R
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Proor. Since

A
I(im)(’l’l,’fz,/\): ‘I\ J\
(

Let us calculate the LHS

LHS =

Note that

0 Ay 1
J ez (A-p)"2dA=(-z
H

we have

LHS =

/\—ym_% 13

A-p" o
I“(m+%) df r

u(71,72) ¥y, 1o

A 1
(A=p)™ 2
J- J‘ e% pe Zdyd/\

;38

m—l—l) df
u(7y,72) u(t1,72) ¥y, 00,1 2
o o " A_ m_%
j du Jez( K da et j o
F(m+3) df
(t1,72) I Xyt
L A ((A=p) "3 A- 1
o A e
0 -z -z 2
g w _( m+ f(mzmz)
J. J. F dp=(-2) J-noe w.
u(ty,7) Aoy g
O

4. Theorem[3.10]

TueoreMm 3.10. Exists Ey € H*(X;C) independent of Ty, T, and A such that

(Ig
where T = (11, 7,), E =

Proor. By definition

n(1) = eP? 97,_/\
where I'"™(1) = eP% T

thp1 +1t3p2)

By divisor equation

which means

F D) = (<0 (<9 e, )
e MPITRP2Eg and Q = (Qq,Qy) = (e™,e™)
", QA) = ) (~1)FSk(t, QT (),
k=0

Since I is a solution to the second structure connection, we have (¢
7)

9 jm Z e g1

— qm — _ 9.1
ot pre0)

/\3,\+(n—1)%+2% 1<m>:(9—m—1)1

p;yY

A Qidg;S +S~~

at]+1

Qidq; Sk+1 =pj ® Sk = Skpj U
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Therefore,

Qidg, 1" = ) (<) (pj @ S = Sep; UK ()

k=0
0 /le—m—k—l—l
= p I (m+1) + Z Skp Uepa/\an : :
P r[O-m-k-1+5)
Because p; U0 = (0 + 1)p;U we have that
0-m—-k-1-1 O+1-m—k—1
p] U gpaAan /\ 2 T — epa/\an A 2 7 p]U
[O@-m-k-1+3) [O+1-m—-k+5)
_"(m+k)p U
Therefore
o0 s 0-m—k—-1-1 0
Skp; U P4 = S\
g )£ Skp; Te-mk1s D) é( )ESiT"p,
— .
=1"p.u,
which means
QJQQ]I("‘) =-pje 8,\1('”) + I(Tl’l)p] U
Hence,
dQ;
"™(t,Q, ) = —1dg. = QjanI(m)(t, Q, 1),
i=1,2
therefore

95, 1"(1,Q,A) = —pj @ I\ 1™ +I(m)p; U

Let us compute the equations for Iém).

1" = (9, 1")E + 10 (9, E)
= (-pj A\ I" + I(m)p;U)E + ") (~p; UE)
Then,

/\8,\+(n—1)i+2 J /\9/\15 +( (n—l)plo—szo)a/\Iém)

a arz)
= (A=(n=1)p, e—2p;e) 1"

= (/\9)\ +(n— 1)8% + 28%)1("”15

Ly (m)
(9—77’1— E)IE .

Therefore the equations for [ ](Sm) are

aTjII(Sm) = —p] [ a/ﬂém)

Ady+(n— 1)65[1 ZQiz)Iém):(Q—m—l)[}(sm)

Let L(t, A) € H be such that
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(L(T, ?\))‘D(i,j)) = (9, ) N (@, YIS (1, 1),

Let us check that L(7, 1) solves the above system of equations. First, by defination,

Xy x, o Q1Q
+ <AL
Q1 X1t Xy }

We can see that a(z-10, 20, c1) = €4(Q,,0,,1), Which means that

agr={xeRlylx) +--+x,+

10(c"1Qy, 2 Qp,cA) = "2 IM(Q, Qp, ).
Let us differentiate the both side with ¢ and set ¢ to be 1, we get that

(104 + (n=1)Q1 g, +2Q290,) 1" = (m - )1,

Then let us check that L follows the last equation,

(A4 +(n=1)Q19g, +2Q20q, ) (L(t, 1), D; )
=(A91+ (1= 1)Q1dg, +2Q29q, ) (=04, ) (=2, VT 2) (7, 1)
n 3

:(—m—l—]+2 >

NL(T, A), Dy ).
On the other hand,
no..,
G(CDZ’]) = (E —1—]+ Z)CDZ‘,]';

which means that

1 1
((9+m+ E)L,cp,,j) (L,(—9+m+ E)q)"'f)

no., o, 1
(L’(_§+l+]_2+m+§)®i’j)

= (mij+ 22N ) ®y)

= (/\a/\ +(n— 1)Q18Q1 + zQzan)(L(T'/\)'q)i,j)'

Then let us check L follows aTkz};”) =-pre 8/\1}(;") . Recalling ChapterSection there are 6 cases
we need to prove. First, let us list the 6 cases.
1) pe®;; =jq1,wherek=1,i<n-1,j=1,2.
2
3

)
) prpe®; =D;,, wherek=2,i<n,j=1.
)
4)
)
)

pre®;r=D; g2+ QyD; 1, wherek=2,i<n-1,j=2.
p1e®,,=0,0,P 1, wherek=1,i=n,j=2.

p1e®@, 1 =0Q1D,-Q1Dy,;, wherek=1,i=n,j=1.
pre®,,=0,P,1+0Q,Q,P 1, wherek=2,i=n,j=2.

5
6

In case 1),
Oy (L, D; ) = Dy, (=0, )™ (=0, YT 142) (1, )
= ~(=0g, ) (=05, M), )
= —(=0q,) (=0, VLTI (7, )

== (L, Diy,j)-
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In case 2),
Iy (LB ) = Oy (=0, )~ (=0, ) T T (1,
= (=05, )T (=0, YT (1, )
= (=05, ) (=05, I, )
=—d\(L, D; j41)-
In case 3), let us denote —I := —m —i—1+ 5. Let us calculate d, (L, ; ),

00, (L, ®; 5) = 9, (=0, ) "1 (=0, ) IV (2, 1)

=
S e et

I(l+%)
S )f-lj (A—f“( QQ )2_(A—f)13( QQ; )
" [(1-3) \xi-x, r(-4) \xx,])
On the other hand, let us calculate d, (L, ®;;1 ) and d,(L, Q;P; ),
OAL, Pis1,0) = (=0, ) (=9I (1, 1)
= (=04,) T (=04, )(=0:,)I T (T, 1)
_(_g -l (=I) (A-f)-2
(~02,)' (02, )P, )] f—r(H%) o
~ o) | ”-f)l‘?( QQ, )2_<A—f>l‘3Q _u—f)l-%( Qle)
° T(-3) \x1-x, r(i-3) 2 T4 \x x|
And
AL, Qa®; 1) =Qy0, (=0, ) 1T (7, 1)
=Qy(=0y,) 117, 1)
i [A=p)FE
=Qx( arl) j—r(l—%) w
Thus,

l—% 2 _ l—%
_a/\(qu)i+1,2+Q2CDi,1):_(—arl)i1—[((/\_1[) (Qle)_u f) (Qle )]

r(l_%) XprX r(l_%) X1 Xy,
Therefore do, (L, ®; 5) = =0 (L, Dji1,5 + QoP; 1).

In case 4), let us denote —/ := —m—n—1+ 5. Let us calculate d, (L, D, ),

92, (L, @y,5) =(9,) (=9, )" I (T, 1)

-3
@ )-2,, [ B2 ( A% 0,

T(I-%) \xp-x

-3
=(dr, (=0, )n—la/\J (A-f) ( Q1Q> 3 lelxn )a).

T(l+%) \x1-x,

We also have that,

dx, dx, ( Q1Q xl"'xn)
d()— AN——AN:- A =|—x7 + — w.
(4=5) X2 Xy g, Q4
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Since A — f vanishes on boundary of «,

f(/\—f)m_%d(/\—f)/\&/\ an:O.
X2 Xy,
Which means
1
- A 2
911(14,@”'2) = (872)(_811)71 la/\j( (lf-) ) xX1w

Suppose that for some s, such that s < n, we have that

-t
arl(L’q)n,Z):(arz)(_arl)n_s(a/\) J. /\(l{- ) ]—[x,w.

r=1

Then

=
0 (L., =002, [ (li . [ o

r=1
f)-3 e\
Z(arz)(—an)n_s_l(a,\ l ( Q1Q2 _x1 x”) X,
T2 r=1
_ _ n—s—1 s+1 (/\_f)l_% ( Q1Q2 _ xl---xn) s
=200 (22) J rien L =g T

We also have that,

d(A - f)—L Cb<1 %/\.../\—dxﬂz/\.../\dxn :(—1)5_1(—x5+1+xQ1Q2 —xlénxn)a).
.. .

Xs Xs+2 Xn

Since A — f vanishes on boundary of «,

j,\ FYmrd(A - f)dxl ax S A
Xs Xs+2 Xn
Which means
L 21— 1_% s+1
0 (L.y2) = 04 (L, 0y2) = (000! [ 2L 2
F(l + 7) =1

Therefore,

(A-f)2

)" = — 0 n+11(7l).
ST [ [xre=-0i0:00)

r=1

91 (L:,2) = 0, (L,0,2) = (90" |
On the other hand
~01Q1Qa(L, Py 1) = -2, Q QoI T = -Q1Qp(9)™ 1T = 9 (L, D, )
In case 5), let us denote [ := —m—n+ %

0 (LD, 1) =0y, (=9, )" T (7, )
= (=9¢,)" 17N (z, )

by the same way we used in case 4) we get that

YR
811 (L'q)n,l) =—(dy)" J % I_[Xra).
2

r=1
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On the other hand,
—OA(L Q1P - QD) == Q19 (dy, — ) H"2

ey}
Q10" (9, — D) J AN e

T(l+%)
S w-pi,
I(l-3)
— (@)1

Therefore

O, (LD, 1) ==\ (L, Q1 D15~ Q1 Dy1)

In case 6), let us denote I :=—m—n—1+ % We have that

Oy (L, @y2) = 0oy (=0, )" (=0 )1 (T, ).

On the other hand

(=)L, QoPp 1 + Q1 QaPy 1) = (—91) Qa0 )" T + Q Q1)
= (=02)(Qa(=92, )" T +Q1 Qy(91)" 1)
By 4) we have that
(=02)(Q1Q2(2)"I™) = (94,)(~2, )" I (7, 1)

Therefore,

(=L, Qa®@,y 1 + Q1 QoPy 1) = (=91)Qa(=3¢ )" T 4 (9,,) (=9, )" IV (7, 1)

Then by 3) we have that
91, (L, Dy, 5) = (=) )(L, QaPy, 1 + Q1 Q2P 1)
([l
[t roa o )ar=caiti-al!) [ e (mda
u(7) u(t)

b Lemma3 1 flx1)
Y -( 811 8112 f e w

n
by Theorem i1
= _arl ) (_ar

=(2m)"T (-2)"*

Heg)™ 15 21) " (<2)% (S(0,Q 2)(~2)% (-2)P W, (0), 1)
(204,720, (S(0,Q 2)(-2)% (—2) e PRI W(0), 1)

(—z>9<—z>f’w0>,1)

2)
3
2

T1P1+72pP2
z

=(2m)'7 (-2)" 3 (20, ) (20,71 (5(0,Q,2)e

By divisor equation

Tl[’l*TZPZ T1P1+72P2

(29:,)771(5(0,Q, 2)e 1) = (PP 5(0,Q,2)e 1),
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Thus,

T1P1+72pP2
z

J‘e3 I_m 10,Q,1), i’j)d/\:(Zn)%l(—z)"”Z( (0,Q,z)e

u(t

(-2 (-2 W(0), D, ),

which means

0
TTP1+T2P2

j e I;™1(0,Q,4) = (211)'7 S(0,Q,2)e T (=2)7F M (—2)PW(O)).

u(T)

Let us consider that the RHS and LHS as the polynomial of 7; and 7,, whose coefficients of T?Tg on

two sides are equal.

f Z 1FS4(0, QT 91 dA Eq = (212 5(0,Q,2)(~2)"F ()PP (0))

Let Q goes to 0 we have that

Jw exT ™ Y (A)dAEy = (2m)'T (=2)77"*2 (=2)P W(0)

Let z be -1
) O+m+3
f e”‘eaAam(A)—zd/\Eo - 21)" 7 W (0)).

We also have that

Which means that
Eq = (21)"7 W(0))
Tueorem 3.11. Ey = (27‘()%\1/(0))

5. W, (O) is a reflection vector

In this section we will prove that W;(O) is reflection vector. According to Theorem [3.11]and Lemma
the analytic continuation of Ié_m_l)(Q,/\) along simple loop around the real critical value u(ty, 75)
is I (Q A). Therefore, E is proportional to a reflection vector. Since E = (271)%\}’((9)), in order to
prove that W, (O) is a reflection vector, we need only to check that (W (O)|W¥,(O)) = 2.

Firstly,

1 L
_nZ (\I’T(O), emeemp\yr(o))

= (270) (e PIPIRT (1 4+ py)"T (1 + po)T (1 +pa = p1),

e TP PI PR (1 - py V' T(1 = po)T (1= po + p1)e™)

_ - 2rnpy \'( 2mp, 27(p> - p1)
= (~2ri) 2 . ,
Bipr) \ 2P —1 ) \2mipa — 1 J\ g27i(pa=p1)m — 1

(W(0), W (0)) = (2m)!
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Let us compute the integral, suppose & < &,, we have that

f(p1,p2)
Resn- (ReSP1 pi Pz—Pl)pz)
j J _flpup2)
7R Jpte, e PL(P2—POP2
Pl,Pz)
ipil=e1 Jipal=e; P1(P pi(p2-p1)p2
f(p1,p2)

=Res, —o(Resp,—o+Res,,— )

=J f(p1,p2)
BI(IP")

27t "oo2mi 27i(py —
_[ ( 2mi 71171 ) ( 2mi :2 )( 27i( (p_2 )pl) )dpl dp,
BI(P") \ € i _1 e2mipam _ 1 )\ p2mi(p2—p1)m _ 1

2mi " 2i 2mi
_ReSP2:0 (Resplo ( e2mipim _ ) (62711'[7271 -1 )(62ni(p2—p1)n -1 )dpl dpz)'

Let ¢2™P1 —1 = x, we have that dp, = %, which means that,

pi(p2-p1)p2

Hence,

R R ( 2mi )”( 2mi )( 2mi
€Spy=0| R€Sp, =0 e2mipim _ 1 e2mi(p2—p1)m _

27'(1')”( 2mi 1)( 2mi(x+1) 1

=Res, _g[Res, - (— - - -
PZ—O( p1=0 X e2mipym _ e2TipyT _ x| 27‘(1(X+1)

2mi\" 2mti 1
:ReSP2:0 (ResP1:0 (T) (62711'1)277 -1 )( (e2nip2n -1) _x)dXdpz)'

Since &, < &,, let 2™P2 — 1 = y we get

e2mipam _ )dpl de)

dxdpz)

27i \" 27 1
ResP2:0 (ReSPl:O (T) (ezmpzn -1 )( (eZHipzn _ 1) _ x)dXdpz)
2mi \" [ 2mi 1
—Respzo(Resp]O(T) (7)(y—x)dXdpz)
2mi\" [ 2mi\| 1| o (xV
=Res,._g| Res :( )(—) - (—) dxdp
p2 0[ p1=0\" v v j_ZO' 2
27 n+1 1
el 5] Ty
=(-2mi)"

Thus,
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