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Chapter 1

Background

In this chapter, we will introduce some general background for the purpose of narration of
next several chapters in which we will deal with more specific situation.

1.1 Frobenius manifolds

1.1.1 Definition

There are many ways to introduce Frobenius manifolds. Here, it is convenient to choose a
set of axioms. The general reference for more details is [Man99]. Our definition is equivalent
to (Definition 1.2 in [Dub96]). Let M be a complex manifold and denote by TM the sheaf of
holomorphic vector fields on M. One may assume that M is equipped with the following
structures

1. Each tangent space Tt M, t ∈ M, is equipped with the structure of a Frobenius algebra
depending holomorphically on t. In other words, we have a commutative associative
multiplication •t and symmetric non-degenerate bi-linear pairing ( , )t satisfying
the Frobenius property

(v1 •t w, v2) = (v1, w •t v2), v1, v2, w ∈ Tt M

The pointwise multiplication •t defines a multiplication • in TM, i.e., an OM-bilinear
map

TM ⊗ TM → TM, v1 ⊗ v2 7→ v1 • v2.

The pairing ( , )t determines a OM-bilinear pairing

( , ) : TM ⊗ TM → OM.

2. There exists a global vector field e ∈ TM, called unit vector field, such that

∇L.C.
v e = 0, e • v = v, ∀v ∈ TM,

where ∇L.C. is the Levi-Civita connection on TM corresponding to the bi-linear pairing
( , ).

3. There exists a global vector field E ∈ TM , called Euler vector field, such that

E(v1, v2)− ([E, v1], v2)− (v1, [E, v2]) = (2 − D)(v1, v2),

for all v1, v2 ∈ TM and for some constant D ∈ C.

The above data allows us to define the so-called structure connection ∇ on the vector bundle
pr∗MTM → M × C∗, where

prM : M × C∗ → M, (t, z) 7→ t
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is the projection map. Namely,

∇v := ∇L.C.
v − z−1v•, v ∈ TM

∇∂/∂z :=
∂

∂z
− z−1θ + z−2E•,

v• and E• are OM-linear maps TM → TM corresponding to the Frobenius multiplication by
respectively v and E. The OM-linear map θ : TM → TM is defined by

θ(v) := ∇L.C.
v E − (1 − D/2)v.

The operator θ is sometimes called Hodge grading operator. Let us point out that the term (1−
D/2)v in the definition of θ(v) is inserted so that θ becomes skew-symmetric with respect to
the Frobenius pairing

(θ(v1), v2) + (v1, θ(v2)) = 0, v1, v2 ∈ TM.

Definition 1.1 The data (( , ), •, e, E) satisfying the conditions (1), (2) and (3) from above
is said to be a Frobenius structure on M of conformal dimension D if the structure connection ∇
is flat.

Let us state the following properties without proof. Actually, the proof is straightfor-
ward argument in Riemannian Geometry. And we will do the same to the propositions and
theorems in this chapter of Background.

Proposition 1.2 Suppose that (M, (, ), •, e, E) is a Frobenius structure. Then

1. The Levi-Civita connection ∇L.C. is flat.

2. Let t = (t1, . . . , tN) be ∇L.C.-flat coordinates defined on a contractible open subset U ⊂ M.
There exists a holomorphic function F ∈ OM(U), such that

(∂/∂ta • ∂/∂tb, ∂/∂tc) =
∂3F

∂ta∂tb∂tc

and
EF = (3 − D)F + H,

where H is a polynomial in t1, . . . , tN of degree at most 2.

3. The Hodge grading operator is covariantly constant: ∇L.C.θ = 0. In particular, in flat coordi-
nates t = (t1, . . . , tN) the matrix (θab)

N
a,b=1 of θ defined by

θ(∂/∂tb) =
N

∑
a=1

θab∂/∂ta

is constant.

4. The following identity holds

[E, v • w]− [E, v] • w − v • [E, w] = v • w, v, w ∈ TM

1.1.2 Semi-simple Frobenius manifolds

Definition 1.3 A Frobenius manifold (M, ( , ), •, e, E) is said to be semi-simple if there are
local coordinates u = (u1, . . . , uN) defined in a neighborhood of some point on M such that

∂/∂ui • ∂/∂uj = δij∂/∂uj, 1 ⩽ i, j ⩽ N.

The coordinates ui are called canonical coordinates.

As we will see now, canonical coordinates are unique up to permutation and constant
shifts. To avoid cumbersome notation we put ∂ui := ∂/∂ui.
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Proposition 1.4 Let u = (u1, . . . , uN) be canonical coordinates defined on some open subset U ⊂
M. Then

1. The Frobenius pairing takes the form

(∂ui , ∂uj) = δijηj(u), 1 ⩽ i, j ⩽ N,

where ηj ∈ OM(U) and ηj(u) ̸= 0 for all u ∈ U.

2. The unit vector field takes the form e = ∑N
i=1 ∂ui .

3. The 1-form ∑N
i=1 ηi(u)dui is closed.

4. There are constants ci(1 ⩽ i ⩽ N) such that

E =
N

∑
i=1

(ui + ci)∂ui .

The last part of the above proposition shows that in every canonical coordinate system up to
some constant shifts the canonical coordinates coincide with the eigenvalues of the operator
E•. Therefore, up to constant shifts and permutations the canonical coordinates are uniquely
determined. From now on we will work only with canonical coordinates such that

E =
N

∑
i=1

ui∂ui .

The question that we would like to answer now is the following. Let us assume that U is
an open subset of the universal cover T of ZN and ∑N

i=1 ηi(u)dui is a closed 1-form on U.
The tangent bundle of T and hence of U as well is trivial, because T is a contractible Stein
manifold, so according to the Grauert-Oka principle every holomorphic vector bundle on T
is trivial. Alternatively, we can prove that TT is a free OT-module by using that the vector
fields ∂ui of the configuration space ZN lift naturally to vector fields on T and provide a
global trivialization of TT . Using the 1-form we define a pairing

(∂ui , ∂uj) = δijηj(u).

Let us also define multiplication
∂ui • ∂uj = δij∂uj

and vector fields

e =
N

∑
i=1

∂∂ui
, E =

N

∑
i=1

ui∂ui .

The problem then is to classify all 1-forms ∑N
i=1 ηi(u)dui such that the above data determines

a Frobenius structure on U. The answer is given by the following theorem.

Theorem 1.5 The closed 1-form ∑N
i=1 ηi(u)dui determines a Frobenius structure on U of conformal

dimension D if and only if the following conditions are satisfied

1. ηi(u) ̸= 0 for all i and for all u ∈ U.

2. eηi(u) = 0 for all i.

3. Eηi(u) = −Dηi(u).

4. For all k ̸= i ̸= j ̸= k we have

∂ηij

∂uk
=

1
2

(
ηijηkj

ηj
+

ηjkηik

ηk
+

ηkiηji

ηi

)
,

where ηab(u) := ∂ua ηb(u).
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1.1.3 The second structure connection

Let U be a contractible open subset of the configuration space

ZN = {u ∈ CN : ui ̸= uj for i ̸= j}.

And we fix a point u◦ ∈ ZN . Suppose that U is equipped with a semi-simple Frobenius
structure (( , ), •, e, E). Put H = Tu◦U and let us trivialize the tangent bundle

TU ∼= U × H ∼= U × CN

using the Levi-Civita connection. In other words, we fix a basis {ϕa}N
a=1 of H and let ∂ta ∈ TU

be the flat vector field on U obtained by parallel transport with respect to the Levi-Civita
connection. Then the isomorphisms (1.1) are given by the maps

(u, v) ∈ TU 7→ (u, v1ϕ1 + · · ·+ vNϕN) ∈ U × H 7→ (u, v1, . . . , vN) ∈ U × CN , (1.1)

where v ∈ TuU and v =: v1∂t1 + · · ·+ vN∂tN . The isomorphism (1.1) identifies the structure
connection of the Frobenius structure with the flat connection on the trivial bundle

(U × C∗)× CN → U × C∗

defined by

∇∂ui
= ∂ui − z−1Pi(u), 1 ⩽ i ⩽ N,

∇∂z = ∂z − z−1θ + z−2E(u),

where Pi : U → gl(CN) is a holomorphic map whose (a, b)-entry Piab(u) is defined by the
identity

∂ui • ∂tb =
N

∑
a=1

Piab(u)∂ta ,

E = ∑N
i=1 uiPi(u), and θ is a constant matrix whose (a, b)-entry θab is defined by

θ(∂tb) = [∂tb , E]− (1 − D/2)∂tb =:
N

∑
a=1

θab∂ta .

In order to justify the definition of the second structure connection we make the following
heuristic argument. Suppose that the structure connection has a solution

J : U × C∗ → CN

given by a Laplace transform

J(u, z) =
(−z)n− 1

2
√

2π

∫
Γ

eλ/z I(n)(u, λ)dλ

along an appropriate contour Γ ⊂ C of some CN-valued function I(n)(u, λ) holomorphic
for all (u, λ) ∈ U × Γ. Here n ∈ C is an arbitrary number. Assuming that the Laplace
transform works, we would get that J(u, z) is a solution to the structure connection if and
only if I(n)(u, λ) is a solution to the following connection

∇(n)
∂ui

= ∂ui + (λ − E)−1Pi(u)(θ − n − 1/2), 1 ⩽ i ⩽ N,

∇(n)
∂λ

= ∂λ − (λ − E)−1(θ − n − 1/2).

This is a connection on
(U × C)′ × CN → (U × C)′,
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where
(U × C)′ = {(u, λ) ∈ U × C|det(λ − E) ̸= 0}.

Proposition 1.6 The connection ∇(n) is flat for all n ∈ C.

Lemma 1.7 Let Ψ̃ be the matrix whose (a, i)-entry is given by Ψ̃ai = ∂ta/∂ui. Then

Ψ̃−1PiΨ̃ = Eii, Ψ̃−1E Ψ̃ = diag(u1, . . . , uN),

where Eii is the matrix whose entry in position (i, i) is 1 and all other entries are 0.

Lemma 1.8 Let n ∈ C be arbitrary. Then the matrix-valued functions

A(n)
i (u) := Pi(u)(θ − n − 1/2), 1 ⩽ i ⩽ N,

satisfy the Schlesinger equations.

Proof Using Lemma 1.7 we get

(λ − E)−1Pi(θ − n − 1
2
) =

A(n)
i (u)

λ − ui
.

Therefore,

∇(n)
∂ui

= ∂ui +
A(n)

i (u)
λ − ui

, 1 ⩽ i ⩽ N, (1.2)

∇(n)
∂λ

= ∂λ −
N

∑
i=1

A(n)
i (u)

λ − ui
. (1.3)

It remains only to recall Proposition 1.6. □

1.2 Calibration

Let us fix any point t◦ ∈ M. We will do something similar to the previous subsection.
We fix a basis {ϕa}N

a=1 of H := Tt◦ M and let ∂ta ∈ TM be the flat vector field obtained by
parallel transport with respect to the Levi-Civita connection. We will get a simply connected
flat coordinate (V, t), where V is a simply connected neighborhood of t◦ extended by the
parallel transport. Then the isomorphisms (1.4) are given by the maps

(t, v) ∈ TV 7→ (t, v1ϕ1 + · · ·+ vNϕN) ∈ V × H 7→ (t, v1, . . . , vN) ∈ V × CN , (1.4)

where v ∈ TtV and v =: v1∂t1 + · · ·+ vN∂tN . The isomorphism (1.4) identifies the structure
connection of the Frobenius structure with the flat connection on the trivial bundle

(V × C∗)× CN → V × C∗

defined by

∇∂ti
= ∂ti − z−1 Ai(t), 1 ⩽ i ⩽ N, (1.5)

∇∂z = ∂z − z−1θ + z−2E • (t), (1.6)

where Ai : V → gl(CN) is a holomorphic map whose (a, b)-entry Aiab(u) is defined by the
identity

∂ti • ∂tb =
N

∑
a=1

Aiab(t)∂ta ,

E• : V → gl(CN) is derived from Frobenius multiplication by Euler vector field E, and θ is
the constant matrix as before.
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1.2.1 Definition and existence of calibration

We are going to prove that (1.6) admits an isomonodromic family of weak Levelt’s solutions,
i.e., near z = ∞ the system (1.5)-(1.6) admits a fundamental solution of the form

Φ(t, z) = S(t, z)zδzν,

where the matrices S(t, z) = S0 + S1(t)z−1 + S2(t)z−2 . . . with S0 constant (independent of
t and z) invertible matrix, δ is a diagonalizable constant matrix and ν is a nilpotent constant
matrix. Moreover, we will prove that there exists a fundamental solution such that S0 = 1.

Substituting the fundamental series Φ(t, z) in (1.5) and comparing the coefficients in front
of powers of z, we get that

∂ti Sk = AiSk−1, ∀1 ⩽ i ⩽ N, k ∈ Z>0. (1.7)

Since structure connection is flat, concretely, [∇∂ti
,∇∂tj

] = 0, ∀1 ⩽ i, j ⩽ N, 1-form ∑N
i=1 AiSk−1dti

is closed. As V is simply connected, we can integrate the 1-form and find that

Sk(t) = Sk(t◦) +
∫ t

t◦

N

∑
i=1

AiSk−1dti. (1.8)

Therefore, it is sufficient to determine Sk(t) for a fixed t = t◦. For neighborhood V, the values
of Sk(t) are determined from the flatness of structure connection according to formula (1.8).

Next, let us solve (1.6) at t = t◦. It is convenient to introduce the following notation. Let
spec(δ) be the set of eigenvalues of the operator

adδ : gl(H) → gl(H), X → [δ, X].

Let us denote by gla(H) the eigensubspace of adδ with eigenvalue a. Then we have a direct
sum decomposition of vector spaces

gl(H) =
⊕

a∈spec(δ)

gla(H).

Let us denote by X[a] the projection of X on gla(H). The matrices S, δ, and ν are identified
with elements of gl(H) via the basis {ϕi}N

i=1 ⊂ H that we fixed above.
Substituting the fundamental series Φ(t, z) in (1.6) and comparing the coefficients in front

of powers of z, we get that ν[−l] = 0 if l /∈ Z⩾0 and that

θ = δ + ν[0], (1.9)

kSk + [θ, Sk] = E • Sk−1 +
k

∑
l=1

Sk−lν[−l], k > 0. (1.10)

(1.9) uniquely determines δ and ν[0]: δ is diagonizable. ν[0] is nilpotent and [δ, ν[0]] = 0. So δ
and ν[0] are uniquely determined by the Jordan-Chevalley decomposition.

For (1.10), the left hand side is

(k + adδ + adν[0])Sk = ∑
a∈spec(δ)

(k + a + adν[0])(Sk)[a]

where summation is finite since the matrix vector space has finite dimension. Note that adν[0]

preserves the eigenspace of adδ since [δ, ν[0]] = 0, we have

(k + a + adν[0])(Sk)[a] = (E • Sk−1)[a] +
k

∑
l=1

(Sk−l)[a+l] ν[−l] (1.11)
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If k + a ̸= 0, then

(k + a + adν[0])(Sk)[a] = (E • Sk−1)[a] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l] + (S0)[a+k] ν[−k]

= (E • Sk−1)[a] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l]

and the operator (k + a + adν[0]) is invertible.

(k + a + adν[0])
−1 =

1
k + a

∞

∑
i=0

(
−

adν[0]

k + a

)i

,

where the summation over i is actually finite since ν[0] is nilpotent and then operator adν[0]

is nilpotent as well. Hence, (Sk)[a] can be determined by Sk−l , ν[l], l = 1, 2, . . . , k − 1.
If k + a = 0, then

adν[0]((Sk)[−k]) = (E • Sk−1)[−k] + ν[−k] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l].

There will be ambiguity in the choice of (Sk)[−k] since the operator adν[0] is non-invertible
and ν[−k] has not been determined. Actually, the situation is somewhat the other way round.
We may choose (Sk)[−k] ∈ gl−k(H) arbitrarily to determined ν[−k].

Proposition 1.9 Sk(t), k = 1, 2, . . . determined by (1.8) do satisfy (1.10) for all t ∈ V and thus
∇∂z Φ(t, z) = 0 holds not only at t = t◦ but also on the neighborhood V.

Proof Let us prove it by induction. Since θ is a constant matrix,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(kAiSk−1 + adθ(AiSk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(kAiSk−1 + adθ(Ai)Sk−1 + Aiadθ(Sk−1))dti

Note that, by the flatness of structure connection, we have [∇∂ti
,∇∂z ] = 0, ∀1 ⩽ i ⩽ N which

yields relation Ai + [θ, Ai] = ∂ti (E•), ∀1 ⩽ i ⩽ N. Thus,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(∂ti (E•)Sk−1 + Ai(k − 1 + adθ)(Sk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • ∂ti (Sk−1) + Ai(k − 1 + adθ)(Sk−1))dti

When k = 1, the integral vanishes. We have

S1(t) + [θ, S1(t)]− (E•)(t) = S1(t◦) + [θ, S1(t◦)]− (E•)(t◦) = ν[−1].

Our inductive hypothesis is

nSn(t) + [θ, Sn(t)] = (E • Sn−1)(t) +
n

∑
l=1

Sn−l(t)ν[−l], ∀t ∈ V
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holds for n = k − 1. When n = k,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • ∂ti (Sk−1) + Ai(k − 1 + adθ)(Sk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • Ai(Sk−2) + Ai(E • Sk−2 +
k−1

∑
l=1

Sk−1−lν[−l]))dti

Therefore,

kSk(t) + [θ, Sk(t)]− (E • Sk−1)(t)

=kSk(t◦) + [θ, Sk(t◦)]− (E • Sk−1)(t◦) +
∫ t

t◦

N

∑
i=1

k−1

∑
l=1

∂ti (Sk−l)ν[−l]dti

=kSk(t◦) + [θ, Sk(t◦)]− (E • Sk−1)(t◦) +
k

∑
l=1

(Sk−l(t)− Sk−l(t◦))ν[−l]

We finished the induction step. □

We will see that the arbitrariness of (Sk)[−k],−k ∈ spec(δ) will be reduced if the weak
Levelt solution satifies the symplectic condition S(t,−z)TS(t, z) = 1 in the following propo-
sition.

Proposition 1.10 There exists a weak Levelt solution such that

S(t,−z)TS(t, z) = 1,

where T is transposition with respect to the Frobenius pairing on H = Tu◦U.

Proposition 1.10 is known if θ is diagonalizable (see [Dub99]). In fact, the polynomiality of
the primitive form might be sufficient to prove that θ is daigonalizable. However, at this
point this is unknown. Let us modify the argument from [Dub99] in order to cover the case
of θ non-diagonalizable.

Proof Let us first point out that the projection X → X[a] commutes with transposition, i.e.,
(X[a])

T = (XT)[a] for all X ∈ GL(H) and a ∈ spec(δ). This follows from the skew-symmetry
of θ = δ + ν[0] and uniqueness of the Jordan-Chevalley decomposition. Namely, δ and ν[0]
are skew-symmetric as well, and thus (adδ(X))T = adδ(XT). So T : gla(H) → gla(H) is a
linear automorphism for all a ∈ spec(δ). Our claim follows easily. In the rest of the proof we
put XT

[a] := (X[a])
T = (XT)[a]. And we shall also use (adν[0](X))T = adν[0](XT).

In order to prove the proposition, we will show that one can choose (Sk)[−k] (and thus
ν[−k]) for −k ∈ spec(δ) in such a way that

k

∑
i=0

(−1)iST
k−iSi = 0, ∀k ∈ Z>0.

Let us show the above equation by induction. When k = 1,

(1 + a + adν[0])(S1)[a] = (E • S0)[a] + (S0)[a+1] ν[−1] = (E•)[a] + (idH)[a+1]ν[−1].

If 1 + a ̸= 0, then
(1 + a + adν[0])(S1)[a] = (E•)[a]

By taking transposition,
(1 + a + adν[0])(S

T
1 )[a] = (E•)T

[a] .
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Since the matrix for the operator E• is symmetric with respect to the Frobenius transposition
T ,

(1 + a + adν[0])(S
T
1 − S1)[a] = (E•)T

[a] − (E•)[a] = 0

Note that (1 + a + adν[0]) is invertible in the case 1 + a ̸= 0, we obtain

(ST
1 − S1)[a] = 0, ∀a ̸= −1

If a = −1, then
ν[−1] = adν[0](S1)[−1] − (E•)[−1] ,

where we fix (S1)[−1] ∈ gl[−1](H) to be arbitrary solution to (ST
1 − S1)[−1] = 0.

Our inductive hypothesis is that
(
∑n

i=0(−1)iST
n−iSi

)
[a] = 0, ∀a ̸= −n holds for all n =

1, 2, . . . , k − 1.
For all a ̸= −k,

(k + a + adν[0])

(
k

∑
i=0

(−1)iST
k−iSi

)
[a]

=(k + a + adν[0])

(
ST

k + (−1)kSk +
k−1

∑
i=1

(−1)iST
k−iSi

)
[a]

=(k + a + adν[0])

(ST
k )[a] + (−1)k(Sk)[a] +

k−1

∑
i=1

(−1)i ∑
l∈spec(δ)

(ST
k−i)[l](Si)[a−l]


=

(
(E • Sk−1)

T
[a] +

k−1

∑
j=1

νT
[−j]

(
Sk−j

)T

[a+j]

)
+ (−1)k

(
(E • Sk−1)[a] +

k−1

∑
j=1

(
Sk−j

)
[a+j]

ν[−j]

)

+
k−1

∑
i=1

(−1)i ∑
l∈spec(δ)

(
((k − i + l + adν[0])(S

T
k−i)[l])(Si)[a−l] + (ST

k−i)[l](i + a − l + adν[0])(Si)[a−l]

)

=

(
(E • Sk−1)

T
[a] +

k−1

∑
j=1

νT
[−j]

(
Sk−j

)T

[a+j]

)
+ (−1)k

(
(E • Sk−1)[a] +

k−1

∑
j=1

(
Sk−j

)
[a+j]

ν[−j]

)

+
k−1

∑
i=1

(−1)i

 ∑
a−l∈spec(δ)

(((k − i + l + adν[0])(S
T
k−i)[l])(Si)[a−l]

+

 ∑
l∈spec(δ)

(ST
k−i)[l](i + a − l + adν[0])(Si)[a−l]


=

(
(E • Sk−1)

T
[a] +

k−1

∑
j=1

νT
[−j]

(
Sk−j

)T

[a+j]

)
+ (−1)k

(
(E • Sk−1)[a] +

k−1

∑
j=1

(
Sk−j

)
[a+j]

ν[−j]

)

+
k−1

∑
i=1

(−1)i ∑
a−l∈spec(δ)

(
(E • Sk−i−1)

T
[l] +

k−i

∑
j=1

νT
[−j]

(
Sk−i−j

)T

[j+l]

)
(Si)[a−l]

+
k−1

∑
i=1

(−1)i ∑
l∈spec(δ)

(ST
k−i)[l]

(
(E • Si−1)[a−l] +

i

∑
j=1

(
Si−j

)
[a−l+j] ν[−j]

)
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Let us check that the terms involving E• cancel out

(E • Sk−1)
T
[a] +

k−1

∑
i=1

(−1)i ∑
a−l∈spec(δ)

(E • Sk−i−1)
T
[l](Si)[a−l]

+ (−1)k(E • Sk−1)[a] +
k−1

∑
i=1

(−1)i ∑
l∈spec(δ)

(ST
k−i)[l](E • Si−1)[a−l]

=
k−1

∑
i=0

(−1)i ∑
a−l∈spec(δ)

(E • Sk−i−1)
T
[l](Si)[a−l] +

k

∑
i=1

(−1)i ∑
l∈spec(δ)

(ST
k−i)[l](E • Si−1)[a−l]

=
k−1

∑
i=0

(−1)i ∑
a−l∈spec(δ)

(E • Sk−i−1)
T
[l](Si)[a−l] −

k−1

∑
i=0

(−1)i ∑
l∈spec(δ)

(ST
k−i−1)[l](E • Si)[a−l]

=
k−1

∑
i=0

(−1)i
(
(E • Sk−i−1)

TSi

)
[a]

−
k−1

∑
i=0

(−1)i
(

ST
k−i−1(E • Si)

)
[a]

=
k−1

∑
i=0

(−1)i
(
(E • Sk−i−1)

TSi − ST
k−i−1(E • Si)

)
[a]

= 0.

Again, in the last step, we use that the matrix E• is symmetric with respect to the Frobenius
transposition T .

Next, let us see the term involving νT

k−1

∑
j=1

νT
[−j]

(
Sk−j

)T

[a+j]
+

k−1

∑
i=1

(−1)i ∑
a−l∈spec(δ)

k−i

∑
j=1

νT
[−j]

(
Sk−i−j

)T

[j+l]
(Si)[a−l]

=
k−1

∑
j=1

νT
[−j]

(
Sk−j

)T

[a+j]
+

k−1

∑
j=1

νT
[−j]

k−j

∑
i=1

(−1)i ∑
a−l∈spec(δ)

(
Sk−i−j

)T

[j+l]
(Si)[a−l]

=
k−1

∑
j=1

νT
[−j]

(Sk−j

)T

[a+j]
+

k−j

∑
i=1

(−1)i ∑
a−l∈spec(δ)

(
Sk−i−j

)T

[j+l]
(Si)[a−l]


=

k−1

∑
j=1

νT
[−j]

k−j

∑
i=0

(−1)i ∑
a−l∈spec(δ)

(
Sk−i−j

)T

[j+l]
(Si)[a−l]


=

k−1

∑
j=1

νT
[−j]

(
k−j

∑
i=0

(−1)i
(

ST
k−i−jSi

)
[a+j]

)
= 0.

In the last step, we use the induction hypothesis taking n = k − j and the condition that
a + j ̸= −n = j − k is also satisfied for the hypothesis.

The calculation for the term with ν is the same. Therefore,

(k + a + adν[0])

(
k

∑
i=0

(−1)iST
k−iSi

)
[a]

= 0

Since operator (k + a + adν[0]) is invertible for all a ̸= −k, we have(
k

∑
i=0

(−1)iST
k−iSi

)
[a]

= 0, ∀a ̸= −k

Setting (Sk)[−k] = − 1
2 ∑k−1

i=1 (−1)k−i(ST
k−iSi)[−k] + Bk, where Bk ∈ gl−k(H) is arbitrary satis-

fying

BT
k = −(−1)kBk, (1.12)
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as we mentioned, the arbitrariness of (Sk)[−k] ∈ gl−k(H) is reduced. Combining the cases
a ̸= −k and a = −k, we get

k

∑
i=0

(−1)iST
k−iSi = 0.

Namely, we finished the induction step.
Since the symplectic condition S(t,−z)TS(t, z) = 1 is equivalent to

k

∑
i=0

(−1)iST
k−iSi = 0, ∀k ∈ Z>0,

the proposition is proved. □

Then, it is the time to show the definition of calibrations (see [Giv01])

Definition 1.11 The operator series S(t, z) satisfying the conditions of Proposition 1.10 are
called calibrations, i.e., these are operator series of the form 1 + S1(t)z−1 + . . . such that
S(t,−z)TS(t, z) = 1.

Remark 1.12 The series S(t, z) is convergent and it defines an analytic function for all (t, z)
sufficiently close to (t◦, ∞). Indeed, the series S(t◦, z) is a solution to a differential equation
that has regular singularity at z = ∞. Therefore, it is convergent and it defines an analytic
function near z = ∞ (see [Ince, Section ???][Inc44]). The series S(t, z) is a solution to a system
of holomorphic differential equations in t depending holomorphically on the parameter z
near z = ∞ and the initial condition at t = t◦ is also holomorphic at z = ∞. Therefore, S(t, z)
must be holomorphic as a function in (t, z) (see [Arnold, Theorem ???][Arn89]). Moreover,
since S(t, z) for (t, z) ∈ M × C∗ is a solution to a system of linear holomorphic differential
equations, the calibration S(t, z) can be extended analytically along any path in M × C∗ that
starts at the point (t◦, ∞).

1.2.2 Uniqueness of calibration

Lemma 1.13 Let β1, . . . , βm ∈ R \ {0} where they are pairwise distict and C1, . . . , Cm ∈ gl(H). If
limit limt→+∞(∑m

i=1 Cieβit
√
−1) exists, then C1 = · · · = Cm = 0.

Proof Denote ∑m
i=1 Cieβit

√
−1 by L(t). Pick an arbitrary number ∆t from R\∪1⩽i<j⩽m

2π
βi−β j

Q.
Then

m

∑
i=1

Cieβi(t+j∆t)
√
−1 = L(t + j∆t), j = 0, 1, . . . , m − 1,

which can be written in the form of a Vandermonde matrix acting on the vector

(C1eβ1t
√
−1, . . . , Cmeβmt

√
−1)T .

The way of choosing ∆t make sure that the determinant of Vandermonde matrix does not
vanish. Thus, for any i ∈ {1, 2, . . . , m}, Cieβit

√
−1 is the linear combination of L(t), L(t +

∆t), L(t + (m − 1)∆t) given by the inverse of the Vandermonde matrix. Since limt→+∞ L(t)
exists, limt→+∞ Cieβit

√
−1 exists as well. The only possibility is that C1 = C2 = · · · = Cm =

0 □

Theorem 1.14 Let us fix a calibration S(t, z) which determines ν and let S be the set of all calibra-
tions and N be the set of the nilpotent constant matrices determined by calibrations. Define a map
in the following way

G → S ×N

C(z) 7→ (S(t, z)C(z), C(1)−1νC(1)) =: (S′(t, z), ν′)

where G := {C(z) = 1 + ∑∞
m=1 Cmz−m|Cm ∈ gl−m(H), C(−z)TC(z) = 1}.

Then the map is one to one correspondence.
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Proof First, let us check the well-definedness. The fundamental solution

S(t, z)zδzνC(1) = S(t, z)zδC(1)zC(1)−1νC(1) = S(t, z)C(z)zδzC(1)−1νC(1)

where S(t, z)C(z) satisfies the symplectic condition if S(t, z) and C(z) do.
Comparing the coefficient of z−1, z−2, . . . , it is clear that the map is injective.
Next, our goal is to show the map is surjective.
Assume that there are two fundamental solutions and a constant invertible matrix C,

such that
S′(t, z)zδzν′ = S(t, z)zδzνC, S′(t, z), S(t, z) ∈ S ν′, ν ∈ N

We have
S(t, z)−1S′(t, z) = zδzνCz−ν′z−δ = zN(z)C(z)z−N′(z)

where N(z) := zδνz−δ = ν[0] + ∑∞
l=1 ν[−l]z−l , N′(z) := zδν′z−δ = ν[0] + ∑∞

l=1 ν′[−l]z
−l and

C(z) := zδCz−δ. Then

S(t, z)−1S′(t, z) = eN(z) log zC(z)e−N′(z) log z = C(z) + (N(z)C(z)− C(z)N′(z)) log z + . . .

Since N(z) and N′(z) are nilpotent matrices, the right hand side is a polynomial of log z,
denoting the degree of the polynomial by n. We claim that C(z) ∈ 1 + gl(H)[z−1]z−1. Let us
move z around ∞ for one loop. Since S(t, z), S′(t, z), N(z), N′(z) and C(z) are series of z−1,
they remain the value after moving around the loop. We have

n

∑
i=1

Pi(z)((log z + 2π
√
−1)i − (log z)i) = 0, (1.13)

where P1(z) = N(z)C(z)− C(z)N′(z), . . . . One may prove that given (1.13) holds for arbi-
trary Pi(z) ∈ gl(H)[z−1], then P1(z) = P2(z) = · · · = Pn(z) = 0 by induction. Therefore,
we have that C(z) = S(t, z)−1S′(t, z) is symplectic and that N(z)C(z) = C(z)N′(z) and thus
ν′ = C(1)−1νC(1). And that the map is surjective is proved.

Finally, We will prove the claim that C(z) ∈ 1 + gl(H)[z−1]z−1.

C(z) := zδCz−δ = C[0]+ ∑
a∈spec(δ)\{0}

C[a]z
a, m̃ := max{Re(a)|a ∈ spec(δ) \ {0}, C[a] ̸= 0}

While limz→+∞ C(z) = limz→+∞ e−N(z) log zS(t, z)−1S′(t, z)eN′(z) log z = 1. Then if m̃ > 0,
limz→+∞ ∑a∈spec(δ) C[a]za−m̃ = 0, which leads that C[ã] = 0, ∀ã ∈ {a ∈ spec(δ) \ {0}|C[a] ̸=
0, Re(a) = m̃} via Lemma 1.13. If m̃ = 0,

lim
z→+∞

(C[0] + ∑
a:Re(a)=0,a ̸=0

C[a]z
a + ∑

a:Re(a)<0
C[a]z

a) = 1.

Similarly, C[ã] = 0, ∀ã ∈ {a ∈ spec(δ) \ {0}|C[a] ̸= 0, Re(a) = m̃} via Lemma 1.13. These two
contradictions give us m̃ < 0 and that C[0] = 1.

Let us move z around ∞ for one loop for the formula S(t, z)−1S′(t, z) = eN(z) log zC(z)e−N′(z) log z

as we did. After multiplying e−N(z) log z and eN′(z) log z from left and right, respectively, we
get

∑
a∈spec(δ)

e2π
√
−1N(z)C[a]z

ae2π
√
−1ae−2π

√
−1N′(z) = ∑

a∈spec(δ)
C[a]z

a.

If {a ∈ spec(δ) \ Z|C[a] ̸= 0} is not empty, denote m′ := max{Re(a)|a ∈ spec(δ) \ Z, C[a] ̸=
0}.

e2π
√
−1N(z)

∑
a∈Z

C[a]z
a + ∑

a/∈Z,Re(a)=m′
C[a]z

ae2π
√
−1a + ∑

a/∈Z,Re(a)<m′
C[a]z

ae2π
√
−1a

 e−2π
√
−1N′(z)

= ∑
a∈Z

C[a]z
a + ∑

a/∈Z,Re(a)=m′
C[a]z

a + ∑
a/∈Z,Re(a)<m′

C[a]z
a.
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Comparing the coefficient of a ∈ spec(δ) \ Z, Re(a) = m′, we have

e2π
√
−1ν[0]C[a]e

2π
√
−1ae−2π

√
−1ν[0] = C[a].

Due to the fact that ν[0] is constant nilpotent matrix, we obtain e2π
√
−1a = 1, which contra-

dicts to a /∈ Z. Therefore {a ∈ spec(δ) \ Z|C[a] ̸= 0} is empty. Combining the previous
argument, the claim is proved. □

1.3 Period vectors

The definition of the period map depends on the choice of a calibration of M. So we will
use the notation of the previous section. Let us fix a reference point (t◦, λ◦) ∈ (M × C)′ :=
{(t, λ)|det(λ − E•t) ̸= 0} such that λ◦ is a sufficiently large real number.

Proposition 1.15 The following functions provide a fundamental solution to the 2nd structure con-
nection

I(n)(t, λ) =
∞

∑
k=0

(−1)kSk(t) Ĩ(n+k)(λ),

where

Ĩ(m)(λ) = e−∑∞
l=0 ν[−l](−∂λ)

l ∂m

(
λδ−m− 1

2

Γ(δ − m + 1
2 )

)
.

Proof First, let us show that ∇(n)
∂λ

I(n) = 0.

(λ − E•)∇(n)
∂λ

I(n) =(λ − E•)∂λ I(n) − (θ − n − 1
2
)I(n)

=
∞

∑
k=0

(−1)kSk(t)λ∂λ Ĩ(n+k)(λ)−
∞

∑
k=0

(−1)kE • ∂λSk(t) Ĩ(n+k)(λ)

−
∞

∑
k=0

(−1)k(θ − n − 1
2
)Sk(t) Ĩ(n+k)(λ)

We may apply (1.10) to the last line and it will be

−(θ −n− 1
2
) Ĩ(n)(λ)−

∞

∑
k=1

(−1)k

(
Sk(t)(θ − n − k − 1

2
) + E • Sk−1(t) +

k

∑
l=1

Sk−l(t)ν[−l]

)
Ĩ(n+k)(λ).

Let us rearrange these two summation and shift indices of S such that, in the summation
over k, there is only Sk and we will get

−
∞

∑
k=0

(−1)k

(
Sk(δ − n − k − 1

2
) Ĩ(n+k) − E • Sk Ĩ(n+k+1) +

∞

∑
l=0

(−1)lSkν[−l] Ĩ
(n+k+l)

)
.

Note that ∂λ Ĩ(n+k) = Ĩ(n+k+1), the two terms with E• will cancel out each other. Similarly,
Ĩ(n+k+l) = (∂λ)

l Ĩ(n+k) and then

(λ − E•)∇(n)
∂λ

I(n) =
∞

∑
k=0

(−1)kSk(t)

(
λ∂λ − (δ − n − k − 1

2
)−

∞

∑
l=0

ν[−l](−∂λ)
l

)
Ĩ(n+k)(λ).

Next we will show that
(

λ∂λ − (δ − m − 1
2 )− ∑∞

l=0 ν[−l](−∂λ)
l
)

Ĩ(m)(λ) = 0. An observa-

tion is that (λ∂λ − (δ−m− 1
2 ))

(
λδ−m− 1

2

Γ(δ−m+ 1
2 )

)
= 0. So we want to commute λ∂λ − (δ−m− 1

2 )
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with −∑∞
l=0 ν[−l](−∂λ)

l∂m. The calculation process is the following

(λ∂λ − (δ − m − 1
2
))(−

∞

∑
l=0

ν[−l](−∂λ)
l∂m) =−

∞

∑
l=0

ν[−l](−∂λ)
l∂m(λ∂λ − l) +

∞

∑
l=0

ν[−l](δ − l)(−∂λ)
l∂m

−
∞

∑
l=0

ν[−l](−∂λ)
l(∂mm − 1)− 1

2

∞

∑
l=0

ν[−l](−∂λ)
l∂m.

The two term with −l will cancel out each other.

(λ∂λ − (δ − m − 1
2
))(−

∞

∑
l=0

ν[−l](−∂λ)
l∂m) =−

∞

∑
l=0

ν[−l](−∂λ)
l∂m(λ∂λ − (δ − m − 1

2
)) +

∞

∑
l=0

ν[−l](−∂λ)
l .

And

(λ∂λ − (δ−m− 1
2
))e−∑∞

l=0 ν[−l](−∂λ)
l∂m = e−∑∞

l=0 ν[−l](−∂λ)
l∂m(λ∂λ − (δ−m− 1

2
))+

∞

∑
l=0

ν[−l](−∂λ)
le−∑∞

l=0 ν[−l](−∂λ)
l∂m ,

which yields
(

λ∂λ − (δ − m − 1
2 )
)

Ĩ(m)(λ) = ∑∞
l=0 ν[−l](−∂λ)

l Ĩ(m)(λ). Since λ − E• is in-

vertible on (M × C)′, we finished the proof of ∇(n)
∂λ

I(n) = 0.

Finally, let us show that ∇(n)
∂ti

I(n) = 0 with the help of (λ − E•)∇(n)
∂λ

I(n) = 0. Let us

consider
(λ − E•)∇(n)

∂ti
I(n) = (λ − E•)∂ti I

(n) + ϕi • (θ − n − 1
2
)I(n).

In virtue of (λ − E•)∇(n)
∂λ

I(n) = 0, i.e., (θ − n − 1
2 )I(n) = (λ − E•)∂λ I(n), we have

(λ − E•)∇(n)
∂ti

I(n) = (λ − E•)∂ti I
(n) + ϕi • (λ − E•)∂λ I(n) = (λ − E•)(∂ti + ϕi • ∂λ)I(n).

Again, we get ∇(n)
∂ti

I(n) = (∂ti + ϕi • ∂λ)I(n). Then, recalling (1.7), we have

∇(n)
∂ti

I(n) =
∞

∑
k=0

(−1)k∂ti Sk(t) Ĩ(n+k)(λ) +
∞

∑
k=0

(−1)k Ai(t)Sk(t) Ĩ(n+k+1)(λ)

=
∞

∑
k=0

(−1)k∂ti Sk(t) Ĩ(n+k)(λ)−
∞

∑
k=0

(−1)k+1∂ti Sk+1(t) Ĩ(n+k+1)(λ) = 0.

Hence we finished the proof. □

The 2nd structure connection has a Fuchsian singularity at infinity, therefore the series I(n)(t, λ)
is convergent for all (t, λ) sufficiently close to (t◦, λ◦). Using the differential equations we
extend I(n) to a multi-valued analytic function on (M × C)′. We define the following multi-
valued functions taking values in H:

I(n)a (t, λ) := I(n)(t, λ)a, a ∈ H, n ∈ C

These functions will be called period vectors. Using analytic continuation we get a represen-
tation

π1((M × C)′, (t◦, λ◦)) → GL(H)

called the monodromy representation of the Frobenius manifold. The image W of the mon-
odromy representation is called the monodromy group.

Under the semi-simplicity assumption, we may choose a generic reference point t◦ on M,
such that the Frobenius multiplication •t◦ is semi-simple and the operator E•t◦ has N pair-
wise different eigenvalues u◦

i (1 ⩽ i ⩽ N). The fundamental group π1((M × C)′, (t◦, λ◦))
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fits into the following exact sequence

π1(F◦, λ◦)
i∗−→ π1((M × C)′, (t◦, λ◦)) → π1(M, t◦) → 1 (1.14)

where p : (M × C)′ → M is the projection on M, F◦ = p−1(t◦) = C{u◦
1 , . . . , u◦

N} is the
fiber over t◦, and i : F◦ → (M × C)′ is the natural inclusion. For a proof we refer to [Shi],
Proposition 5.6.4 or [Nor83], Lemma 1.5 C. Using the exact sequence (1.14) we get that the
monodromy group W is generated by the monodromy transformations representing the lifts
of the generators of π1(M, t◦) in π1((M × C)′, (t◦, λ◦)) and the generators of π1(F◦, λ◦).

The image of π1(F◦, λ◦) under the monodromy representation is a reflection group that
can be described as follows. Using the differential equations of the 2nd structure connection
it is easy to prove that the pairing

(a|b) := (I(0)a (t, λ), (λ − E•)I(0)b (t, λ))

is independent of t and λ. This pairing is known as the intersection pairing. Suppose now
that γ is a simple loop in F◦, i.e., a loop that starts at λ◦, approaches one of the punctures
u◦

i along a path γ′ that ends at a point sufficiently close to u◦
i , goes around u◦

i , and finally
returns back to λ◦ along γ′. By analyzing the second structure connection near λ = ui it is
easy to see that up to a sign there exists a unique a ∈ H such that (a|a) = 2 and the mon-
odromy transformation of a along γ is −a. The monodromy transformation representing
γ ∈ π1(F◦, λ◦) is the reflection defined by the following formula:

wa(x) = x − (a|x)a.

Let us denote by R the set of all a ∈ H as above determined by all possible choices of simple
loops in F◦. We refer to the elements of R as reflection vectors.

1.3.1 Reflection vectors (Vanishing cycles)

In this section, we shall assume that n ∈ Z. In the definition of the set R of reflection
vectors that we gave just now, we fixed a semi-simple point t◦ ∈ M and moved λ in C −
{u◦

1 , . . . , u◦
N}. On a neighborhood of t◦, the semi-simplicity assumption and that E•t has

N pairwise different eigenvalues ui still hold. Next we will find a fundamental solution
Y(i)(u, λ) to differential equation ∇(n)

∂/∂λY(i)(u, λ) = 0 near λ = ui. Let us denote by y(j) the
jth of column vectors of the matrix Y(i)(u, λ),

y(j) = (λ − ui)
α(y(j)

0 +
∞

∑
k=1

y(j)
k (λ − ui)

k),

where y(j)
0 , y(j)

k are column vectors depending on u. Let us see the coefficient of (λ − ui)
α−1

in the equation ∇(n)
∂/∂λy(j) = 0 recalling (1.3) and then we have,

A(n)
i (u)y(j)

0 = αy(j)
0

According to the definition of A(n)
i (u) and Lemma 1.7,

EiiΨ̃−1(θ − n − 1
2
)Ψ̃(Ψ̃−1y(j)

0 ) = αΨ̃−1y(j)
0 .

By direct calculation,

det
(

α − EiiΨ̃−1(θ − n − 1
2
)Ψ̃
)
= αN−1(α −

(
Ψ̃−1(θ − n − 1

2
)Ψ̃
)

ii
).
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Lemma 1.16 Let η be diag{η1, . . . , ηN}. Then (Ψ̃−1θΨ̃)Tη = −η(Ψ̃−1θΨ̃), where T represents
the standard matrix transposition, and thus

(
Ψ̃−1(θ − n − 1

2 )Ψ̃
)

ii
= −n − 1

2 .

Proof Note that θ is skew symmetric with respect to the Frobenius pairing, i.e.,

(θ(∂ui ), ∂uj) = −(∂ui , θ(∂uj)),

where

θ∂ui =
N

∑
a=1

∂ta

∂ui
θ(∂ta) =

N

∑
a,b=1

∂ta

∂ui
θba∂tb =

N

∑
a,b,j=1

Ψ̃aiθba(Ψ̃
−1)jb∂uj .

Thus, (θ(∂ui ), ∂uj) = ∑N
a,b=1 Ψ̃aiθba(Ψ̃−1)jbηj = ηj(Ψ̃−1θΨ̃)ji. Similarly, (∂ui , θ(∂uj)) = ηi(Ψ̃−1θΨ̃)ij.

Therefore, ηj(Ψ̃−1θΨ̃)ji = −ηi(Ψ̃−1θΨ̃)ij, 1 ⩽ i, j ⩽ N, and thus (Ψ̃−1θΨ̃)ii = 0. □

We have eigenvalue α = 0 and α = −n − 1
2 of A(n)

i (u). Since
(

Ψ̃−1(θ − n − 1
2 )Ψ̃

)
ii

=

−n − 1
2 ̸= 0, we have EiiΨ̃−1(θ − n − 1

2 )Ψ̃ and thus A(n)
i (u) are diagonalizable, namely, the

dimension of eigenspace for eigenvalue α = 0 is N − 1 and that for eigenvalue α = −n − 1
2

is 1. Let y(j)
0 be the eigenvector of A(n)

i (u) for eigenvalue α = 0 if j ̸= i and let y(i)0 be that for

eigenvalue α = −n− 1
2 . We will see that y(j) is uniquely determined by y(j)

0 for all 1 ⩽ j ⩽ N.

For the case j ̸= i, let us see the coefficient of (λ − ui)
k+α−1 in the equation ∇(n)

∂/∂λy(j) = 0
recalling (1.3) and then we have,

(
k − A(n)

i (u)
)

y(j)
k − ∑

s ̸=i

(
A(n)

s (u)
λ − us

y(j)

)
(λ−ui)k−1

= 0,

where 1
λ−us

= 1
ui−us

1
1− λ−ui

us−ui

= −∑∞
l′=0

(λ−ui)
l′

(us−ui)l′+1 . Then the above equation can be converted

into (
k − A(n)

i (u)
)

y(j)
k = − ∑

l′+l′′=k−1,s ̸=i,1⩽s⩽N

A(n)
s (u)

(us − ui)l′+1 y(j)
l′′

Since det
(

k − A(n)
i (u)

)
̸= 0, ∀k ∈ Z⩾1, we can determine y(j)

k by y(j)
l′′ , l′′ = 0, 1, . . . , k− 1. The

same argument holds for the case j = i. Thus, we get that Y(i)(u, λ) = [y(1)(u, λ), . . . , y(N)(u, λ)]

is a fundamental solution for ∇(n)
∂/∂λY(i)(u, λ) = 0 near λ = ui.

As I(n)(u, λ) is also a fundamental solution to ∇(n)
∂/∂λ I(n)(u, λ) = 0, there is a matrix

C(i)(u) depending on u such that I(n)(u, λ) = Y(i)(u, λ)C(i)(u), ∀1 ⩽ i ⩽ N. Let us de-
note by φi the reflection vector with respect to eigenvalue ui. The equation I(n)φi (u, λ) =

Y(i)(u, λ)C(i)(u)φi will be transformed into the following equation via analytical continua-
tion around λ = ui,

−I(n)φi (u, λ) = Y(i)(u, λ)diag{1, . . . , 1,−1, 1, . . . , 1}C(i)(u)φi,

where the −1 in the diagonal matrix is on the ith position. Then we have

−C(i)(u)φi = diag{1, . . . , 1,−1, 1, . . . , 1}C(i)(u)φi,

which means that φi = κiC(i)(u)−1ei, κi ∈ C. Here ei is is the column vector of which
the ith entry is 1 and the rest are zeros. And one may solve κi via the equation (φi|φi) =

κ2
i (C

(i)(u)−1ei|C(i)(u)−1ei) = 2.
Let us show that (C(i)(u)−1ei|C(i)(u)−1ei) ̸= 0. Analytical continuation of the constant

(I(n)a , (λ− E•)I(−n)
b ) around λ = ui is (I(n)

w(n)
i (a)

, (λ− E•)I(−n)

w(−n)
i (b)

), where a, b ∈ Tt◦ M and w(n)
i
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is monodromy of n around λ = ui. As we discussed, I(n)
w(n)

i (a)
= I(n)(α− 2(C(i)

n (u))−1EiiC
(i)
n (u)a).

Thus, (I(n)a , (λ − E•)I(−n)
b ) = (I(n)

w(n)
i (a)

, (λ − E•)I(−n)

w(−n)
i (b)

) gives us

− 2(I(n)(C(i)
n (u))−1EiiC

(i)
n (u)a, (λ − E•)I(−n)

b )− 2(I(n)a , (λ − E•)I(−n)(C(i)
−n(u))

−1EiiC
(i)
−n(u)b)

+ 4(I(n)(C(i)
n (u))−1EiiC

(i)
n (u)a, (λ − E•)I(−n)(C(i)

−n(u))
−1EiiC

(i)
−n(u)b) = 0

Take a = (C(i)
n (u))−1ei and b = (C(i)

−n(u))
−1ej, when j ̸= i, −2(I(n)(C(i)

n (u))−1EiiC
(i)
n (u)a, (λ−

E•)I(−n)
b ) = 0, i.e., (I(n)a , (λ − E•)I(−n)

b ) = 0. Then, since (·, ·) and (λ − E•) are non-
degenerate, when j = i,

(I(n)(C(i)
n (u))−1ei, (λ − E•)I(−n)(C(i)

−n(u))
−1ej) ̸= 0.

Letting n = 0, (C(i)(u)−1ei|C(i)(u)−1ei) ̸= 0.

1.3.2 The ring of modular functions

Our main interest is in the period map

Z : ((M × C)′)∼ → H∗, (t, λ) → Z(t, λ)

where ((M × C)′)∼ is the universal cover of (M × C)′ and Z(t, λ) ∈ H∗ is defined by

⟨Z(t, λ), α⟩ := Zα(t, λ) = (I(−1)
α (t, λ), 1).

The flow of the unit vector field 1 defines a free action of C on M

C × M → M, (x, t) 7→ t + x1.

Let us identify the orbit space B := M/C with the submanifold {t1 = 0} ⊂ M. Then we
have an isomorphism

C × B ≃ M, (x, t) 7→ t + x1.

The period map has the following translation symmetry

Z(t, λ) = Z(t − λ1, 0).

Therefore, we will restrict our analysis to the case t1 = 0, i.e., we will assume that t ∈ B and
that the period map is defined on the universal cover of

X := (B × C)′ = {(t, λ) ∈ B × C|det(λ − E•) ̸= 0}.

Let us denote by Ω ⊂ H∗ the image of the period map Z. This is a W-invariant subset
which will be called the period domain. In general very little is known about such period
domains. For example it would be interesting to classify semi-simple Frobenius manifolds
such that the action of W on Ω is properly discontinuous and the quotient [Ω/W] is an orb-
ifold whose coarse moduli space is isomorphic to the Frobenius manifold M. Furthermore,
we would like to introduce the ring of modular functions

M(Ω, W) := { f ∈ Γ(Ω,OH∗)W | f ◦ Z ∈ O(B × C)},

where Γ(Ω,OH∗)W is the ring of W-invariant holomorphic functions in Ω. Note that in
general if f ∈ Γ(Ω,OH∗)W is an arbitrary function, then the composition f ◦ Z defines a
holomorphic function on (B × C)′. The condition in the above definition requires that f ◦ Z
extends analytically across the discriminant.

Definition 1.17 The period map Z is said to be invertible if there exists a set of modular
functions fi ∈ M(Ω, W)(1 ⩽ i ⩽ N) such that the set of holomorphic functions fi ◦ Z(1 ⩽
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i ⩽ N) is a coordinate system on B ×C. A set of such modular functions { fi}N
i=1 is called the

inverse of the period map.

There are two reasons why we are interested in finding the inverse of the period map.
The first one is related to the discussion above. We expect that if the period map is invertible
then the corresponding modular functions fi will give a complete set of recursion relations,
which would allow us to determine the genus-0 total descendant potential in terms of the
monodromy data of the Frobenius manifold via an explicit recursion. The second reason is
related to the problem of uniformizing a semi-simple Frobenius manifold. We expect that
semi-simple Frobenius manifolds relevant in the study of mirror symmetry are quotients of
a simply connected domain by a discrete group. At this point we can only speculate, but
we believe that the problem of uniformizing the Frobenius manifold corresponding to the
quantum cohomology of some smooth projective variety X is related to the problem of con-
structing the manifold of stability conditions of the bounded derived category Db(CohX).
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Chapter 2

Classification of semi-simple
Frobenius manifold M

In this chapter, let M be a semi-simple Frobenius manifold in the form of C × B where B is a
Riemann surface. And we assume that x := (x1, x2) ∈ C × B =: M and ∂

∂x1
∈ TM(M) is the

unit vector field of Frobenius manifold M. We shall first show that if we have a local biholo-
morphism from one complex manifold to a Frobenius manifold then we can get a Frobenius
structure on the complex manifold by taking the pullback of the Frobenius structure on the
image. Then we will give the definition of maximal Frobenius manifold based on the previous
statement. Finally, we shall classify M, in the sense that, for all M, its Frobenius structure is
a pullback of that of one of three types of maximal Frobenius manifolds. The main theorem of
this chapter is placed at the end.

Proposition 2.1 (Pullback of Frobenius structure by local biholomorphism) Let ϕ : X →
Y be a local biholomorphism, namely, a holomorphism with non-degenerate tangent map, where X
is a complex manifold and Y is a Frobenius manifold with Frobenius structure (gY(·, ·), •Y, EY, eY)
and dimC(X) = dimC(Y). Define ∀v1, v2 ∈ TxX,

gX,x(v1, v2) :=gY,ϕ(x)(dxϕ(v1), dxϕ(v2)),

v1 •X,x v2 :=(dxϕ)−1(dxϕ(v1) •Y,ϕ(x) dxϕ(v2)),

EX,x :=(dxϕ)−1(EY,ϕ(x)),

eX,x :=(dxϕ)−1(eY,ϕ(x)).

Then (gX(·, ·), •X , EX , eX) is a Frobenius structure on X.

Proof Since ϕ is a local biholomorphism, for any x ∈ X, there is an open neighborhood Ux
of x such that ϕ|Ux is a biholomorphism. Besides, dxϕ : TxX → Tϕ(x)Y is an isomorphism.
Thus, we have a structure on each point of Ux defined in the proposition and that ϕ|Ux
is biholomorphism guarantees the structure on Ux is Frobenius structure. Thanks to the
arbitrariness of x ∈ X, (gX(·, ·), •X , EX , eX) is a Frobenius structure on X. □

If ϕ is a surjective local biholomorphism and Y is a semi-simple Frobenius manifold, then
let y ∈ Y be a semi-simple point and x ∈ ϕ−1(y), then ϕ|Ux ’s being biholomorphism ensure
that x is a semisimple point as well.

Remark 2.2 The pullback of semi-simple Frobenius structure via a surjective local biholo-
morphism is also a semi-simple Frobenius structure.

Definition 2.3 (maximal Frobenius manifold) Frobenius manifold X is called maximal if its
Frobenius structure is not a pullback of that on another Frobenius manifold.

For any M := C × B that we assumed at the beginning of the chapter, Let us take its
universal cover

M̃ := C × B̃
(idC,π)−−−−→ C × B

where B̃ is the univeral cover of B and B = (B̃/Γ). Here Γ is a discrete subgroup of Aut(B̃)
such that B is a Riemann surface. And we have π ◦ γ = π, ∀γ ∈ Γ. Besides, the uniformiza-
tion theorem tells us that B̃ is comformally equivalent to one of three Riemann surfaces: the
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upper half plane H, the complex plane C and the Riemann sphere CP1. Meanwhile since
we can extend the flat coordinate on the simply connected M̃ and C × CP1 has no trivial
tangent bundle. B̃ must be H or C only.

Apparently, the univeral covering map (idC, π) is a surjective local biholomorphism.
Due to Remark 2.2, M̃ is a semi-simple Frobenius manifold as well by the pullback of
(idC, π). Let us study its cannonical coordinates.

2.1 Canonical coordinates on M̃

Choose a simply connected open subset U of M̃ that admits canonical coordiates u = (u1, u2).
There is a transform of coordinates, i.e. local biholomorphism (u1(x̃1, x̃2), u2(x̃1, x̃2)), where
x̃1 ∈ C and x̃2 ∈ B̃ = H or C and thus (x̃1, x̃2) are global coordinates. According to chain
rule, we have

∂

∂x̃1
=

∂u1

∂x̃1

∂

∂u1
+

∂u2

∂x̃1

∂

∂u2

Note that ∂
∂x̃1

is the unit vector field and u is canonical coordinates. We have

∂u1

∂x̃1
=

∂u2

∂x̃1
≡ 1.

Thus, we may assume

u1 = x̃1 + g1(x̃2)

u2 = x̃1 + g2(x̃2)

where g1, g2 ∈ OM̃(U), g1 − g2 nowhere vanishes and ∂
∂x̃1

(g1 − g2) = 0. Since ∂
∂x̃2

= ∂g1
∂x̃2

∂u1 +
∂g2
∂x̃2

∂u2 ,

∂

∂x̃2
• ∂

∂x̃2
=

(
∂g1

∂x̃2

)2
∂u1 +

(
∂g2

∂x̃2

)2
∂u2

=ã
∂

∂x̃1
+ b̃

∂

∂x̃2
= ã(∂u1 + ∂u2) + b̃

(
∂g1

∂x̃2
∂u1 +

∂g2

∂x̃2
∂u2

)
where ã and b̃ are holomorphic function on M̃. By solving the following equation for b̃,(

∂g1

∂x̃2

)2
= ã + b̃

∂g1

∂x̃2
,(

∂g2

∂x̃2

)2
= ã + b̃

∂g2

∂x̃2
,

we get b̃ = ∂
∂x̃2

(g1 + g2) ∈ O(M̃), which implies g1 + g2 ∈ O(M̃) as M̃ is simply connected.
Taking the following biholomorphism from M̃ to itself

x1 =x̃1 +
g1 + g2

2
x2 =x̃2,

then canonical coordinates will be

u1 = x1 −
g2 − g1

2

u2 = x1 +
g2 − g1

2
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Setting g(x2) := g2−g1
2 ∈ OM̃(U), finally, canonical coordinates is in the form

u1 =x1 − g(x2) (2.1)
u2 =x1 + g(x2). (2.2)

We will call it canonical choice of coordinate in Theorem 2.4
Recall the notation about semi-simple Frobenius manifolds in (1.1.2), we have canonical

cooridinates
(∂ui , ∂uj) = δijηi(u), ∂ui :=

∂

∂ui
, i, j = 1, 2

And by Proposition 1.4 and Theorem 1.5, noting that N = 2, (4) of Theorem 1.5 is trivial, we
obtain

(∂u1 + ∂u2)ηi = 0 (2.3)
(u1∂u1 + u2∂u2)ηi = −Dηi (2.4)

where D is conformal dimension. Then we get

∂u1 ηi

ηi
du1 =

−D
u2 − u1

d(−u1)

∂u2 ηi
ηi

du2 =
−D

u2 − u1
d(u2)

Summing up the above equation, we get

dηi
ηi

=
−D

u2 − u1
d(u2 − u1) =

−D
g(x2)

dg(x2)

Integrate the differential equation related to ηi (Here we use the condition that U is sim-
ply connected). And since ∂ηi

∂x1
= ( ∂

∂u1
+ ∂

∂u2
)ηi = 0, we get

ηi = cie−D ln g(x2) = cig−D, ci ∈ C∗

By Proposition 1.4, we have ∂u1 η2 = ∂u2 η1. Take this relation into (2.3), we have ∂u1(η1 +
η2) = ∂u2(η1 + η2) = 0. Thus, η1 + η2 is a complex constant.

Similarly, ∂xi := ∂
∂xi

. Frobenius pairing is

(∂x1 , ∂x1) =η1 + η2 = (c1 + c2)g−D

(∂x1 , ∂x2) =(c2 − c1)g′g−D

(∂x2 , ∂x2) =(c1 + c2)(g′)2g−D

where g′ := ∂g
∂x2

. The determinant of the Frobenius pairing matrix is 4c1c2(g′g−D)2. Thanks
to the non-degeneracy of Frobenius pairing, (g′g−D)2 ∈ OB(B) has no zeros.

Euler vector field and Frobenius pairing are

E = x1∂x1 +
g
g′

∂x2

∂x2 • ∂x2 = (g′)2∂x1

2.2 D ̸= 0 case

Since D ̸= 0, c1 + c2 = 0 and denote 2c2 = c ̸= 0.

Theorem 2.4 Let ((·, ·), •, e = ∂x1 , E) semi-simple Frobenius structure on M̃. Then there is a non-
zero complex constant c and a canonical choice of coordinates (x1, x2) such that
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1. If g
g′ ∈ O(B̃) has no zero, then the Frobenius structure has the form

(∂xi , ∂xj) = δi+j,3 · c · G′e(1−D)G, (2.5a)

∂x2 • ∂x2 = (G′)2e2G∂x1 , (2.5b)

E = x1∂x1 +
1

G′ ∂x2 , (2.5c)

where G ∈ O(B̃) and G′ has no zero.

2. If g
g′ ∈ O(B̃) has at least one zero, then D = 1 − 2

q for some q ∈ Z⩾2

(∂xi , ∂xj) = δi+j,3 · c · q
2

H′(x2), (2.6a)

∂x2 • ∂x2 =
q2

4
(H′(x2))

2(H(x2))
q−2∂x1 , (2.6b)

E = x1∂x1 +
2
q

H(x2)

H′(x2)
∂x2 , (2.6c)

where H ∈ O(B̃) and H′ has no zero.

Proof The existence of the canonical choice of coordinates (x1, x2) was shown in the previ-
ous section.

1. Due to the assumption, g′
g = (log g)′ ∈ OB̃(B̃). Since B̃ is simply connected,

g(x2) = g(x◦2) exp
(∫ x2

x◦2
(log g(x̃2))

′dx̃2

)
∈ OB̃(B̃).

And then we have a holomorphic function G on B̃, such that g = eG and G′ nowhere
vanishes. It is easy to calculate that the Frobenius structure can be rewritten in terms
of G in the way that we stated in the proposition.

2. First, D ̸= 1, otherwise the assumption contradicts to (∂x1 , ∂x2) = cg′g−D ∈ O(M̃). We
have g′g−D · g

g′ = g1−D ∈ O(B̃) and that (∂x1 , ∂x2) = c
1−D

∂
∂x2

(g1−D) ∈ O(B̃) has no

zeros. On the other hand, g′
g is a meromorphic function on B. Supposing g

g′ ∈ O(B̃)
has a zero at x2 = a ∈ B̃, let us take its Laurent series near x2 = a,

g′

g
=

m

∑
i=1

ci

(x2 − a)i + O((x2 − a)0).

Then

H(x2) := e(1−D)
∫ g′

g dx2 = (x2 − a)(1−D)c1 e∑m
i=2

ci(1−D)
1−i (x2−a)1−i+O((x2−a)0) = g1−D ∈ O(B̃).

Therefore, ci = 0 for i > 1. And that H′(x2) =
∂

∂x2
(g1−D) ∈ O(B̃) has no zeros yields

(1 − D)c1 = 1.

Furthermore, ( g′
g )

2 · e2
∫ g′

g dx2 = (g′)2 ∈ O(B̃), then 1
(x2−a)2 (x2 − a)2c1 ∈ O(B̃), i.e.,

2c1 ∈ Z⩾2. Hence, D = 1 − 2
q for some q ∈ Z⩾2. Again, it is easy to calculate that

the Frobenius structure can be rewritten in terms of G in the way that we stated in the
proposition. □

2.2.1 g
g′ ∈ O(B̃) has no zero

An observation is that if we define ϕ : M̃ → C2 in the way that (x1, x2) 7→ (x̂1 = x1, x̂2 =
G(x2)), then ϕ is a local biholomorphism due to G′(x2) ̸= 0, ∀x2 ∈ B̃.
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Consider the 2-dimensional configuration space Z2 := {(û1, û2) ∈ C2|u1 ̸= u2} and the
Frobenius structure is that in Proposition 1.4, i.e., (û1, û2) are canonical coordinates. Con-
sider the universal cover C2 = {(x̂1 = û1+û2

2 , x̂2) ∈ C2|ex̂2 = û2−û1
2 } of Z2, and the pullback

of Frobenius structure from Z2 to C2 is

e =∂x̂1 ,

(∂x̂i , ∂x̂j) =δi+j,3 · ĉ · e(1−D)x̂2 ,

∂x̂2 • ∂x̂2 =e2x̂2 ∂x̂1 ,
E =x̂1∂x̂1 + ∂x̂2 .

(2.7)

Corollary 2.5 If ((·, ·), •, e = ∂x1) is a semi-simple Frobenius structure on M̃, then ∃G ∈ O(B̃)
and G′(x2) ̸= 0, ∀x2 ∈ B̃ such that the Frobenius structure is a pullback of the Frobenius structure
on C2 := {(x̂1, x̂2) ∈ C2} via the map ϕ : M̃ → C2, (x1, x2) 7→ (x̂1 = x1, x̂2 = G(x2)).

Proof We only need to choose ĉ = c. Calculating the tangent map of ϕ and comparing (2.5)
and (2.7), one can find the corollary. □

Next, recall that M = C × (B̃/Γ) where B̃ is C or H and Γ is a discrete subgroup of
Aut(B̃). π the universal covering map from B̃ to B̃/Γ, and then ∀γ ∈ Γ, π ◦ γ = π. And we
pullbacked the semi-simple Frobenius structure on M to get that on M̃. Due to π ◦ γ = π,
(idC, γ) gives us an automorphism of Frobenius structure on M̃. The tangent map of (idC, γ)

and (2.5c) yield G′(x2) =
∂

∂x2
G(γ(x2)). And the tangent map and (2.5b) give us

G(γ(x2)) = G(x2) + kπ
√
−1, k ∈ Z.

If D = 1, we cannot get more equation with respect to G from (2.5a). we have following
commutative diagram of Frobenius structures, where the Frobenius structure on C×C∗ will
be explained afterwards

M̃ := C × B̃ C2

M := C × B C × C∗

ϕ := (idC, G)

(idC, π) (idC, e2x̂2)

And if D ̸= 1, then the tangent map of (idC, γ) and (2.5a) lead to

G(γ(x2)) = G(x2) +
2k′

1 − D
π
√
−1, k′ ∈ Z.

Hence, if D ∈ C \ Q, we have G ◦ γ = G, ∀γ ∈ Γ. Consequently, we have following commu-
tative diagram of Frobenius structures which gives us the first class of Semi-simple Frobe-
nius manifolds

M̃ := C × B̃ C2

M := C × B

ϕ := (idC, G)

(idC, π)

If D ∈ Q \ {1}, then k = 2k′
1−D , i.e., D = 1 − 2k′

k = 1 − 2p
q , where p and q > 0 are relatively

prime. And k′ = p · m and k = q · m for m ∈ Z, where m depends on γ while p and q only
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depend on D. Therefore, we have following commutative diagram of Frobenius structures

M̃ := C × B̃ C2

M := C × B C × C∗

ϕ := (idC, G)

(idC, π) (idC, e
2
q x̂2)

When p = 0, set q = 1. Then the case D = 1 is included. Let me point out that D is odd
number if and only if q = 1 and that D is even number if and only if q = 2.

Again, consider the 2-dimensional configuration space Z2 := {(û1, û2) ∈ C2|û1 ̸= û2}
and the Frobenius structure is that in Proposition 1.4, i.e., (û1, û2) are canonical coordinates.

Consider a finite cover C×C∗ =

{(
x̄1 = û1+û2

2 , x̄2 =
(

û2−û1
2

) 2
q
)
∈ C2

∣∣∣∣û1 ̸= û2

}
of Z2, and

the pullback of Frobenius structure from Z2 to C × C∗ is

e =∂x̄1 ,

(∂x̄i , ∂x̄j) =δi+j,3 · c · q
2

x̄p−1
2 ,

∂x̄2 • ∂x̄2 =
q2

4
x̄q−2

2 ∂x̄1 ,

E =x̄1∂x̄1 +
2
q

x̄2∂x̄2 .

(2.8)

Remark 2.6 If p = 1 and q ⩾ 2, then the Frobenius structure extends to C2

2.2.2 g
g′ ∈ O(B̃) has at least one zero

Similarly, if we define ϕ : M̃ → C2 in the way that (x1, x2) 7→ (x̄1 = x1, x̄2 = H(x2)),
then ϕ is a local biholomorphism due to H′(x2) ̸= 0, ∀x2 ∈ B̃. Note that, in this case, the
condition of the previous remark holds, we will see that here the Frobenius structure on C2

was extended from that on C×C∗. And that is why we use (x̄1, x̄2) instead of (x̂1, x̂2) for C2

here. According to the same reason stated in the previous case, the tangent map of (idC, γ),
(2.6a) and (2.6c) yield that H is Γ-invariant. Furthermore, calculting the tangent map of ϕ
and comparing (2.6) and (2.8) for p = 1 and q ∈ Z⩾2, we have the pullback of the Frobenius
structure on C2 via ϕ is that on M̃. Therefore, we have following commutative diagram of
Frobenius structures

M̃ := C × B̃

M := C × B C2

ϕ := (idC, H)
(idC, π)

To conclude this section or chapter?, we state the following theorem.

Theorem 2.7 (Classification of M) Considering D ̸= 0 and the setting of semi-simple Frobenius
manifold stated at the beginning of this chapter, there are three types of maximal semi-simple Frobe-
nius manifold.

1. If D ∈ C \ Q, Frobenius manifold C2 with Frobenius structure (2.7)

2. If D = 1 − 2
q for some q ∈ Z⩾3, Frobenius manifold C2 with Frobenius structure (2.8) with

p = 1.

3. Otherwise, i.e., D = 1 − 2p
q , where p ∈ Z and q ∈ Z>0 are relatively prime satisfying that

p ̸= 1 or q = 1, Frobenius manifold C × C∗ with Frobenius structure (2.8).
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Here, in the first and the third cases, every point is semi-simple, while in the second case, semi-simple
point set is C × C∗ ⊂ C2. And any semi-simple Frobenius structure that we consider in this chapter
is a pullback of one of the three types.
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Chapter 3

Computation of period map on
maximal semi-simple Frobenius
manifold

3.1 Flat coordinates (t1, t2)

For both Frobenius structures (2.7) and (2.8), though the expression of t2 in terms of x̂2 and x̄2
are different, the expression of t2 in terms of û1 and û2 are the same since both of Frobenius
structures are derived from that on the 2-dimensional configuration space Z2. For the sim-
plicity of notation, in this chapter, we will use u1 and u2 instead of û1 and û2 in the previous
chapter. We may choose flat coordinates as the following,

t1 =
u1 + u2

2

t2 =


1

1−D

((
u2−u1

2

)1−D
− 1
)

if D ∈ C \ {0, 1}

log
(

u2−u1
2

)
if D = 1

And under this setting, the expression of t2 for D = 1 is the limit of that of t2 for D → 1.
Then we consider Ψ̃ which was introduced in Lemma 1.7

Ψ̃ =

(
∂t1
∂u1

∂t1
∂u2

∂t2
∂u1

∂t2
∂u2

)
=

( 1
2

1
2

− 1
2

(
u2−u1

2

)−D 1
2

(
u2−u1

2

)−D

)

=

( 1
2 0

0 1
2

(
u2−u1

2

)−D

)(
1 1
−1 1

)
and

Ψ̃−1 =

( 1
2 − 1

2
1
2

1
2

)(2 0

0 2
(

u2−u1
2

)D

)

According to Lemma 7.2,

P1 =Ψ̃E11Ψ̃−1 =
1
2

 1 −
(

u2−u1
2

)D

−
(

u2−u1
2

)−D
1

 ,

P2 =
1
2

 1
(

u2−u1
2

)D(
u2−u1

2

)−D
1

 .
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Let us find the constant matrix for θ under the bases of ∂t1 , ∂t2 . By direct calculation, the
Euler vector field E = t1∂t1 + ((1 − D)t2 + 1)∂t2 By definition and the flatness of ∂t1 , ∂t2 ,

θ(∂t1) = ∇L.C.
∂t1

E − (1 − D
2
)∂t1 = [∂t1 , E]− (1 − D

2
)∂t1 =

D
2

∂t1

where ∇L.C. is Levi-Civita connection.
Similarly, θ(∂t2) = [∂t2 , E] − (1 − D

2 )∂t2 = (1 − D − 1 + D
2 )∂t2 = −D

2 ∂t2 . Therefore,

θ =

(D
2 0
0 −D

2

)
under the bases of ∂t1 , ∂t2 .

Under the bases of ∂t1 , ∂t2 , denoting L+ := D
2 − n − 1

2 , L− := −D
2 − n − 1

2

A(n)
1 (u) =P1(θ − n − 1

2
) =

1
2

 1 −
(

u2−u1
2

)D

−
(

u2−u1
2

)−D
1

(L+ 0
0 L−

)

A(n)
2 (u) =P2(θ − n − 1

2
) =

1
2

 1
(

u2−u1
2

)D(
u2−u1

2

)−D
1

(L+ 0
0 L−

)

3.2 Second structure connection

Recalling the proof of Lemma 1.8, the second structure connection ∇(n)
∂λ

= ∂λ − A(n)
1 (u)

λ−u1
−

A(n)
2 (u)

λ−u2
. For any fixed u = (u1, u2), we would like to find a vector field X =

(
X1(u, λ)
X2(u, λ)

)
(under the bases of ∂t1 , ∂t2 ) such that ∇(n)

∂λ
X = 0.

By x := λ−u1
u2−u1

, we transform ∇(n)
∂λ

X = 0 into

∂x

(
X1(u, x)
X2(u, x)

)
=

(
A(n)

1 (u)
x

+
A(n)

2 (u)
x − 1

)(
X1(u, x)
X2(u, x)

)

Taking T
(

y1
y2

)
=

(
X1
X2

)
where T =

(
2L− + 2 1 − 2x

0 −
(

u2−u1
2

)−D

)
, T−1 =

(2L− + 2)−1 2x−1
(2L−+2)c̃

0 −
(

u2−u1
2

)D

,

∂x

(
y1
y2

)
= T−1

((
A(n)

1 (u)
x

+
A(n)

2 (u)
x − 1

)
T − (∂xT)

)(
y1
y2

)
After some calculation, we get

∂x

(
y1
y2

)
=

 y2(
n2 −

(
D−1

2

)2
)(

1
x − 1

x−1

)
y1 −

(
n + 1

2

) (
1
x + 1

x−1

)
y2


Then we have a second-order ODE, in particular, a hypergeometric equation

x(1 − x)
d2y1

dx2 −
(

n +
1
2

)
(2x − 1)

dy1

dx
−
(

n2 −
(

D − 1
2

)2
)

y1 = 0,
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where the parameters of the hypergeometric equation as follows,

a =n − D − 1
2

b =n +
D − 1

2

c =n +
1
2

We will see later on that we are interested in the case λ near ∞.
If a − b is not an integer, i,e. D is not an integer, then there are two independent solutions

to the hypergeometric equations near ∞.(
y11 y12
y21 y22

)
=

(
x−aF(a, 1 + a − c; 1 + a − b; x−1) x−bF(b, 1 + b − c; 1 + b − a; x−1)

d
dx (x−aF(a, 1 + a − c; 1 + a − b; x−1)) d

dx (x−bF(b, 1 + b − c; 1 + b − a; x−1))

)
=

(
x−aF(a, 1 + a − c; 1 + a − b; x−1) x−bF(b, 1 + b − c; 1 + b − a; x−1)

−ax−a−1F(a + 1, 1 + a − c; 1 + a − b; x−1) −bx−b−1F(b + 1, 1 + b − c; 1 + b − a; x−1)

)
If a − b is an integer, i,e. D is an integer, then there is logarithmic singularity at λ = ∞.

There are three cases.
Let us define

Φ̃(x) := F(a, 1 + a − c; 1; x−1) log(x−1) +
∞

∑
m=1

Ãm B̃mx−m,

where

Ãm =
(a)m(1 + a − c)m

(m!)2 .

Here (q)m is the (rising) Pochhammer symbol, which is defined by:

(q)m =

{
1 m = 0
q · (q + 1) · · · · · (q + m − 1) m ∈ Z>0

Ãm is the coefficient of x−m in F(a, 1 + a − c; 1; x−1) and

B̃m =
1
a
+

1
a + 1

+ · · ·+ 1
a + m − 1

+
1

1 + a − c
+

1
1 + a − c + 1

+ · · ·+ 1
1 + a − c + m − 1

− 2
(

1 +
1
2
+ · · ·+ 1

m

)
.

The convention for B̃0 is 0 for later purpose. The power series ∑∞
m=1 Ãm B̃mx−m converges in

|x−1| < 1. Here, we assumed that neither a nor 1 + a − c is an integer less than 1. If either a
or 1 + a − c is an integer less than 1 we set

B̃m = 0, m > Ñ,

where Ñ is the minimum of m such that

(a + m)(1 + a − c + m) = 0.

In this case ∑∞
m=1 Ãm B̃mx−m is a polynomial of x−1.

The first case is a = b, i.e., D = 1. The fundamental solution(
y11 y12
y21 y22

)
=

(
x−aΦ̃(x) x−aF(a, 1 + a − c; 1 + a − b; x−1)

d
dx (x−aΦ̃(x)) d

dx (x−aF(a, 1 + a − c; 1 + a − b; x−1))

)
=

(
x−aΦ̃(x) x−aF(a, 1 + a − c; 1 + a − b; x−1)

d
dx (x−aΦ̃(x)) −ax−a−1F(a + 1, 1 + a − c; 1 + a − b; x−1)

)
.
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The second case is a < b, i.e, D ∈ Z>1. The fundamental solution

(
y11 y12
y21 y22

)
=

 x−b dD−1

d(x−1)D−1 Φ̃(x) x−bF(b, 1 + b − c; 1 + b − a; x−1)

d
dx

(
x−b dD−1

d(x−1)D−1 Φ̃(x)
)

d
dx (x−bF(b, 1 + b − c; 1 + b − a; x−1))


=

 x−b dD−1

d(x−1)D−1 Φ̃(x) x−bF(b, 1 + b − c; 1 + b − a; x−1)

d
dx

(
x−b dD−1

d(x−1)D−1 Φ̃(x)
)

−bx−b−1F(b + 1, 1 + b − c; 1 + b − a; x−1)

 .

And by the sufficient and necessary conditions on the page 11 of [Mat85], we have if D ∈
(2Z)>1 or D ∈ (2Z + 1)>3, n = −1 then

x−b dD−1

d(x−1)D−1 Φ̃(x) = x−a
D−2

∑
m=0

(a)m(1 + a − c)m

m! · (2 − D)m
x−m = x−aF(a, 1 + a − c; 1 + a − b; x−1)

The third case is a > b, i.e., D ∈ Z<1. The fundamental solution

(
y11 y12
y21 y22

)
=

 x−aF(a, 1 + a − c; 1 + a − b; x−1) x−a(1 − x−1)c−a−b d1−D

d(x−1)1−D

(
(1 − x−1)2a−cΦ̃(x)

)
d

dx (x−aF(a, 1 + a − c; 1 + a − b; x−1)) d
dx

(
x−a(1 − x−1)c−a−b d1−D

d(x−1)1−D

(
(1 − x−1)2a−cΦ̃(x)

))


=

 x−aF(a, 1 + a − c; 1 + a − b; x−1) x−a(1 − x−1)c−a−b d1−D

d(x−1)1−D

(
(1 − x−1)2a−cΦ̃(x)

)
−ax−a−1F(a + 1, 1 + a − c; 1 + a − b; x−1) d

dx

(
x−a(1 − x−1)c−a−b d1−D

d(x−1)1−D

(
(1 − x−1)2a−cΦ̃(x)

))
 .

Via similar reference, we have if D ∈ (2Z)<1 or D ∈ (2Z + 1)<−1, n = −1then

x−a(1 − x−1)c−a−b d1−D

d(x−1)1−D

(
(1 − x−1)2a−cΦ̃(x)

)
=x−b

−D

∑
m=0

(a + D − 1)m(1 + a − c + D − 1)m

m! · (D)m
x−m = x−bF(b, 1 + b − c; 1 + b − a; x−1)

Thus we can merge the case D ∈ C \ Z, D ∈ (2Z)>1 and D ∈ (2Z)<1 into the case D ∈
C \ (2Z + 1). And we will see the similar fusion in the next section. These two fusions will
simplify the later arguement and save calculation process of intersection pairing.

For all D ∈ C, we set

T
(

y11 y12
y21 y22

)
=:
(
Φ1 Φ2

)
=: Φ,

where
(

y11
y21

)
and

(
y12
y22

)
play the role of

(
y1
y2

)
, and Φ1 and Φ2 play the role of

(
X1
X2

)
as

before.

3.3 Calibration

Let us recall the section about calibration in Chapter 1. Under the basis (∂t1 , ∂t2), since θ =(D
2 0
0 −D

2

)
is a diagonal matrix, θ = δ, ν[0] = 0

If D = 0, then θ = δ = 0, ν = ν[0] = 0, kSk = E • Sk−1, k ∈ Z+, which gives us that all the
Sk’s are uniquely determined.
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If D ∈ C \ {0}, then spec(δ) = {−D, 0, D} and

glD(H) =

{
X ∈ gl(H)

∣∣∣∣X =

(
0 x12
0 0

)
, x12 ∈ C

}
gl0(H) =

{
X ∈ gl(H)

∣∣∣∣X =

(
x11 0
0 x22

)
, x11, x22 ∈ C

}
gl−D(H) =

{
X ∈ gl(H)

∣∣∣∣X =

(
0 0

x21 0

)
, x21 ∈ C

}
,

which means ν = ν[−|D|].
The recursion relation will be simplified as following, for D ∈ Z \ {0}

(k + a)(Sk)[a] =
(

E • Sk−1 + Sk−|D|ν[−|D|]

)
[a]

, a = −|D|, 0, |D|, (3.1)

where Sk−|D| = 0 if k < |D|. When k < |D|, Sk is uniquely determined by recursion. When
k = |D|, the ambiguity of choosing (Sk)[−|D|] emerges. But ν = (E • S|D|−1)[−|D|] is deter-
mined uniquely

Note that under the basis (∂t1 , ∂t2), the transposition with respect to Frobenius pairing
(Xij)

T
2×2 = (X3−j,3−i)2×2, ∀X ∈ gl(H).

If D is odd, the condition that (−1)−|D|CT
|D| = (−1)−|D|C|D| = −C|D| is satisfied, recall-

ing the notation and definition in Theorem 1.14 on page 11. And (1.12) holds automatically.
Here k = |D|. Essentially, these two fact are the same.

When D = 1, under the basis (∂t1 , ∂t2), E• corresponds to the matrix
(

t1 e2t2

1 t1

)
. The

recursion relation (1.11) yields 0 =

(
t1 e2t2

1 t1

)
[−1]

+ ν[−1], i.e. ν =

(
0 0
−1 0

)
.

When D is an odd number different from 1, under the basis (∂t1 , ∂t2), E• corresponds to

the matrix

(
t1 ((1 − D)t2 + 1)

1+D
1−D

(1 − D)t2 + 1 t1

)
. The recursion relation (1.11) gives us

ν[−|D|] = −
(

E • (|D| − 1 + adδ)
−1 ◦ E • (|D| − 2 + adδ)

−1 ◦ E • . . . (1 + adδ)
−1 ◦ E • 1

)
[−|D|]

.

Since ν is a constant matrix, we may let t1 = t2 = 0, i.e. E• =

(
0 1
1 0

)
. Direct calculation

yields the nonzero entry in ν is

− (−1)
|D|−1

2

2|D|−1
((

|D|−1
2

)
!
)2

And the expression with factorial the nonzero entry includes the case D = 1. Note that,
under the basis (∂t1 , ∂t2), the equation

E• =

 u1+u2
2

(
u2−u1

2

)1+D(
u2−u1

2

)1−D u1+u2
2

 (3.2)

holds for any D ∈ (2Z + 1).
If D is even, the condition that (−1)−|D|CT

|D| = (−1)−|D|C|D| = −C|D| gives us C|D| = 0.

Similarly, the condition that BT
k = −(−1)kBk yields Bk = 0, where k = |D|. That is to say, in

this case, calibration S(t, z) is determined uniquely. With similar argument in the case that
D is odd, we have ν = 0. And thus we may include the case D = 0 into this case.
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If D ∈ C \ Z, then the fact that ν[−l] = 0, ∀l ∈ C \ Z⩾0 means ν = ν[−|D|] = 0. And the
recursion relation will be simplified further as following,

(k + a)(Sk)[a] = (E • Sk−1)[a] , a = −D, 0, D,

and thus calibration S(t, z) is uniquely determined by recursion.
The last two cases, i.e., that D is even and that D ∈ C \ Z are very similar. We will deal

with these two cases together.

3.4 The period map

In the rest of this chapter, we will consider the case D ∈ C \ (2Z + 1). Proposition 1.15 tells
us that, in this case,

I(n)(t, λ) =
∞

∑
k=0

(−1)kSk(t)
λθ−(n+k)− 1

2

Γ(θ − (n + k) + 1
2 )

provides a fundamental solution to the 2nd structure connection. Thus, recalling Φ at the
end of second structure connection, we have a C(t, n) ∈ GL(C2) such that I(n)(t, λ) =
Φ(t, λ)C(t, n). Taking a sufficiently large circle centered at zero on the complex plane of
λ, let λ move counterclockwise for one round, i.e. I(n)(t, λe2π

√
−1) = Φ(t, λe2π

√
−1)C(t, n).

The LHS is

∞

∑
k=0

(−1)kSk(t)
λθ−(n+k)− 1

2 e2π(θ−n− 1
2 )
√
−1

Γ(θ − (n + k) + 1
2 )

=I(n)(t, λ)

(
e2π( D−1

2 −n)
√
−1 0

0 e2π(− D+1
2 −n)

√
−1

)

=Φ(t, λ)C(t, n)

(
e2π( D−1

2 −n)
√
−1 0

0 e2π(− D+1
2 −n)

√
−1

)

The RHS is Φ(t, λ)

(
e−2πa

√
−1 0

0 e−2πb
√
−1

)
C(t, n). Since Φ(t, λ) ∈ GL(C2) and LHS=RHS,

we have(
e−2πa

√
−1 0

0 e−2πb
√
−1

)
C(t, n) = C(t, n)

(
e2π( D−1

2 −n)
√
−1 0

0 e2π(− D+1
2 −n)

√
−1

)
,

which leads to C(t, n) =
(

c1 0
0 c2

)
. After calculation for the coefficient of the leading term

of λ, we will find that

c1 =
(u2 − u1)

−n+ D
2 −

1
2

2(1 − D)Γ(D
2 − n + 1

2 )

c2 =− (u2 − u1)
−n− D

2 −
1
2

Γ(−D
2 − n + 3

2 )

(
u2 − u1

2

)D

Since the intersection pairing is indpendent of t and λ, let t1 = λ = 1, t2 = 0, then
u2 − u1 = x−1 = 2,−( u2−u1

2 )−D = −1. Noting that (1 + a − c) : (1 + a − b) = (1 + b − c) :
(1 + b − a) = 1 : 2, we can use a formula for x−aF(a, 1 + a − c; 1 + a − b; x−1), x−bF(b, 1 +
b − c; 1 + b − a; x−1) and their differential. By direct calculation, the matrix for intersection
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pairing is (
(∂t1 |∂t1) (∂t1 |∂t2)
(∂t1 |∂t2) (∂t2 |∂t2)

)
=− c(C(t, n))t

(
y11 y12
y21 y22

)t
TtT−n

(
y11 y12
y21 y22

)
−n

C(t,−n)

=− c(C(t, n))t
(

y11 y12
y21 y22

)t
(

4
(
( 1−D

2 )2 − n2
)

0
0 1

)(
y11 y12
y21 y22

)
−n

C(t,−n)

=− c(C(t, n))t
(

0 4(n + 1−D
2 )(1 − D)

4(−n + 1−D
2 )(1 − D) 0

)
C(t,−n)

=
c
π

 0 sin
(

π
(

n + 1−D
2

))
sin
(

π
(
−n + 1−D

2

))
0


where the lower index −n means replacing n in the matrix by −n.

For the period map,

⟨Z(t, λ), ∂t1⟩ :=(I(−1)
∂t1

(t, λ), ∂t1) = cI(−1)
21 (t, λ) = acc1

(
u2 − u1

2

)−D
x−a−1F(a + 1, 1 + a − c; 1 + a − b; x−1)

⟨Z(t, λ), ∂t2⟩ :=(I(−1)
∂t2

(t, λ), ∂t1) = cI(−1)
22 (t, λ) = bcc2

(
u2 − u1

2

)−D
x−b−1F(b + 1, 1 + b − c; 1 + b − a; x−1)

Note that we have explicit functions for I(−1)
21 (t, λ) and I(−1)

22 (t, λ) as well. Then, by direct
calculation,

⟨Z(t, λ), ∂t1⟩ =
2

1−D
2 c

(D − 1)Γ
(

1+D
2

) (x
1
2 + (x − 1)

1
2

)D−1
(

u2 − u1

2

) 1−D
2

⟨Z(t, λ), ∂t2⟩ =
2−

1−D
2 c

Γ
(

1−D
2 + 1

) (x
1
2 + (x − 1)

1
2

)1−D
(

u2 − u1

2

) 1−D
2

,

which satisfies the translation symmetry Z(t, λ) = Z(t − λ∂t1 , 0).

3.5 Reflection vectors (Vanishing cycle) and Monodromy group

Here we follow the notation and the idea of computation in 1.3.1. i.e. Reflection vectors φ±
are equal to (C(i)(u))−1ei(i = 1, 2) up to κi(u) ∈ C∗, respectively. Note that C(i)(u) may
depend on n ∈ Z, but in the following calculation, we will choose n = −1 and thus omit the
index for n. Since I(−1)(u, λ) = Y(i)(u, λ)C(i)(u) where Y(i)(u, λ) are fundamental solutions
for ∇∂/∂λ near λ = ui, we will compare the coefficients of order 0 and −n − 1

2 = 1
2 (leading

and subleading terms) of the lower rows of the matrices to get C(i)(u) :=

(
c(i)11 c(i)12
c(i)21 c(i)22

)
.

For i = 2, the coefficients are in the following matrix

Ψ̃
(

1 0
(n + 1

2 )
−1 1

)
=

( 1
2

1
2

− 1
2

(
u2−u1

2

)−D 1
2

(
u2−u1

2

)−D

)(
1 0
−2 1

)
=

(
− 1

2
1
2

− 3
2

(
u2−u1

2

)−D 1
2

(
u2−u1

2

)−D

)

where the first column stands for the coefficients of (λ − u2)
0 and the second column for

that of (λ − u2)
1
2 . Moving x from a number ≫ 0 to 1 along real axis, we will take binomial
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expansion near x = 1(
x

1
2 + (x − 1)

1
2

)D−1
=
(
(x − 1 + 1)

1
2 + (x − 1)

1
2

)D−1

=

(
1 + (x − 1)

1
2 +

∞

∑
k=1

( 1
2
k

)
(x − 1)k

)D−1

=1 +
∞

∑
k′=1

(
D − 1

k′

)(
(x − 1)

1
2 +

∞

∑
k=1

( 1
2
k

)
(x − 1)k

)k′

=1 + (D − 1)(x − 1)
1
2 + O(x − 1)

Similarly,
(

x
1
2 + (x − 1)

1
2

)1−D
= 1 + (1 − D)(x − 1)

1
2 + O(x − 1)

According to I(−1)(u, λ) = Y(i)(u, λ)C(i)(u), we have an equation for the coefficient of
(x − 1)0 in I(−1)

21 which is

2
1−D

2

(D − 1)Γ
(

1+D
2

) (u2 − u1

2

) 1−D
2

= −3
2

(
u2 − u1

2

)−D
c(2)11 .

Then, we have

c(2)11 =
21−D

3(1 − D)Γ
(

1+D
2

) (u2 − u1)
1+D

2 .

And we have an equation for that of (x − 1)
1
2 in I(−1)

21 (note that at this time we have more

coefficient (u2 − u1)
1
2 on the RHS to convert (λ − u2)

1
2 into (x − 1)

1
2 )

(D − 1)2
1−D

2

(D − 1)Γ
(

1+D
2

) (u2 − u1

2

) 1−D
2

=
(u2 − u1)

1
2

2

(
u2 − u1

2

)−D
c(2)21 .

Then we have

c(2)21 =
21−D

Γ
(

1+D
2

) (u2 − u1)
D
2 .

We do the same things for those in I(−1)
22 . So we have

c(2)12 = − (u2 − u1)
1+D

2

3Γ( 1−D
2 + 1)

, c(2)22 =
(1 − D)(u2 − u1)

D
2

Γ( 1−D
2 + 1)

,

and

det(C(2)(u)) = c(2)11 c(2)22 − c(2)12 c(2)21 =
22−D(u2 − u1)

D+ 1
2

3Γ( 1−D
2 + 1)Γ( 1+D

2 )
.

Then

(C(2)(u))−1e2 =

 −c(2)12
det(C(2)(u))

c(2)11
det(C(2)(u))

 =

2D−2Γ
(

1+D
2

)
(u2 − u1)

− D
2

2−2Γ
(

1−D
2

)
(u2 − u1)

− D
2


And we have following equation on intersection pairing to solve κ2,

(φ+|φ+) = 2 =2κ2
2

−c(2)12 c(2)11(
det(C(2)(u))

)2 (∂t1 |∂t2)

=2κ2
22D−4Γ

(
1 + D

2

)
Γ
(

1 − D
2

)
(u2 − u1)

−D(∂t1 |∂t2)
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κ2
2 =

24−D(u2 − u1)
D

Γ
(

1+D
2

)
Γ
(

1−D
2

) ( c
Γ( 1+D

2 )Γ( 1−D
2 )

)−1

=
24−D(u2 − u1)

D

c

Therefore,

φ+ =
22− D

2 (u2 − u1)
D
2

√
c

(
2D−2Γ

(
1 + D

2

)
(u2 − u1)

− D
2 ∂t1 + 2−2Γ

(
1 − D

2

)
(u2 − u1)

− D
2 ∂t2

)
=

1√
c

(
2

D
2 Γ
(

1 + D
2

)
∂t1 + 2−

D
2 Γ
(

1 − D
2

)
∂t2

)
Denote v1 := −c−

1
2 2

D
2 Γ
(

1+D
2

)
∂t1 , v2 := c−

1
2 2−

D
2 Γ
(

1−D
2

)
∂t2 . Then

φ+ = −v1 + v2, (vi|vj) = −δi+j,3, i, j ∈ {1, 2}

For i = 1, the coefficients are in the following matrix

Ψ̃
(

1 (n + 1
2 )

−1

0 1

)
=

( 1
2

1
2

− 1
2

(
u2−u1

2

)−D 1
2

(
u2−u1

2

)−D

)(
1 −2
0 1

)
=

( 1
2 − 1

2

− 1
2

(
u2−u1

2

)−D 3
2

(
u2−u1

2

)−D

)

where the first column stands for the coefficients of (λ − u1)
1
2 and the second column for

that of (λ − u1)
0.

Moving x from a number ≫ 0 to its opposite number counterclockwise along the upper
circumference centered at x = 0 and then to x = 0 along the negative half real axis, we will
take binomial expansion near x = 0(

x
1
2 + (x − 1)

1
2

)D−1
=e

D−1
2 π

√
−1
(
(e−π

√
−1x)

1
2 + (1 − x)

1
2

)D−1

=e
D−1

2 π
√
−1

(
1 + (e−π

√
−1x)

1
2 +

∞

∑
k=1

( 1
2
k

)
(−x)k

)D−1

=e
D−1

2 π
√
−1

1 +
∞

∑
k′=1

(
D − 1

k′

)(
(e−π

√
−1x)

1
2 +

∞

∑
k=1

( 1
2
k

)
(−x)k

)k′


=e
D−1

2 π
√
−1 + e(

D
2 −1)π

√
−1(D − 1)x

1
2 + O(x),

where in the last equation we move from 0− to 0+ along the upper half circumference cen-
tered at x = 0 clockwise and thus we get the coefficient e(

D
2 −1)π

√
−1(D − 1) for x

1
2 .

Similarly,
(

x
1
2 + (x − 1)

1
2

)1−D
= e

1−D
2 π

√
−1 + e−

D
2 π

√
−1(1 − D)x

1
2 + O(x).

Again, according to I(−1)(u, λ) = Y(i)(u, λ)C(i)(u), we have an equation for the coeffi-
cient of x

1
2 in I(−1)

21 (note that at this time we have more coefficient (u2 − u1)
1
2 on the RHS to

convert (λ − u1)
1
2 into x

1
2 ) which is

e(
D
2 −1)π

√
−1(D − 1)2

1−D
2

(D − 1)Γ
(

1+D
2

) (
u2 − u1

2

) 1−D
2

= − (u2 − u1)
1
2

2

(
u2 − u1

2

)−D
c(1)11 .

Then, we have c(1)11 = − e(
D
2 −1)π

√
−121−D

Γ( 1+D
2 )

(u2 − u1)
D
2 .

And we have an equation for that of x0 in I(−1)
21

e
D−1

2 π
√
−12

1−D
2

(D − 1)Γ
(

1+D
2

) (u2 − u1

2

) 1−D
2

=
3
2

(
u2 − u1

2

)−D
c(1)21 .
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Then we have c(1)21 = e
D−1

2 π
√
−121−D

3(D−1)Γ( 1+D
2 )

(u2 − u1)
1+D

2 .

We do the same things for those in I(−1)
22 . So we have

c(1)12 = − e−
D
2 π

√
−1(1 − D)

Γ
(

1−D
2 + 1

) (u2 − u1)
D
2 , c(1)22 =

e
1−D

2 π
√
−1

3Γ
(

1−D
2 + 1

) (u2 − u1)
1+D

2

and

det(C(1)(u)) = c(1)11 c(1)22 − c(1)12 c(1)21 = − e−
1
2 π

√
−122−D

3Γ
(

1−D
2 + 1

)
Γ
(

1+D
2

) (u2 − u1)
D+ 1

2 .

Then

(C(1)(u))−1e1 =

 c(1)22
det(C(1)(u))

−c(1)21
det(C(1)(u))

 =

−e(−
D
2 +1)π

√
−12D−2Γ

(
1+D

2

)
(u2 − u1)

− D
2

−e
D
2 π

√
−12−2Γ

(
1−D

2

)
(u2 − u1)

− D
2

 .

And we have following equation on intersection pairing to solve κ1,

(φ−|φ−) = 2 =2κ2
1

−c(1)21 c(1)22(
det(C(1)(u))

)2 (∂t1 |∂t2)

=2κ2
1eπ

√
−12D−4Γ

(
1 + D

2

)
Γ
(

1 − D
2

)
(u2 − u1)

−D(∂t1 |∂t2)

κ2
1 =

e−π
√
−124−D(u2 − u1)

D

Γ
(

1+D
2

)
Γ
(

1−D
2

) (
c

Γ( 1+D
2 )Γ( 1−D

2 )

)−1

=
e−π

√
−124−D(u2 − u1)

D

c

Therefore,

φ− =
e−

1
2 π

√
−122− D

2 (u2 − u1)
D
2

√
c

(e(−
D
2 +1)π

√
−12D−2Γ

(
1 + D

2

)
(u2 − u1)

− D
2 ∂t1

+ e
D
2 π

√
−12−2Γ

(
1 − D

2

)
(u2 − u1)

− D
2 ∂t2)

=
1√
c

(
e−

D−1
2 π

√
−12

D
2 Γ
(

1 + D
2

)
∂t1 + e

D−1
2 π

√
−12−

D
2 Γ
(

1 − D
2

)
∂t2

)
=− e−

D−1
2 π

√
−1v1 + e

D−1
2 π

√
−1v2

And we have (φ+|φ−) = −e−
D−1

2 π
√
−1 − e

D−1
2 π

√
−1.

wφ+ , wφ− ∈ GL(H) are the generators of the monodromy group W,
where wφ±(α) = α − (α|φ±)φ±. The corresponding matrices under the basis of (v1, v2) are

wφ± =

(
0 e(

1−D
2 ∓ 1−D

2 )π
√
−1

e(
D−1

2 ∓ D−1
2 )π

√
−1 0

)
.

Let us check the result for D = 1
3 , i.e,

wφ+ =

(
0 1
1 0

)
, wφ− =

(
0 e

2
3 π

√
−1

e−
2
3 π

√
−1 0

)

wφ+ ◦ wφ− =

(
e−

2
3 π

√
−1 0

0 e
2
3 π

√
−1

)
, wφ+ ◦ wφ− =

(
e

2
3 π

√
−1 0

0 e−
2
3 π

√
−1

)

wφ− ◦ wφ+ ◦ wφ− =

(
0 e

4
3 π

√
−1

e−
4
3 π

√
−1 0

)
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wφ+ ◦ wφ− ◦ wφ+ =

(
0 e−

2
3 π

√
−1

e
2
3 π

√
−1 0

)
Hence wφ− ◦ wφ+ ◦ wφ− = wφ+ ◦ wφ− ◦ wφ+ . Therefore, when D = 1

3 , the monodromy group
is isomorphic to permutation group S3.

In general, wφ+ ◦ wφ+ = wφ− ◦ wφ− is the identity element (matrix).

wφ+ ◦ wφ− =

(
e(D−1)π

√
−1 0

0 e(1−D)π
√
−1

)
= (wφ− ◦ wφ+)

−1

Therefore, every element in the free group generated by wφ+ and wφ− (i.e. the monodromy
group W) can be reduced to the form in which wφ+ and wφ− appear alternatively, which is
attributed to the power 1

2 on x and (x − 1). And we can see that the monodromy group is
generated by wφ+ ◦ wφ− and wφ+ as well.

3.6 The image and inverse of the period map based on the
classification

Recalling the section of the period map, let

z1 :=⟨Z(t, λ), v1⟩ = ⟨Z(t, λ),−c−
1
2 2

D
2 Γ
(

1 + D
2

)
∂t1⟩

=

√
2c

1 − D

(
x

1
2 + (x − 1)

1
2

)D−1
(

u2 − u1

2

) 1−D
2

z2 :=⟨Z(t, λ), v2⟩ = ⟨Z(t, λ), c−
1
2 2−

D
2 Γ
(

1 − D
2

)
∂t2⟩

=

√
2c

1 − D

(
x

1
2 + (x − 1)

1
2

)1−D
(

u2 − u1

2

) 1−D
2

,

Then, recalling subsection 1.3.2 the orbit space B := M/C with the submanifold {t1 =
0} ⊂ M which coincides with notation in Chapter 2, now let us consider the period map
on ((B × C)′)∼.

As for the first case in Theroem 2.7,

z1 =2
1−D

2

√
2c

1 − D

(
(λ − ex̂2)

1
2 + (λ + ex̂2)

1
2

)D−1
e(1−D)x̂2 ∈ C∗

z2 =2
D−1

2

√
2c

1 − D

(
(λ − ex̂2)

1
2 + (λ + ex̂2)

1
2

)1−D
∈ C∗,

Then,

z1z2 =
2ce(1−D)x̂2

(1 − D)2 ̸= 0.

On the other hand, when we scale λ, u1 and u2 by a nonzero complex constant, we will find
that z1 and z2 will be scaled by the constant to the power of 1−D

2 , which implies that the
image Ω ⊂ H∗ of the period map Z is the C∗-fiber of a domain in P1. Consider z2

z1
(or z1

z2
)

z2

z1
=
(

x
1
2 + (x − 1)

1
2

)2(1−D)
=
(

2x − 1 + 2x
1
2 (x − 1)

1
2

)1−D

Note that det(λ − E•) ̸= 0 yields x ̸= 0 and x ̸= 1. The problem of figuring Ω out is reduced
to that of {2x − 1 + 2x

1
2 (x − 1)

1
2 |x ∈ C \ {0, 1}} = C \ {0,±1}. In conclusion,

Ω =

{
(z1, z2) ∈ (C∗)2

∣∣∣∣∣z1z2 =
2ce(1−D)x̂2

(1 − D)2 , x̂2 ∈ C

}
−
∪

m∈Z

Vm
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where Vm :=
{
(z1, z2) ∈ (C∗)2

∣∣∣ z2
z1

= e(1−D)mπ
√
−1
}

.
As for the third case in Theroem 2.7, since 1 − D ∈ Q \ (2Z), q ̸= 1, i.e., q ∈ Z⩾2 and

then p ∈ Z ̸=1.

z1 =2
1−D

2

√
2c

1 − D

(
(λ − x̄

q
2
2 )

1
2 + (λ + x̄

q
2
2 )

1
2

)D−1
x̄p

2 ∈ C∗

z2 =2
D−1

2

√
2c

1 − D

(
(λ − x̄

q
2
2 )

1
2 + (λ + x̄

q
2
2 )

1
2

)1−D
∈ C∗,

Similar discussion yields

Ω =

{
(z1, z2) ∈ (C∗)2

∣∣∣∣∣z1z2 =
2cx̄p

2
(1 − D)2 , x̄2 ∈ C∗

}
−
∪

m∈Z

Vm

where Vm :=
{
(z1, z2) ∈ (C∗)2

∣∣∣∣ z2
z1

= e
2p
q mπ

√
−1
}

.

As for the second case in Theroem 2.7,

z1 =2
1−D

2

√
2c

1 − D

(
(λ − x̄

q
2
2 )

1
2 + (λ + x̄

q
2
2 )

1
2

)D−1
x̄2 ∈ C

z2 =2
D−1

2

√
2c

1 − D

(
(λ − x̄

q
2
2 )

1
2 + (λ + x̄

q
2
2 )

1
2

)1−D
∈ C∗,

Similar discussion yields

Ω =

{
(z1, z2) ∈ C × C∗

∣∣∣∣z1z2 =
2cx̄2

(1 − D)2 , x̄2 ∈ C

}
−
∪

m∈Z

Vm

where Vm :=
{
(z1, z2) ∈ C × C∗

∣∣∣ z2
z1

= e
2
q mπ

√
−1
}

.

The period map (under the basis (v1, v2)) can be expressed as a row matrix
(
z1(t, λ) z2(t, λ))

)
.(

z1(t, λ) z2(t, λ))
)

wφ+ ◦ wφ− =
(

z1e(D−1)π
√
−1 z2e(1−D)π

√
−1
)

(
z1(t, λ) z2(t, λ))

)
wφ+ =

(
z2 z1

)
If 1 − D ∈ Q \ (2Z ∪ {1}) and, recalling the notation of the previous chapter, 1 − D = 2p

q
where q ∈ Z>1, p ∈ Z except q = 2p = 2 and gcd(p, q) = 1, then (wφ+ ◦ wφ−)

q = (wφ− ◦
wφ+)

q is the identity element of the monodromy group. Note that q is the smallest positive
integer to get the identity element. Thus, if 1 − D ∈ Q \ 2Z, then the monodromy group
is isomorphic to dihedral group Dq, and if 1 − D ∈ C \ Q then the monodromy group is
isomorphic to infinite dihedral group Dih∞.

Let us move on to the inverse of the period map and first deal with the third case in
Theroem 2.7 using the notation of subsection 1.3.2

((B × C)′)∼ Ω

(P1 \ {±1, ∞})∼ P1 \ {0, ∞, e(1−D)mπ
√
−1|m ∈ Z}

E

Z

p1 p2

π(Z)

d
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where
p1(x̄2, λ) :=

λ

x̄
q
2
2

=: 2x − 1, p2(z1, z2) :=
z2

z1

and
π(Z)(

λ

x̄
q
2
2

) :=
(

2x − 1 + 2x
1
2 (x − 1)

1
2

)1−D
.

Furthermore, (E, d) is monodromy cover (

{
|p| if q = 2
2|p| if q ∈ Z>2

-fold due to power 1 − D of

π(Z)) of P1 \ {0, ∞, e
2p
q mπ

√
−1|m ∈ Z} And we can invert π(Z) by j(z) := 1

2 (z
1

1−D + z−
1

1−D ),
i.e. (j ◦ π(Z))(2x − 1) = 2x − 1. Obviously, j is invariant under monodromy. And I would

like to say that the power 1
1−D in j(z) means j lifts z(2x − 1) to one of

{
|p| if q = 2
2|p| if q ∈ Z>2

sheets of E and we set the sheet which z(2x − 1) is lifted into to be the sheet where 2x − 1 is
located.

Thus we have following

f1 =
(1 − D)2

2c
z1z2 ∈ Γ(Ω,OH∗)W

f2 =
1
2
(

(
z2

z1

) 1
1−D

+

(
z2

z1

)− 1
1−D

)(
(1 − D)2

2c
z1z2)

1
1−D

=
1
2
(
(1 − D)2

2c
)

1
1−D (z

2
1−D
1 + z

2
1−D
2 ) =

1
2
(
(1 − D)2

2c
)

q
2p (z

q
p
1 + z

q
p
2 )

(3.3)

where f1 ∈ M(Ω, W) since f1 ◦ Z extends analytically across the discriminant, i.e. f1 ◦ Z ∈
O(B × C), and f2 ◦ Z ∈ O(B × C) but f2 is |p|-value function though f2 is W-invariant. In
fact, f1 ◦ Z = x̄p

2 and f2 ◦ Z = λ

The condition that |p| = 1 in the third case of Theroem 2.7 means p = −1, then 1
f1

∈
Γ(Ω,OH∗)W and 1

f1
◦ Z = x̄2. Then { 1

f1
, f2} is the inverse of the period map Z.

In the second case of Theroem 2.7, p = 1. One can check that { f1, f2} defined as above is
the inverse of the period map Z.

In the first case of Theroem 2.7, the diagram is the same as that of the third case, but
where p1(x̄2, λ) := λ

ex̂2
=: 2x − 1 and (E, d) is monodromy cover of infinite fold. Then

1
1−D log f1 ◦ Z = x̂2 and f2 ◦ Z = λ but 1

1−D log f1 and f2 are not holomorphic function on
Ω.

Theorem 3.1 Providing conformal dimension D ∈ C \ ((2Z + 1) ∪ {0}), the period map Z is
invertible if and only if D is in one of the following two cases

1. D = 1 − 2
q for some q ∈ Z⩾3, and in this case { f1, f2} is the inverse of the period map Z.

2. D = 1 + 2
q for some q ∈ Z⩾2, and in this case { 1

f1
, f2} is the inverse of the period map Z.

where (3.3) gives the explicit formula by setting p = 1 and p = −1 for the first and the second cases,
respectively.
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