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Chapter 1

Introduction

Let f ∈ C[x1, x2, x3] be a weighted homogeneous polynomial representing the germ of a simple singularity of type A,
D, or E. Let f T ∈ C[x1, x2, x3] be the corresponding Berglund–Hübsch dual of f (see Section 4.1.1). Fan–Jarvis–Ruan
proved in [16], using also results of Givental–Milanov [22] and Frenkel–Givental–Milanov [18], that the generating
function of Fan–Jarvis–Ruan–Witten (FJRW) invariants of f T can be identified with a tau-function of a specific Kac–
Wakimoto hierarchy. The identification however involves rescaling the dynamical variables of the Kac–Wakimoto
hierarchy and the precise values of the rescaling constants were left unknown. One application of the results in this
thesis is to obtain explicit formulas for the rescaling constants. Such an explicit identification is needed if one is
interested in constructing a matrix model for the FJRW invariants of f T , similar to the Kontsevich’s matrix model in
[30]. We are not going to compute the rescaling coefficients in this thesis. The computation is straightforward and it
should probably be done only when needed. Let us try to explain instead why this small technical detail leads to a very
interesting problem in singularity theory.

Let us recall that for any singularity f there is a natural way to construct a semi-simple Frobenius structure on the
space of miniversal deformations of f (see [24]). The construction depends on the choice of a primitive form in the
sense of Saito [43] and it essentially coincides with what Saito called flat structure. On the other hand, motivated by
Gromov–Witten theory, Givental introduced the notion of a total descendent potential for every semi-simple Frobenius
manifold (see [21, 20]). Givental conjectured [21] and Teleman proved [49] that if the Frobenius structure correspond-
ing to the quantum cohomology of a compact Kähler manifold X is semi-simple, then his definition coincides with the
generating function of Gromov–Witten invariants of X. Let us return to our settings, i.e., the case of a simple weighted
homogeneous singularity f on 3 variables. The standard holomorphic volume form dx1 ∧ dx2 ∧ dx3 is primitive.
Therefore, following Givental, we can define total descendent potential. The latter will be called, the total descendent
potential of f . Fan–Jarvis–Ruan proved in [16] that the generating function of FJRW invariants of f T coincides with
the total descendant potential of f . Furthermore, Givental–Milanov [22] and Frenkel–Givental–Milanov [18] proved
that the total descendant potential of f is a tau-function of the principal Kac–Wakimoto hierarchy of the same type A,
D, or E as the singularity f . Finally, the outcome of the above work is that the generating function of FJRW invariants
of f T is a tau-function of an appropriate Kac–Wakimoto hierarchy. However, there is still a small gap in this statement.
Namely, while the state space of FJRW theory is identified explicitly with the Milnor ring of the singularity (see [16]),
the identification of the Milnor ring and the Cartan subalgebra of the corresponding simple Lie algebra is given by a
period map and it is not explicit. In order to obtain an explicit identification, we need to determine the image of the
root lattice in the Milnor ring of the singularity. This is exactly the problem that we want to solve in this thesis.
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It turns out that our answer can be stated quite elegantly via relative K-theory. The idea to look for such a descrip-

tion comes from the work of Iritani [27], Chiodo–Iritani–Ruan [11], and Chiodo–Nagel [12]. More precisely, Iritani
was able to prove in [27] that the Milnor lattice of the mirror of a Fano toric orbifold X can be identified with the
topological K-ring K0(X). The identification uses a period map to embed the Milnor lattice in H∗(X; C) and a certain
Γ-class modification of the Chern character map to embed K0(X) in H∗(X; C). The lattice in H∗(X; C), obtained
either as the image of the Milnor lattice via the period map or as the image of K0(X) via the Γ-class modification of
the Chern character map, is known as Γ-integral structure in quantum cohomology. Isolated singularities are almost
never mirror models of a manifold. Nevertheless, Chiodo–Iritani–Ruan have proposed an analogue of the Γ-integral
structure for singularities of Fermat type. The analogue of H∗(X; C) is played by the Milnor ring H f , while K0(X)

is replaced with an appropriate category of equivariant matrix factorizations of f . Finally, Chiodo–Nagel were able to
find an isomorphism between H f and an appropriate relative orbifold cohomology group. Since, the Chern character
gives an isomorphism between cohomology and K-theory and the Grothendieck group of the category of matrix fac-
torization also has the flavor of a topological K-ring, after expecting more carefully the constructions in [11] and [12],
we see that there is a natural candidate for a Γ-integral structure for Fermat type singularities. After several trial and
errors we were able to find the correct topological K-ring and the correct modification of the Chern character map.
Consequently, the main theorem (Theorem 3.3) of this thesis the following

Theorem 1.1 There exists a linear isomorphism

mir : H f // H∗
orb([C

3/GT ], [VT
1 /GT ]; C) ,

such that, the map

mir−1 ◦ chΓ : K0
orb([C

3/GT ], [VT
1 /GT ])

∼= // Ψ(H2( f−1(1); Z))

is an isomorphism of Abelian groups.

where H f is the Milnor ring of the singularity and Ψ is the period map. The theorem identifies the Milnor lattice
Ψ(H2( f−1(1); Z)) ⊂ H f with the image of relative K-group via the Γ-class modification of the Chern character
map.

Moreover our proposal makes sense not only for Fermat type polynomials, but more generally for an arbitrary
invertible polynomial. Nevertheless, let us return to our current settings of simple singularities. We believe that our
results can be generalized to all invertible polynomials. In Chapter 4, we will give some progress that we have already
made, which is the Seifert form of the basis of middle homology group.

Yet another series of works are worth mentioning. They mainly focus on the conjecture that for an invertible
polynomial f ∈ C[x1, . . . , xn] =: S, there is an equivalence of triangulated categories between triangulated cat-
egory HMF

L f
S ( f ) of L f -graded matrix factorizations of f and derived directed Fukaya category of f T [15], [48].

Futaki–Ueda proved homological mirror symmetry for Lefschetz fibrations obtained as Sebastiani–Thom sums of
polynomials of types A or D in [19] and produced a more intricate formula for the group action on both sides of the
mirror correspondence. Based on this conjecture, it is natural to expect the existence of a full exceptional collection in
HMF

L f
S ( f ). Hirano-Ouchi [25] prove this for f being of chain type by their semi-orthogonal decomposition theorem

and an induction on the number of variables in f . In the updated version, they further explicitly constructed a full
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strong exceptional collection. Aramaki–Takahashi [1] also gave a construction of a full exceptional collection and its
Euler matrix was given. Then a work which is highly related to the thesis is due to Otani–Takahashi [41]. In their
paper, the main theorem is that there is a mirror isomorphism between Gamma integral structure on the full exceptional
collection of Aramaki–Takahashi [1] and integral structure on the Milnor ring defined by the image of Π from middle
homology group. The result of Chapter 2 was considered as ADE cases of their result. Cycles of middle homology
group of Milnor fiber of a chain type polynomial were constructed inductively. We will calculate the Seifert form of
this basis of cycles in Chapter 3.

For the calculation of equivariant topological K-ring, one of the methods is to figure out the G-CW complex which
is a G-deformation retract of the Milnor fiber. Ruddat–Sibilla-Treumann–Zaslow [42] tell us that Log geometry can
be applied to find a deformation retract of smooth affine hypersurfaces. Some works are worth doing to get the equiv-
ariant case, i.e., combinatorial description for certain G-cellular decomposition of the Milnor fiber.

1.1 Organization of the thesis

In Chapter 2, we first give some preliminaries on equivariant topological K-theory, which is useful for Section 3.3.
Section 2.2 (Frobenius manifolds) and Section 2.3 (Calibration) is not used in the latter chapters; however, they are
helpful for explaining reflection vectors and integral structure. The section of integral structure also introduces the
motivation and application of the result of this thesis.

In Chapter 3, we compute the image of the Milnor lattice of an ADE singularity under a period map. We also prove
that the Milnor lattice can be identified with an appropriate relative K-group defined through the Berglund-Huebsch
dual of the corresponding singularity. In the last chapter, we figure out the image (Proposition 4.14) of the Milnor
lattice of the singularity of an invertible polynomial of chain type using the basis of middle homology constructed by
Otani-Takahashi [41]. We give the Seifert form of the basis as well. Some conjectures on equivariant K-theory are
raised.
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Chapter 2

Background

In this chapter, we will introduce some general background for the purpose of narration of next several chapters in
which we will deal with more specific situation.

2.1 Equivariant K-theory

The purpose of this section is to set down the basic facts about equivariant K-theory. Ordinary K-theory was invented
by M.F. Atiyah, and most of the results are due to him – see [4], [7], [6], [5]. The equivariant version of K-theory was
introduced by G. Seagel [46] following ideas of Atiyah. Let us outline the main steps in the construction of equivariant
K-theory. Our exposition follows closely [46].

2.1.1 G-vector bundles

Let us fix a topological group G. A G-space is a topological space X together with a continuous map G × X → X
satisfying the associativity condition g1(g2x) = (g1g2)x for all g1, g2 ∈ X and x ∈ X and the condition ex = x for
all x ∈ X and e is the identity element of G.

A G-map between two G-spaces is a continuous map which commutes with the action of G. More generally, if X
is a G-space and Y is an H-space and θ : H → G is a continuous group homomorphism, we say that f : Y → X is a
θ-equivariant map if it is continuous and if f (hy) = θ(h) f (y) for all h ∈ H, y ∈ Y

Definition 2.1 Let X be a G-space.
a) A G-space E together with a G-map p : E → X is said to be a G-equivariant vector bundle or simply a G-vector

bundle on X if the following two conditions hold:

(i) p : E → X is a complex vector bundle on X.

(ii) for every g ∈ G and x ∈ X, the group action g : Ex → Egx is a linear map, where Ex := p−1(x) denotes the
fiber of E at x.

b) If E and F are G-vector bundles on X, then a G-equivariant morphism or simply a G-homomorphism ϕ : E → F
is a map which is both a vector bundle homomorphism and a G-map.

Let us introduce the following notation. If M is a finite-dimensional complex representation of G and X is a given
G-space, then M := X × M has a natural structure of a G-vector bundle on X, that is, M is a trivial vector bundle
on X equipped with the diagonal action of G: g · (x, λ) = (gx, gλ). If E and F are two G-vector bundles on X then
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the vector bundles E ⊕ F, E ⊗ F, and Hom(E, F) have a natural structure of G-vector bundles, that is, the G-action is
defined as follows:

g · (λ + µ) := gλ + gµ, g · (λ ⊗ µ) := (gλ)⊗ (gµ), g · f (λ) := g f (g−1λ),

where λ ∈ Ex, µ ∈ Fx, and f ∈ Hom(Ex, Fx). Finally, if ϕ : Y → X is a G-map of G-spaces, and E is a vector
bundle on X, then the pullback vector bundle ϕ∗E has a natural structure of a G-vector bundle. More generally, if Y is
an H-space, X a G-space, α : H → G a homomorphism, and ϕ : Y → X such that ϕ(hy) = α(h)ϕ(y), then ϕ∗E is
an H-vector bundle on Y. If i : Y → X is the inclusion of a subspace, i∗E is often written E|Y.

2.1.2 Partition of unity

Definition 2.2 A topological space X is said to be locally compact if for every x ∈ X there exists an open subset
U ⊂ X, such that, x ∈ U and the closure U of U in X is compact.

The proof of the following lemma can be found in [28].

Lemma 2.3 If X is locally compact topological space and K ⊂ U where K and U are respectively a compact and an
open subset of X, then there exists an open subset V of X, such that, the closure V of V in X is compact and

K ⊂ V ⊂ V ⊂ U.

Suppose that f : X → R is a continuous function. Let us introduce the following notation: K ≺ f stands for

(i) K is compact,

(ii) f has compact support and 0 ≤ f (x) ≤ 1 for all x ∈ X

(iii) f (x) = 1 for all x ∈ K,

and f ≺ U stands for

(i) U is open,

(ii) f has compact support and 0 ≤ f (x) ≤ 1 for all x ∈ X

(iii) supp( f ) ⊂ U.

The following result, known also as Urysohn’s lemma, is well known.

Lemma 2.4 Suppose that X is a locally compact Hausdorff topological space, K is a compact subset of X, and U is
an open neighborhood of K, that is, U is open and K ⊂ U. Then, there exists a continuous function f : X → R with
compact support, such that, K ≺ f ≺ U.

Theorem 2.5 (Partition of Unity) Suppose that X is a locally compact Hausdorff space, K is a compact subset, and
{Ui}n

i=1 is a finite open covering of K. Then, there exists hi ≺ Ui, such that,

h1(x) + h2(x) + · · ·+ hn(x) = 1 ∀x ∈ K.
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Proof The argument follows the exposition of Rudin. If x ∈ K, then x ∈ Ui for some i. Recalling Lemma 2.3 we
get that there exists an open neighborhood Wx of x, such that, Wx ⊂ Wx ⊂ Ui where the closure Wx is compact.
Since K is compact, we can find finitely many points x1, . . . , xm, such that, the open subsets Wj := Wxj (1 ≤ j ≤ m)

form an open covering of K. Let Hi be the union of all W j, such that, W j ⊂ Ui. Note that Hi is compact and that
Hi ⊂ Ui. By Urysohn’s lemma we get that there exists a continuous function gi : X → R, such that, Hi ≺ gi ≺ Ui.
It is straightforward to check that the functions

h1 := g1

h2 := (1 − g1)g2

...

hn := (1 − g1) · · · (1 − gn−1)gn

have all required properties. 2

The above theorem has the following corollary. If X is a compact Hausdorff space and {Ui}i∈I is an arbitrary
open covering of X, then there exists a set of continuous functions fi : X → R, such that,

(i) fi ≺ Ui,

(ii) ∀x ∈ X the set {i ∈ I | fi(x) 6= 0} is finite,

(iii) ∑i∈I fi(x) = 1 ∀x ∈ X.

A set of continuous functions { fi}i∈I satisfying the above properties is said to be a partition of unity subordinate to
the open covering {Ui}i∈I .

Finally, let us recall the Tietze extension theorem. Recall that a topological space X is said to be normal if every
two disjoint closed subsets A and B of X have open neighborhoods A ⊂ U and B ⊂ V, such that, U ∩ V = ∅.

Theorem 2.6 (Tietze Extension Theorem) Suppose that X is a normal topological space, A ⊂ X is a closed subset,
and f : A → R is a continuous function. Then, f can be extended continuously on the entire space X, that is, there
exists a continuous function F : X → R, such that, F|A = f . Moreover, if f is bounded on A, then there exists a
continuous extension F, such that,

|F(x)| ≤ sup{| f (y)| | y ∈ A}, ∀x ∈ X.

Using Lemma 2.3 it is easy to prove that every compact Hausdorff space is normal. In particular, Tietze extension
theorem applies to compact Hausdorff spaces.

2.1.3 Equivariant K-Theory

We now come to the definition of the ring KG(X). The definition makes sense for arbitrary G-spaces X. However, the
resulting groups are known to have nice properties only if X is a compact Hausdorff space. Let us assume that G is a
compact Lie group and that X is a compact Hausdorff G-space.

Proposition 2.7 If E is a G-vector bundle on X and A ⊂ X is a closed G-subspace, then every continuous G-
equivariant section of E|A extends to a G-equivariant section of E.
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Proof The standard argument from the non-equivariant case (see [7], Lemma 1.1) works in the equivariant settings
too. Let us outline the main steps. Suppose that s : A → E is a G-equivariant section. Let {Ui}m

i=1 be an open
covering of A, such that, E|Ui

∼= Ui × Cr is trivial. Under the trivializations, we have s(a) = (a, si(a)) for some
continuous functions si : Ui ∩ A → Cr. Recalling the Tietze extension theorem, we get that s|Ui∩A extends to a
continuous section s̃i ∈ Γ(Ui, E). Let hi (1 ≤ i ≤ m) be a partition of unity subordinate to the covering {Ui}m

i=1,
that is, hi ≺ Ui and ∑m

i=1 hi(x) = 1 for all x ∈ A. Put t(x) := ∑m
i=1 si(x)hi(x). Note that t is a global section of

E because supp(hi) ⊂ Ui and that t(x) = s(x) for all x ∈ A, that is, t is an extension of s. Finally, in order to
construct a G-equivariant extension, we need just to take the average

t̃(x) :=
∫

g∈G
g−1t(gx)dµ(g),

where dµ(g) is the Haar measure on G. Clearly, t̃ is the required extension. 2

Proposition 2.7 has two important corollaries.

Corollary 2.8 Suppose that E and F are G-vector bundles on X, A ⊂ X is a closed G-subspace of X, and f : E|A →
F|A is a morphism of G-vector bundles. Then

a) The morphism f extends to a morphism of G-vector bundles f̃ : E → F.
b) If f is an isomorphism, then for every extension f̃ as in a), there exists a G-equivariant open neighborhood U

of A in X, such that, f̃ |U : E|U ∼= F|U is an isomorphism.

Definition 2.9 Suppose that X and Y are two G-spaces and φi : Y → X (i = 0, 1) are two G-equivariant continuous
maps. We say that φ0 and φ1 are G-homotopic if there exists a continuous map H : [0, 1]× Y → X, such that,

(i) H(t, gy) = gH(t, y) for all (t, y) ∈ [0, 1]× Y and g ∈ G,

(ii) H(0, y) = φ0(y) and H(1, y) = φ1(y) for all y ∈ Y.

Corollary 2.10 If Y is a compact G-space and φi : Y → X (i = 0, 1) are G-equivariant G-homotopic maps, then
φ∗

0 E ∼= φ∗
1 E for every G-vector bundle E on X.

The proofs of both Corollaries are straightforward generalizations of the well known proofs from the non-equivariant
case (see [7], Lemma 1.2 and Proposition 1.3).

The set of isomorphism classes of G-vector bundles on X forms an abelian semigroup under ⊕. The associated
abelian group is called KG(X): its elements are formal differences E0 − E1 of G-vector bundles on X, modulo the
equivalence relation E0 − E1 = E′

0 − E′
1 ⇔ E0 ⊕ E′

1 ⊕ F ∼= E′
0 ⊕ E1 ⊕ F for some G-vector bundle F on X. The

tensor product of G-vector bundles induces the structure of a commutative ring in KG(X).

Definition 2.11 Suppose that X and Y are G-spaces. A continuous G-map f : X → Y is said to be a G-homotopy

equivalence if there exists a continuous G-map g : Y → X, such that, f ◦ g is G-homotopy equivalent to the identity
map idY and g ◦ f is G-homotopy equivalent to the identity map idX .

Recalling Corollary 2.10, we get that the isomorphism class of the ring KG(X) depends only on the G-homotopy type
of X. Namely, note that if ϕ : Y → X is a G-map of compact G-spaces, then the pullback functor E 7→ ϕ∗E induces
a morphism of rings ϕ∗ : KG(X) → KG(Y). If ϕ is a homotopy equivalence, then ϕ∗ is an isomorphism. Let us list
several cases in which the equivariant K-ring can be computed explicitly in terms of the representation ring R(G) of
the compact Lie group G and the non-equivariant K-ring K(X).
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1. If G is the trivial group, then KG(X) = K(X).

2. If X is a point, then KG(pt) = R(G). In particular, since we always have a contraction G-map X → pt, the
ring KG(X) is a R(G)-module. The map R(G) → KG(X) is induced by M 7→ M.

3. KG(G/H) ∼= R(H) when H is a closed subgroup of G.

4. If G acts freely on X, then the pullback via the quotient map pr : X → X/G induces an isomorphism KG(X) ∼=
K(X/G).

The following case will be quite useful for our purposes. Suppose that α : G → H is a surjective homomorphism of
compact Lie groups and that X is a compact Hausdorff H-space. Then we have a homomorphism KH(X) → KG(X)

which gives an H-vector bundle the G-action induced from the homomorphism α. Combining this with the natural
map R(G) → KG(X) we have a morphism of rings µ : R(G)⊗R(H) KH(X) → KG(X). The case when H = 1 was
considered by Segal – see [46], Proposition 2.2. He proved that µ is an isomorphism. Unfortunately, Segal’s argument
is hard to generalize if H 6= 1, that is, we could not prove that µ is an isomorphism for H 6= 1. However, if we make
an extra assumption that G is a finite abelian group, then we have the following result.

Proposition 2.12 If α : G → H is a surjective homomorphism of finite abelian groups and X is a compact Hausdorff
H-space, then the natural map

µ : R(G)⊗R(H) KH(X) → KG(X)

is an isomorphism of rings.

Proof The idea is to construct an inverse to µ. In order to do this we have to prepare some notation and recall
some facts from the representation theory of finite abelian groups. Let A := Ker(α). Recall that the irreducible
representations of A are one dimensional and that they are parameterized by the elements of the character group
Â := Hom(A, C∗): λ ∈ Â corresponds to the A-module Cλ := C where the action of a ∈ A is given by
multiplication by λ(a). Suppose that E is a G-vector bundle, then each fiber Ex of E is an A-module and by taking the
decomposition of each fiber into sum of irreducible A-modules we get the vector bundle decomposition E = ⊕λ∈ÂEλ,
where

Eλ := {v ∈ E | a · v = λ(a)v ∀a ∈ A}.

Since the group G is abelian, we get that Eλ is G-invariant, that is, Eλ is a G-vector sub-bundle of E.
By assumption, we have an exact sequence

1 // A i // G α // H // 1 ,

where i is the inclusion map. Applying the functor Hom( , C∗) we get an exact sequence for the character groups

1 // Ĥ α̂ // Ĝ î // Â // 1 .

Let us denote by Lλ := Cλ ∈ KG(X) the G-line bundle on X corresponding to the character λ ∈ Ĝ. Note that for
every λ ∈ Ĝ the G-vector bundle L−1

λ ⊗ Eî(λ) has a trivial A-action. Therefore, the vector bundle has an induced
structure of G/A ∼= H-vector bundle. It is straightforward to check that the inverse of µ is given by the following
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formula:

ν(E) := ∑
[λ]∈Ĝ/Ĥ

Cλ ⊗R(H) (L−1
λ ⊗ Eî(λ)),

where the sum is over a set of λ ∈ Ĝ whose coset classes λĤ exhaust the elements of the quotient Ĝ/Ĥ ∼= Â. 2

Our next goal is to construct the higher equivariant K-groups and the long exact sequence of a pair. To begin with,
we need the following proposition.

Proposition 2.13 If E is a G-vector bundle on X, then there is a G-module M and a G-vector bundle E⊥ such that
E ⊕ E⊥ ∼= M.

The proof of Proposition 2.13 is rather complicated (it relies on the Peter-Weyl theorem) – see [46], Proposition 2.4.
Two G-vector bundles E, E′ on X are called stably equivalent if there exist G-modules M, M′ such that E ⊕ M ∼=
E′ ⊕ M′. Proposition 2.13 implies that the stable equivalence classes of G-vector bundles on X form an abelian group
under ⊕. This group is called K̃G(X); it can be identified naturally with a quotient group of KG(X), that is, we have
an exact sequence of R(G)-modules

0 → R(G) → KG(X) → K̃G(X) → 0,

where the map R(G) → KG(X) is M 7→ M.
Suppose that X is a G-space with a base point 0, such that, g0 = 0 for all g ∈ G. Let us denote by C X the reduced

cone on X, that is,
C X := X × [0, 1]/(X × 0) ∪ (0 × [0, 1]),

where [0, 1] is the unit interval in R. If i1 : X → Y1, i2 : X → Y2 are two inclusions of compact G-spaces with base
point, then we denote by Y1 tX Y2 the topological space obtained from the topological sum Y1 t Y2 by identifying
i1(x) with i2(x) for each x ∈ X. There is an obvious embedding of X in C X, and C X tX C X is called the reduced

suspension of X, and written S X.

Proposition 2.14 If X is a compact G-space with base point, and A is a closed G-subspace (with the same base point),
then the sequence

K̃G(X tA C A) → K̃G(X) → K̃G(A)

is exact, where both maps are induced by the natural restriction maps.

The proof is straightforward (see also [46], Proposition 2.6). Proposition 2.14 can be viewed as a formula for the
kernel of the restriction map K̃G(X) → K̃G(A). Using this proposition we get that the kernel of the restriction map
K̃G(X tA C A) → K̃G(X) is precisely K̃G(X tA C A tX C X) = K̃G(C X tA C A).

Proposition 2.15 The inclusion map S A → C X tA C A is a G-homotopy equivalence.

Proof We follow the ideas explained in [17], Sections 5.5 and 5.6. Let us introduce the notion of a G-Borsuk pair. A
pair (X, A) of a G-space X and a closed G-subspace A is called a G-Borsuk pair if for every other G-space Y, every
continuous G-map F : X → Y, and every G-homotopy fs : A → Y (0 ≤ s ≤ 1) such that f0 = F|A, there exists a
G-homotopy Fs : X → Y (0 ≤ s ≤ 1) such that F0 = F and Fs|A = fs. It can be checked that (C X tA C A, C X) is
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a G-Borsuk pair. Indeed, in the notation of the definition of a G-Borsuk pair, given a G-homotopy fs : C X → Y and
a G-map F : C X tA C A → Y such that F|C X = f0, the required homotopy Fs can be constructed as follows

Fs(x, t′) = fs(x, t′), ∀[x, t′] ∈ C X

and

Fs(a, t′′) =

F(a, (1 + s)t′′) if t′′ ≤ 1
1+s

f(1+s)t′′−1(a, 1) if t′′ ≥ 1
1+s

, ∀[a, t′′] ∈ C A,

where we denoted by [x, t′′] ∈ C X the point obtained from (x, t′′) ∈ X × [0, 1] via the quotient map. In particular,
when Y = C X tA C A, F = id, and

fs(x, t′) = [x, (1 − s)t′] ∈ C X ⊂ C X tA C A,

our construction yields a homotopy Fs : C X tA C A → C X tA C A such that F0 = id while the image of F1 is in
S A. It remains only to check that F1|S A is G-homotopic to the identity map in S A which is obvious because Fs maps
S A into S A so for a homotopy we can simply take Fs|S A. 2

Remark 2.16 Similarly, one can prove that (C A, A) is a G-Borsuk pair and deduce that the quotient map

X tA C A → X tA C A/ C A = X/A

is a G-homotopy equivalence.

We get the following sequence

K̃G(S X) → K̃G(S A) → K̃G(X tA C A) → K̃G(X) → K̃G(A) (2.1)

which is exact except possibly at the 2nd term. However S X is G-homotopy equivalent to

C(X tA C A) tXtAC A (C X tA C A).

Therefore, thanks to Proposition 2.14, the sequence 2.1 is exact.

Definition 2.17 If X is a compact G-space with base point, and A is a closed G-subspace, define (for any q ∈ N)

K̃−q
G (X) := K̃G(Sq X),

K̃−q
G (X, A) := K̃G(Sq(X tA C A)),

where Sq X is the q-fold suspension of X defined recursively by Sq X := S(Sq−1 X) for q > 0 and S0 X := X.

Since we have Sq(X tA C A) = Sq X tSq A C Sq A, by iterating the sequence 2.1 we get an exact sequence infinite to
the left

· · · → K̃−q
G (X, A) → K̃−q

G (X) → K̃−q
G (A) → K̃−q+1

G (X, A) → . . .

→ K̃G(X, A) → K̃G(X) → K̃G(A).
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The standard way to extend K-theory to non-compact spaces is to consider the one-point compactification. The result-
ing theory is known as K-theory with compact support. In the G-equivariant settings this approach works too. If X
is a locally compact G-space which is not compact, let X+ denote its one-point compactification, a compact G-space
with base point. If X is already compact, define X+ = X t {0}, the sum of X and a base point.

Definition 2.18 If X is a locally compact G-space, and A is a closed subspace, define K−q
G (X)cpt := K̃−q

G (X+) and
K−q

G (X, A)cpt = K̃−q
G (X+, A+).

Remark 2.19 We have K−q
G (X, ∅)cpt = K−q

G (X)cpt and K−q
G (X)cpt = K0

G(X × Rq)cpt and K−q
G (X, A)cpt =

K0
G(X × Rq, A × Rq)cpt for any locally compact G-space X and closed G-subspace A.

We have the following excision theorem (see [46], Proposition 2.9).

Proposition 2.20 If A is a closed G-subspace of a locally compact G-space X, then the natural map

K−q
G (X − A)cpt → K−q

G (X, A)cpt

is an isomorphism.

Let us discuss the case when X is a compact Hausdorff G-space without a base point. In this case the G-equivariant
K-group can be defined vie the non-reduced suspension. The latter is defined by

ΣX := Con(X) tX Con(X),

where Con(X) := X × [0, 1]/X × {0} is the cone of X. To begin with, note that for any G-subset A ⊂ X we have
the following G-homotopy equivalence:

X+ tA+ C A+ ' X tA Con(A),

where if A = ∅, then we define Con(∅) := pt. The RHS is a G-space with a base point the vertex of the cone
Con(A). For a contractible space the reduced and the non-reduced suspension are homotopy equivalent. Therefore,

S(X tA Con(A)) = ΣX tΣA S Con(A) ' ΣX tΣA Σ Con(A) = Σ(X tA Con(A)) ' Σ(X/A).

Note that since the operations Con and Σ commute we also have that

S(X tA Con(A)) ' ΣX tΣA Con(ΣA).

Therefore,

K−1
G (X, A) = K̃G(Σ(X/A)) = K̃G(ΣX tΣA Con(ΣA)) = KG(ΣX, ΣA).

Similarly, for all q ≥ 0 we have the following formulas:

K−q
G (X, A) = K̃G(Σq(X/A)) = KG(ΣqX, Σq A).
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2.1.4 Complexes of G-vector bundles

In order to complete the construction of G-equivariant K-theory, we still need to explain how to extend the long
exact sequence infinitely to the right. This is done by the Thom isomorphism theorem which in particular yields the
periodicity isomorphism Kq+2

G (X, A)cpt ∼= Kq
G(X, A)cpt. In order to establish the Thom isomorphism, it is important

to obtain an equivalent description of the relative K-group in terms of complexes of vector bundles. We will do this
following the ideas of Segal (see [46]).

Suppose that X is a locally compact, paracompact, Hausdorff G-space, where G is a compact Lie group. A
complex of G-vector bundles on X is a sequence Ei (i ∈ Z) of G-vector bundles and a sequence di

E : Ei → Ei+1

of morphisms of G-vector bundles, such that, di+1
E ◦ di

E = 0 for all i. We usually denote the complex simply by
E• and the differential by dE or simply by d if no confusion is likely to occur. The complex E• is called finite (or
bounded) if Ei 6= 0 only for finitely many i. A morphism f : E• → F• between two complexes of G-vector bundles
is a sequence f i : Ei → Fi of morphisms of G-vector bundles compatible with the differentials dE and dF of the
two complexes: dF ◦ f i = f i+1 ◦ dE. Two morphisms f1, f2 : E• → F• of complexes of G-vector bundles are
said to be G-homotopic, denoted by f1 ' f2, if there exists a sequence of morphisms hi : Ei → Fi−1 of G-vector
bundles, such that, f i

1 − f i
2 = hi+1 ◦ di

E + di−1
F ◦ hi. Two complexes E• and F• of G-vector bundles are said to be

G-homotopy equivalent if there are morphisms, called homotopy equivalences, f : E• → F• and g : F• → E•, such
that, g ◦ f ' idE and f ◦ g ' idF.

Definition 2.21 Suppose that E• is a complex of G-vector bundles. The set of points

supp(E•) := {x ∈ X | Hi(E•
x) 6= 0 for some i}

is called the support of E•.

A complex whose cohomology vanishes is also called exact or acyclic. The support consists of the points x at which
the complex fails to be exact. Note that the support of a bounded complex E• is a closed subset. Indeed, the dimension
of the subspace Im(di−1

x ) of Ei
x as a function of x can only increase if we vary x nearby, while the value of Ker(di

x)

can only decrease if we vary x nearby. In particular, if Hi(Ex) = 0, then Hi(Ex′) = 0 for all x′ sufficiently close to
x. Therefore, the complement of the support is an open subset.

Suppose now that A ⊂ X is a closed subset. Let us denote by CG(X, A) the category of bounded complexes of
G-vector bundles whose support is contained in X \ A and the morphisms are just morphisms of complexes of G-
vector bundles. Let DG(X, A) be the homotopy category of CG(X, A), that is, the objects are the same as the objects
of CG(X, A) but the morphisms between two complexes E• and F• are given by the [E•, F•] := homotopy classes of
morphisms E• → F•. In particular, two objects E• and F• in DG(X, A) are isomorphic, denoted by E• ' F•, if there
exists a homotopy equivalence f : E• → F•. Following Segal (see [46]), let us define the equivalence relation ∼ in
DG(X, A): we say that two complexes E•

0 and E•
1 of DG(X, A) are equivalent, and we write E•

0 ∼ E•
1 , if there is an

object E• of DG(X × [0, 1], A × [0, 1]) and homotopy equivalences E•
0 ' E•|X×{0} and E•

1 ' E•|X×{1}.

Remark 2.22 Segal used the word ”homotopic” for the equivalence relation ∼. However, nowadays the notion of
homotopy equivalence between two complexes is quite standard. The homotopy equivalence relation is contained in
∼, that is, E• ' F• implies E• ∼ F•. In order to avoid confusion we would not give a special name to the equivalence
relation ∼.
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Similarly, we define the categories CG(X, A)cpt and its homotopy category DG(X, A)cpt in which the complexes are
required to have compact support contained in X \ A. Put

QG(X, A) := DG(X, A)/ ∼ and QG(X, A)cpt := DG(X, A)cpt/ ∼ .

If X is compact, then QG(X, A) = QG(X, A)cpt. Note that QG(X, A) and QG(X, A)cpt are abelian semi-groups
with respect to the operation ⊕: direct sum of complexes. Recall that DG(X, A) is a triangulated category (see
[28]). We would like to prove that every triangle in DG(X, A) gives rise to a relation in QG(X, A). In fact, it can
be proved that these are all relations and therefore the natural map which assigns to the homotopy class of a complex
E• ∈ DG(X, A) its equivalence class in QG(X, A) induces an isomorphism between the Grothendieck group of the
triangulated category DG(X, A) and QG(X, A). Let us recall the notion of a triangle in DG(X, A) (see [28]).

Definition 2.23 A sequence of complexes of G-vector bundles

P• α // Q• β // R•

is said to be split exact if for every i there exists an isomorphism Qi ∼= Pi ⊕ Ri, such that, α(x) = (x, 0) and
β(x, y) = y.

Given a split exact sequence the differential dQ, under the splitting, takes the form

di
Q(x, y) = (ai

11(x) + ai
12(y), ai

21(x) + ai
22(y)), (x, y) ∈ Pi ⊕ Ri,

where ai
11 : Pi → Pi+1, ai

12 : Ri → Pi+1, ai
21 : Ri → Pi+1 and ai

22 : Ri → Ri+1. The compatibility of dQ

with α and β implies that ai
11 = di

P, ai
21 = 0 and ai

22 = di
R. The condition d2

Q = 0 implies that ai
12 defines a

morphism of complexes of G-vector bundles a12 : R → P[1] where P[n] denotes the complex with Pi[n] := Pi+n

and di
P[n] := (−1)ndi+n

P . The homotopy class h ∈ [R, P[1]] of the map a12 is independent of the choice of the
splitting and it is called the homotopy invariant of the split exact sequence.

Definition 2.24 A sequence in CG(X, A) of the form

A• f // B• g // C• f [1] // A•[1] (2.2)

is said to be a triangle if there exists a split exact sequence P → Q → R and a homotopy commutative diagram

A• f //

��

B• g //

��

C• f [1] //

��

A•[1]

��
P• // Q• // R• h // P•[1]

,

in which the vertical arrows are homotopy equivalences and h is the homotopy invariant of the split exact sequence.

Suppose now that we have a triangle (2.2). We claim that [A•]− [B•] + [C•] = 0, where [ ] denotes the equivalence
class of a complex in QG(X, A). Let P•, Q•, and R• be as in Definition 2.24. By definition, we have: [A•] = [P•],
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[B•] = [Q•], and [C•] = [R•]. Let us consider the family of complexes Q•

t (0 ≤ t ≤ 1) defined by

Qi
t := Qi ∼= Pi ⊕ Ri, di

Qt
(x, y) := (di

P(x) + th(y), di
R(y)).

Note that Q•
t=1 = Q• while Q•

t=0 = P• ⊕ R•. This proves that Q• ∼ P• ⊕ R• and our claim follows. Let us check
that the semi-group QG(X, A) is an abelian group. Let us recall the mapping cone complex Con•( f ) of a morphism
f : E• → F•:

Coni( f ) := Ei+1 ⊕ Fi, di(x, y) := (−di+1
E (x),− f i+1(x) + di

F(y)).

It is a standard fact (see [28]) that the following sequence

E• f // F• // Con•( f ) // E•[1]

is a triangle. We get the following relation in QG(X, A):

[F•] = [E•] + [Con•( f )].

In particular, since for f = 0, Con•( f ) = E•[1]⊕ F•, we get that the shift functor E• 7→ E•[1] induces the inverse in
QG(X, A) and hence QG(X, A) is a group. Furthermore, if E• and F• are complexes on X one can form their tensor
product E• ⊗ F•, with (E• ⊗ F•)k =

⊕
p+q=k Ep ⊗ Fq. One has supp(E• ⊗ F•) = supp(E•) ∩ supp(F•). The

tensor product of complexes induces a homomorphism

QG(X, A)cpt ⊗ QG(X, A)cpt → QG(X, A)cpt.

The above product is associative and it turns QG(X, A)cpt into a commutative ring.
Our next goal is to prove that the abelian group QG(X, A) is generated by two term complexes of the form E → M

where E is a G-vector bundle and M is a finite-dimensional G-module. We need to recall two standard results. A
morphism f : E• → F• is said to be a quasi-isomorphism if the induced maps on cohomology Hi(Ex) → Hi(Fx)

are isomorphisms for all i and for all x ∈ X. In that case we will also say that the complexes E• and F• are quasi-
isomorphic. We have the following proposition.

Proposition 2.25 A morphism f : E• → F• between two complexes of G-vector bundles is a quasi-isomorphism if
and only if it is a homotopy equivalence.

The second result is that acyclic complexes split in the following sense.

Proposition 2.26 If a complex E• of G-vector bundles is acyclic, then there exists a complex Z• of G-vector bundles
and isomorphisms Ei ∼= Zi+1 ⊕ Zi, such that, the differential di

E(x, y) = (0, x) for x ∈ Zi+1 and y ∈ Zi.

Suppose now that E• is an arbitrary complex in CG(X, A). A complex is said to be elementary if it has only two
non-zero terms in degrees i and i + 1 for some i which are identical and the differential di is the identity map (see [46],
Appendix). Adding an elementary complex to E• does not change the homotopy class of E• – thanks to Proposition
2.25. Using Proposition 2.13 we get that by adding elementary complexes to E• we can arrange that E• has the form
Ei = 0 for i < a and Ei = Mi for all i > a, that is, only Ea is possibly a non-trivial bundle. Let Zi be the G-vector
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bundles on A that provide the splitting of E•|A as in Proposition 2.26. It is easy to check by decreasing induction
on i that all Zi are stably trivial G-vector bundles on A. Therefore, by adding to E• elementary complexes of the
form N → N we may arrange that all Zi = Ni are trivial bundles. Let us look at the complex E•|A. We have
Ei|A ∼= A × (Ni+1 ⊕ Ni) and the differential di

E(x, y) = (0, x) for (x, y) ∈ Ni+1 ⊕ Ni is constant with respect to
A. Therefore, by replacing A with X we obtain a complex Fi := X × (Ni+1 ⊕ Ni).

Lemma 2.27 The isomorphism f : E•|A → F•|A extends to a morphism of complexes f : E• → F•.

Proof We have f i = ( f i
1, f i

0) where f i
1 : Ei|A → A × Ni+1 and f i

0 : Ei|A → A × Ni. The compatibility with the
differentials of E• and F• is equivalent to the identities

f i
1 = f i+1

0 ◦ di
E and f i+1

1 ◦ di
E = 0.

Let n be the maximal non-trivial degree of E•, that is, Ei = 0 for i > n. Since 0 = En+1|A = A × (Nn+2 ⊕ Nn+1),
we get that Ni = 0 for all i > n. Therefore, En|A ∼= A × Nn, f n

1 = 0, f n
0 : En|A ∼= A × Nn is an isomorphism.

Let us extend f n
0 arbitrary to a morphism En → Fn = X × Nn and keep f n

1 = 0. Suppose that we have determined
the extensions f j

1 : Ej → X × Nj+1 and f j
0 → X × Nj for all i < j ≤ n. Note that the extension of f i

1 = f i+1
0 ◦ di

E
is uniquely determined from f i+1 and it automatically satisfies f i

1 ◦ di−1
E = 0. According to Corollary 2.8, the

isomorphism f i
0 : Ei|A → A × Ni can be extended to a morphism Ei → X × Ni. Let us pick one of these extensions.

The constructed sequence of G-vector bundle morphisms f i
1 : Ei → X × Ni+1 and f i

0 : Ei → X × Ni give a sequence
of maps f i = ( f i

1, f i
0) : Ei → X × (Ni+1 ⊕ Ni) = Fi which by construction is compatible with the differentials of

E• and F• and therefore it defines a morphism of complexes f : E• → F•. 2

Lemma 2.28 Suppose that f : E• → F• is a morphism in CG(X, A), such that, f |A : E•|A → F•|A is an isomor-
phism, then

[E•] = [F•] + ∑
i∈Z

(−1)i[ Ei f i
// Fi ]

where [ ] denotes the equivalence class in QG(X, A).

Proof We already know that [F•]− [E•] coincides with the equivalence class of the mapping cone complex Con•( f ).
For simplicity, assume that Ei = Fi = 0 for i < 0. Let τ≥1(E•) be the complex which in degree ≤ 0 is 0 while in
degree i ≥ 1 coincides with Ei. Similarly, let τ≥1( f ) : τ≥1(E•) → τ≥1(F•) be the morphism which in degree i ≤ 0
is 0 and in degree i ≥ 1 is f i. Note that we have a commutative diagram

E0 f 0
//

dE
��

F0

(0,−dF)
��

E1
(−dE ,− f 1)

// E2 ⊕ F1 // E3 ⊕ F2 // · · ·

where the lower raw is the mapping cone complex of τ≥1( f ). Let us interpret the above diagram as a morphism φ

between the two term complex on the upper row and the complex on the lower raw. It is straightforward to check that
the mapping cone of φ is a translation of the mapping cone of f , that is,

Con•(φ) = Con•( f )[−1].
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The triangle corresponding to the mapping cone of φ yields the following relation in QG(X, A):

[ E0 f 0
// F0 ] = [Con•(τ≥1( f ))]− [Con•( f )[−1]] = [Con•(τ≥1( f ))] + [Con•( f )]

The formula in the lemma follows easily by induction on the length of Con•( f ). 2

Let us apply Lemma 2.27 to construct an extension f : E• → F• in our settings. Note that by definition the com-
plex F• is a sum of elementary complexes ⇒ [F•] = 0. Therefore, the formula in Lemma 2.28 gives the required
decomposition of [E•] as a sum of two term complexes.

Finally, let us compare the abelian group QG(X, A) with the relative K-ring KG(X, A). Note that there is a natural
map

KG(X, A)cpt → QG(X, A)cpt (2.3)

defined as follows. By definition KG(X, A) = K̃(X+ tA+ C A+). A G-vector bundle on X+ tA+ C A+ restricts to
a G-vector bundle E on X+ and to a trivial G-vector bundle M on C A+ where M is a finite dimensional G-module.
Moreover, we have an isomorphism ϕ : E|A → A × M. Using the Tietze extension theorem (see Corollary 2.8) we
can extend ϕ to a morphism ϕ̃ : E → X × M. The map (2.3) is given by

(E, M, ϕ) 7→ [E
ϕ̃ // X × M]

The following result is due to Segal (see [46], Proposition A.I).

Proposition 2.29 The map (2.3) is an isomorphism of abelian groups.

The group QG(X, A) is a homotopy invariant in the sense explained below. In particular, even if X is non-compact
as long as the G-pair (X, A) has the G-homotopy type of a G-pair (Y, B) with Y compact, we can make use of the
properties of the K-rings established for compact spaces.

Definition 2.30 a) A G-pair is a pair (X, A) of a G-space X and a G-subspace A.
b) A G-map between two G-pairs, denoted by f : (X, A) → (Y, B) is a continuous G-map f : X → Y, such that,

f (A) ⊂ B.
c) A G-homotopy between two G-maps f0, f1 : (X, A) → (Y, B) is a continuous G-map φ : (X × [0, 1], A ×

[0, 1]) → (Y, B), such that, φ|X×0 = f0 and φ|X×1 = f1. If a homotopy exists, then we say that f0 and f1 are
homotopic and write f0 ' f1.

d) A G-map f : (X, A) → (Y, B) between two G-pairs is said to be a homotopy equivalence if there exists a
G-map g : (Y, B) → (X, A), such that, g ◦ f ' idX and f ◦ g ' idY.

Suppose that f : (X, A) → (Y, B) is a G-map between two G-pairs, where X and Y are locally compact, paracompact,
Hausdorff G-spaces, G is a compact Lie group and A ⊂ X and B ⊂ Y are closed subsets. The pullback operation
of vector bundles induces a homeomorphism of rings f ∗ : QG(Y, B) → QG(X, A). Note that if two maps f0, f1 :
(X, A) → (Y, B) are G-homotopic, then f ∗0 = f ∗1 . Indeed, suppose that E• is a complex of G-vector bundles. We
have to prove that f ∗0 E• ∼ f ∗1 E•. Let φ : (X × [0, 1], A × [0, 1]) → (Y, B) be the homotopy between f0 and f1. Note
that the support of φ∗E• is contained in X × [0, 1] \ A × [0, 1] and φ∗E•|X×{0} = f ∗0 E• and φ∗E•|X×{1} = f ∗1 E•. In
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particular, if f : (X, A) → (Y, B) is a G-homotopy equivalence, then f ∗ : QG(Y, B) → QG(X, A) is an isomorphism
of rings.

2.1.5 The Thom homomorphism and periodicity

Our next goal is to define the Thom homomorphism for KG and to recall the Thom isomorphism theorem. First observe
that if E is a G-vector bundle on X and s is an equivariant section of E one can form the Koszul complex

· · · → 0 → C
d→ ∧1E d→ ∧2E d→ . . .

where d is defined by d(ξ) := ξ ∧ s(x) for ξ ∈ ∧iEx. This complex is acyclic at all points x at which s(x) 6= 0, so
its support is the set of zeros of s.

Now, if p : E → X is the projection, the bundle p∗E on E has a natural section which is the diagonal map
δ : E → E ×X E = p∗E. This section δ vanishes precisely on the zero-section of E. Following Segal, let us
denote by ∧•

E the Koszul complex on E formed from p∗E and δ. If F• is a complex with compact support on X
then p∗F• is a complex on E with support p−1(supp(F•)), and ∧•

E ⊗ p∗F• is a complex with compact support
on E. The assignment F• 7→ ∧•

E ⊗ p∗F• induces an additive homomorphism ϕ∗ : KG(X)cpt → KG(E)cpt which
is called the Thom homomorphism. If X is compact, then ∧•

E has compact support and it defines the Thom class

ϕ∗(1) = λE in KG(E)cpt. Finally, replacing X and E by X × Rq and E × Rq we get a Thom homomorphism
ϕ∗ : K−q

G (X) → K−q
G (E) for each q ∈ N. We have the following important isomorphism (see [46], Proposition 3.2).

Proposition 2.31 The Thom homomorphism ϕ∗ : K∗
G(X)cpt → K∗

G(E)cpt is an isomorphism for any G-vector bundle
E on a locally compact G-space X.

Applying 2.31 to the trivial bundle C, since K−q−2
G (X)cpt = K−q

G (X × C)cpt, we get

Proposition 2.32 The Thom homomorphism corresponding to the trivial G-vector bundle X × C → X defines an
isomorphism K−q

G (X)cpt ∼= K−q−2
G (X)cpt.

Proposition 2.32 suggests that one should define Kq
G(X)cpt for positive q as Kq−2n

G (X)cpt, where n ⩾ q/2. Then one
has cohomological exact sequences extending infinitely in both directions. Equivalently, we have the following exact
cyclic sequence

K−1
G (X, A)cpt // K−1

G (X)cpt // K−1
G (A)cpt

δ−1
��

K0
G(A)cpt

δ0

OO

K0
G(X)cptoo K0

G(X, A)cptoo

where the map δ0 is the composition of the periodicity isomorphism K0
G(A)cpt ∼= K−2

G (A)cpt and the boundary
morphism K−2

G (A)cpt → K−1
G (X, A)cpt. The boundary morphism δ−1 can be described as follows. An element in

K−1
G (A)cpt is represented by a G-vector bundle on Σ(A+). Such a vector bundle is obtained by gluing two copies

of a trivial bundle C A+ × M along A+ where M is a finite-dimensional G-module. The gluing isomorphism ϕ :
A+ × M → A+ × M can be extended to a morphism X+ × M → X+ × M thaks to the Tietze extension theorem.
The resulting two term complex represents an element of QG(X+, A+) ∼= KG(X+, A+) = KG(X, A)cpt which
coincides with the image of δ−1. Finally, if the G-pair (X, A) has the homotopy type of a G-pair (Y, B) with Y
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compact, then the above cyclic sequence remain exact after removing the index cpt from the K-groups. Note that in
general the groups K−i

G (X, A)cpt and

K−i
G (X, A) = K̃G(Σi(X/A)) = QG(ΣiX, Σi A)

are very different.

2.2 Frobenius manifolds

2.2.1 Definition

There are many ways to introduce Frobenius manifolds. Here, it is convenient to choose a set of axioms. The general
reference for more details is [13] and [33]. Our definition is equivalent to (Definition 1.2 in [13]). Let M be a complex
manifold and denote by TM the sheaf of holomorphic vector fields on M. Let us assume that M is equipped with the
following structures

1. Each tangent space Tt M, t ∈ M, is equipped with the structure of a Frobenius algebra depending holomorphi-
cally on t. In other words, we have a commutative associative multiplication •t and symmetric non-degenerate
bi-linear pairing ( , )t satisfying the Frobenius property

(v1 •t w, v2) = (v1, w •t v2), v1, v2, w ∈ Tt M

The pointwise multiplication •t defines a multiplication • in TM, i.e., an OM-bilinear map

TM ⊗ TM → TM, v1 ⊗ v2 7→ v1 • v2.

The pairing ( , )t determines a OM-bilinear pairing

( , ) : TM ⊗ TM → OM.

2. There exists a global vector field e ∈ TM, called unit vector field, such that

∇L.C.
v e = 0, e • v = v, ∀v ∈ TM,

where ∇L.C. is the Levi-Civita connection on TM corresponding to the bi-linear pairing ( , ).

3. There exists a global vector field E ∈ TM , called Euler vector field, such that

E(v1, v2)− ([E, v1], v2)− (v1, [E, v2]) = (2 − D)(v1, v2),

for all v1, v2 ∈ TM and for some constant D ∈ C.

The above data allows us to define the so-called structure connection ∇ on the vector bundle pr∗MTM → M × C∗,
where

prM : M × C∗ → M, (t, z) 7→ t
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is the projection map. Namely,

∇v := ∇L.C.
v − z−1v•, v ∈ TM

∇∂/∂z :=
∂

∂z
− z−1θ + z−2E•,

v• and E• are OM-linear maps TM → TM corresponding to the Frobenius multiplication by respectively v and E.
The OM-linear map θ : TM → TM is defined by

θ(v) := ∇L.C.
v E − (1 − D/2)v.

The operator θ is sometimes called Hodge grading operator. Let us point out that the term (1−D/2)v in the definition
of θ(v) is inserted so that θ becomes skew-symmetric with respect to the Frobenius pairing

(θ(v1), v2) + (v1, θ(v2)) = 0, v1, v2 ∈ TM.

Definition 2.33 The data (( , ), •, e, E) satisfying the conditions (1), (2) and (3) from above is said to be a Frobe-

nius structure on M of conformal dimension D if the structure connection ∇ is flat.

Let us state the following properties without proof. Actually, the proof is straightforward argument in Riemannian
Geometry. And we will do the same to the propositions and theorems in this chapter of Background.

Proposition 2.34 Suppose that (M, (, ), •, e, E) is a Frobenius structure. Then

1. The Levi-Civita connection ∇L.C. is flat.

2. Let t = (t1, . . . , tN) be ∇L.C.-flat coordinates defined on a contractible open subset U ⊂ M. There exists a
holomorphic function F ∈ OM(U), such that

(∂/∂ta • ∂/∂tb, ∂/∂tc) =
∂3F

∂ta∂tb∂tc

and
EF = (3 − D)F + H,

where H is a polynomial in t1, . . . , tN of degree at most 2.

3. The Hodge grading operator is covariantly constant: ∇L.C.θ = 0. In particular, in flat coordinates t =

(t1, . . . , tN) the matrix (θab)
N
a,b=1 of θ defined by

θ(∂/∂tb) =
N

∑
a=1

θab∂/∂ta

is constant.

4. The following identity holds

[E, v • w]− [E, v] • w − v • [E, w] = v • w, v, w ∈ TM.
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2.2.2 Semi-simple Frobenius manifolds

Definition 2.35 A Frobenius manifold (M, ( , ), •, e, E) is said to be semi-simple if there are local coordinates
u = (u1, . . . , uN) defined in a neighborhood of some point on M such that

∂/∂ui • ∂/∂uj = δij∂/∂uj, 1 ⩽ i, j ⩽ N.

The coordinates ui are called canonical coordinates.

As we will see now, canonical coordinates are unique up to permutation and constant shifts. To avoid cumbersome
notation we put ∂ui := ∂/∂ui.

Proposition 2.36 Let u = (u1, . . . , uN) be canonical coordinates defined on some open subset U ⊂ M. Then

1. The Frobenius pairing takes the form

(∂ui , ∂uj) = δijηj(u), 1 ⩽ i, j ⩽ N,

where ηj ∈ OM(U) and ηj(u) 6= 0 for all u ∈ U.

2. The unit vector field takes the form e = ∑N
i=1 ∂ui .

3. The 1-form ∑N
i=1 ηi(u)dui is closed.

4. There are constants ci(1 ⩽ i ⩽ N) such that

E =
N

∑
i=1

(ui + ci)∂ui .

The last part of the above proposition shows that in every canonical coordinate system up to some constant shifts
the canonical coordinates coincide with the eigenvalues of the operator E•. Therefore, up to constant shifts and
permutations the canonical coordinates are uniquely determined. From now on we will work only with canonical
coordinates such that

E =
N

∑
i=1

ui∂ui .

The question that we would like to answer now is the following. Let us assume that U is an open subset of the
universal cover T of ZN and ∑N

i=1 ηi(u)dui is a closed 1-form on U. The tangent bundle of T and hence of U as well
is trivial, because T is a contractible Stein manifold, so according to the Grauert-Oka principle every holomorphic
vector bundle on T is trivial. Alternatively, we can prove that TT is a free OT-module by using that the vector fields
∂ui of the configuration space ZN lift naturally to vector fields on T and provide a global trivialization of TT . Using
the 1-form we define a pairing

(∂ui , ∂uj) = δijηj(u).

Let us also define multiplication
∂ui • ∂uj = δij∂uj
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and vector fields

e =
N

∑
i=1

∂ui , E =
N

∑
i=1

ui∂ui .

The problem then is to classify all 1-forms ∑N
i=1 ηi(u)dui such that the above data determines a Frobenius structure

on U. The answer is given by the following theorem.

Theorem 2.37 The closed 1-form ∑N
i=1 ηi(u)dui determines a Frobenius structure on U of conformal dimension D

if and only if the following conditions are satisfied

1. ηi(u) 6= 0 for all i and for all u ∈ U.

2. eηi(u) = 0 for all i.

3. Eηi(u) = −Dηi(u).

4. For all k 6= i 6= j 6= k we have

∂ηij

∂uk
=

1
2

(
ηijηkj

ηj
+

ηjkηik

ηk
+

ηkiηji

ηi

)
,

where ηab(u) := ∂ua ηb(u).

2.2.3 The second structure connection

In order to justify the definition of the second structure connection we make the following heuristic argument. Suppose
that the structure connection has a solution

J : M × C∗ → CN

given by a Laplace transform

J(t, z) =
(−z)n− 1

2
√

2π

∫
Γ

eλ/z I(n)(t, λ)dλ

along an appropriate contour Γ ⊂ C of some CN-valued function I(n)(t, λ) holomorphic for all (t, λ) ∈ M × Γ. Here
n ∈ C is an arbitrary number. Assuming that the Laplace transform works, we would get that J(t, z) is a solution to
the structure connection if and only if I(n)(t, λ) is a solution to the following connection

∇(n)
∂ti

= ∂ti + (λ − E•)−1(∂ti•)(θ − n − 1/2), 1 ⩽ i ⩽ N,

∇(n)
∂λ

= ∂λ − (λ − E•)−1(θ − n − 1/2).

This is a connection on the vector bundle
pr∗TM → (M × C)′

where
(M × C)′ = {(t, λ) ∈ M × C|det(λ − E•t) 6= 0}

and
pr : (M × C)′ → M, (x, λ) 7→ x
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Proposition 2.38 The connection ∇(n) is flat for all n ∈ C.

Let U be a contractible open subset of the configuration space

ZN = {u ∈ CN : ui 6= uj for i 6= j}.

And we fix a point u◦ ∈ ZN . Suppose that U is equipped with a semi-simple Frobenius structure (( , ), •, e, E).
Put H = Tu◦U and let us trivialize the tangent bundle

TU ∼= U × H ∼= U × CN (2.4)

using the Levi-Civita connection. In other words, we fix a basis {ϕa}N
a=1 of H and let ∂ta ∈ TU be the flat vector field

on U obtained by parallel transport with respect to the Levi-Civita connection. Then the isomorphisms (2.4) are given
by the maps

(u, v) ∈ TU 7→ (u, v1ϕ1 + · · ·+ vNϕN) ∈ U × H 7→ (u, v1, . . . , vN) ∈ U × CN ,

where v ∈ TuU and v =: v1∂t1 + · · · + vN∂tN . The isomorphism (2.4) identifies the structure connection of the
Frobenius structure with the flat connection on the trivial bundle

(U × C∗)× CN → U × C∗

defined by

∇∂ui
= ∂ui − z−1Pi(u), 1 ⩽ i ⩽ N,

∇∂z = ∂z − z−1θ + z−2E(u),

where Pi : U → gl(CN) is a holomorphic map whose (a, b)-entry Piab(u) is defined by the identity

∂ui • ∂tb =
N

∑
a=1

Piab(u)∂ta ,

E = ∑N
i=1 uiPi(u), and θ is a constant matrix whose (a, b)-entry θab is defined by

θ(∂tb) = [∂tb , E]− (1 − D/2)∂tb =:
N

∑
a=1

θab∂ta .

Lemma 2.39 Let Ψ̃ be the matrix whose (a, i)-entry is given by Ψ̃ai = ∂ta/∂ui. Then

Ψ̃−1PiΨ̃ = Eii, Ψ̃−1E Ψ̃ = diag(u1, . . . , uN),

where Eii is the matrix whose entry in position (i, i) is 1 and all other entries are 0.



Chapter 2. Background 23
Lemma 2.40 Let n ∈ C be arbitrary. Then the matrix-valued functions

A(n)
i (u) := Pi(u)(θ − n − 1/2), 1 ⩽ i ⩽ N,

satisfy the Schlesinger equations.

Proof Using Lemma 2.39 we get

(λ − E)−1Pi(θ − n − 1
2
) =

A(n)
i (u)

λ − ui
.

Therefore,

∇(n)
∂ui

= ∂ui +
A(n)

i (u)
λ − ui

, 1 ⩽ i ⩽ N, (2.5)

∇(n)
∂λ

= ∂λ −
N

∑
i=1

A(n)
i (u)

λ − ui
. (2.6)

It remains only to recall Proposition 2.38. 2

2.3 Calibration

Let us fix any point t◦ ∈ M. We will do something similar to the previous subsection. We fix a basis {ϕa}N
a=1 of

H := Tt◦ M and let ∂ta ∈ TM be the flat vector field obtained by parallel transport with respect to the Levi-Civita
connection. We will get a simply connected flat coordinate (V, t), where V is a simply connected neighborhood of t◦

extended by the parallel transport. Then the isomorphisms (2.7) are given by the maps

(t, v) ∈ TV 7→ (t, v1ϕ1 + · · ·+ vNϕN) ∈ V × H 7→ (t, v1, . . . , vN) ∈ V × CN , (2.7)

where v ∈ TtV and v =: v1∂t1 + · · · + vN∂tN . The isomorphism (2.7) identifies the structure connection of the
Frobenius structure with the flat connection on the trivial bundle

(V × C∗)× CN → V × C∗

defined by

∇∂ti
= ∂ti − z−1 Ai(t), 1 ⩽ i ⩽ N, (2.8)

∇∂z = ∂z − z−1θ + z−2E • (t), (2.9)

where Ai : V → gl(CN) is a holomorphic map whose (a, b)-entry Aiab(u) is defined by the identity

∂ti • ∂tb =
N

∑
a=1

Aiab(t)∂ta ,

E• : V → gl(CN) is derived from Frobenius multiplication by Euler vector field E, and θ is the constant matrix as
before.
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2.3.1 Definition and existence of calibration

We are going to prove that (2.9) admits an isomonodromic family of weak Levelt’s solutions, i.e., near z = ∞ the
system (2.8)-(2.9) admits a fundamental solution of the form

Φ(t, z) = S(t, z)zδzν,

where the matrices S(t, z) = S0 + S1(t)z−1 + S2(t)z−2 . . . with S0 constant (independent of t and z) invertible
matrix, δ is a diagonalizable constant matrix and ν is a nilpotent constant matrix. Moreover, we will prove that there
exists a fundamental solution such that S0 = 1.

Substituting the fundamental series Φ(t, z) in (2.8) and comparing the coefficients in front of powers of z, we get
that

∂ti Sk = AiSk−1, ∀1 ⩽ i ⩽ N, k ∈ Z>0. (2.10)

Since structure connection is flat, concretely, [∇∂ti
,∇∂tj

] = 0, ∀1 ⩽ i, j ⩽ N, 1-form ∑N
i=1 AiSk−1dti is closed. As

V is simply connected, we can integrate the 1-form and find that

Sk(t) = Sk(t◦) +
∫ t

t◦

N

∑
i=1

AiSk−1dti. (2.11)

Therefore, it is sufficient to determine Sk(t) for a fixed t = t◦. For neighborhood V, the values of Sk(t) are determined
from the flatness of structure connection according to formula (2.11).

Next, let us solve (2.9) at t = t◦. It is convenient to introduce the following notation. Let spec(δ) be the set of
eigenvalues of the operator

adδ : gl(H) → gl(H), X → [δ, X].

Let us denote by gla(H) the eigensubspace of adδ with eigenvalue a. Then we have a direct sum decomposition of
vector spaces

gl(H) =
⊕

a∈spec(δ)

gla(H).

Let us denote by X[a] the projection of X on gla(H). The matrices S, δ, and ν are identified with elements of gl(H)

via the basis {ϕi}N
i=1 ⊂ H that we fixed above.

Substituting the fundamental series Φ(t, z) in (2.9) and comparing the coefficients in front of powers of z, we get
that ν[−l] = 0 if l /∈ Z⩾0 and that

θ = δ + ν[0], (2.12)

kSk + [θ, Sk] = E • Sk−1 +
k

∑
l=1

Sk−lν[−l], k > 0. (2.13)

(2.12) uniquely determines δ and ν[0]: δ is diagonizable. ν[0] is nilpotent and [δ, ν[0]] = 0. So δ and ν[0] are uniquely
determined by the Jordan-Chevalley decomposition.
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For (2.13), the left hand side is

(k + adδ + adν[0])Sk = ∑
a∈spec(δ)

(k + a + adν[0])(Sk)[a]

where summation is finite since the matrix vector space has finite dimension. Note that adν[0] preserves the eigenspace
of adδ since [δ, ν[0]] = 0, we have

(k + a + adν[0])(Sk)[a] = (E • Sk−1)[a] +
k

∑
l=1

(Sk−l)[a+l] ν[−l] (2.14)

If k + a 6= 0, then

(k + a + adν[0])(Sk)[a] = (E • Sk−1)[a] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l] + (S0)[a+k] ν[−k]

= (E • Sk−1)[a] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l]

and the operator (k + a + adν[0]) is invertible.

(k + a + adν[0])
−1 =

1
k + a

∞

∑
i=0

(
−

adν[0]

k + a

)i

,

where the summation over i is actually finite since ν[0] is nilpotent and then operator adν[0] is nilpotent as well. Hence,
(Sk)[a] can be determined by Sk−l , ν[−l], l = 1, 2, . . . , k − 1.

If k + a = 0, then

adν[0]((Sk)[−k]) = (E • Sk−1)[−k] + ν[−k] +
k−1

∑
l=1

(Sk−l)[a+l] ν[−l]. (2.15)

There will be ambiguity in the choice of (Sk)[−k] since the operator adν[0] is non-invertible and ν[−k] has not been
determined. Actually, the situation is somewhat the other way around. We choose (Sk)[−k] ∈ gl−k(H) arbitrarily and
use equation (2.15) to determined ν[−k].

Proposition 2.41 Sk(t), k = 1, 2, . . . determined by (2.11) do satisfy (2.13) for all t ∈ V and thus ∇∂z Φ(t, z) = 0
holds not only at t = t◦ but also on the neighborhood V.

Proof Let us prove it by induction. Since θ is a constant matrix,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(kAiSk−1 + adθ(AiSk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(kAiSk−1 + adθ(Ai)Sk−1 + Aiadθ(Sk−1))dti
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Note that, by the flatness of structure connection, we have [∇∂ti

,∇∂z ] = 0, ∀1 ⩽ i ⩽ N which yields relation
Ai + [θ, Ai] = ∂ti (E•), ∀1 ⩽ i ⩽ N. Thus,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] +
∫ t

t◦

N

∑
i=1

(∂ti (E•)Sk−1 + Ai(k − 1 + adθ)(Sk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • ∂ti (Sk−1) + Ai(k − 1 + adθ)(Sk−1))dti

When k = 1, the integral vanishes. We have

S1(t) + [θ, S1(t)]− (E•)(t) = S1(t◦) + [θ, S1(t◦)]− (E•)(t◦) = ν[−1].

Our inductive hypothesis is

nSn(t) + [θ, Sn(t)] = (E • Sn−1)(t) +
n

∑
l=1

Sn−l(t)ν[−l], ∀t ∈ V

holds for n = k − 1. When n = k,

kSk(t) + [θ, Sk(t)] =kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • ∂ti (Sk−1) + Ai(k − 1 + adθ)(Sk−1))dti

=kSk(t◦) + [θ, Sk(t◦)] + (E • Sk−1)(t)− (E • Sk−1)(t◦)

+
∫ t

t◦

N

∑
i=1

(−E • Ai(Sk−2) + Ai(E • Sk−2 +
k−1

∑
l=1

Sk−1−lν[−l]))dti

Therefore,

kSk(t) + [θ, Sk(t)]− (E • Sk−1)(t)

=kSk(t◦) + [θ, Sk(t◦)]− (E • Sk−1)(t◦) +
∫ t

t◦

N

∑
i=1

k−1

∑
l=1

∂ti (Sk−l)ν[−l]dti

=kSk(t◦) + [θ, Sk(t◦)]− (E • Sk−1)(t◦) +
k

∑
l=1

(Sk−l(t)− Sk−l(t◦))ν[−l]

We finished the induction step. 2

We will see that the arbitrariness of (Sk)[−k],−k ∈ spec(δ) will be reduced if the weak Levelt solution satifies the
symplectic condition S(t,−z)TS(t, z) = 1 in the following proposition.

Proposition 2.42 There exists a weak Levelt solution such that

S(t,−z)TS(t, z) = 1,
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where T is transposition with respect to the Frobenius pairing on H = Tu◦U.

Proposition 2.42 is known if θ is diagonalizable (see [14]). Let us modify the argument from [14] in order to cover the
case of θ non-diagonalizable.

Proof The proof is in my master thesis. 2

Let us denote N :=
⊕∞

m=0 gl−m(H). Then, it is the time to show the definition of calibrations (see [20])

Definition 2.43 An operator series of the form S(t, z) = 1 + S1(t)z−1 + . . . is said to be a calibration if there is
ν ∈ N such that

1. S(t, z)zδzν is a solution to ∇. And

2. S(t,−z)TS(t, z) = 1.

Note that ν is unique.

Let us discuss the analytic property of S(t, z). Let us first fix t ∈ M. Since ∇∂/∂z has a regular singularity at z = ∞,
irregular singularity at z = 0, and no other singularity, we get that S(t, z) is analytic for all z ∈ P1 \ {0}, where
P1 = C ∪ {∞} is the extended complex plane. (see [26])

The connection operators ∇∂/∂ti
, (1 ⩽ i ⩽ N) depend analytically on (t, z) ∈ M × (P1 \ {0}). Then we

obtain that S(t, z) can be extended analytically along any path in M × (P1 \ {0}) (see [2]), that is, S(t, z) is a
multivalued analytic function on M × (P1 \ {0}).

In particular, following Givental (see [20]), let us introduce the holomorphic twisted loop group L GL(2)(H) :=
{A(z) ∈ Hol(C∗, GL(H))|AT(−z)A(z) = 1} then the calibration S(t, z) ∈ L GL(2)(H) for all t ∈ M.

2.3.2 Uniqueness of calibration

Lemma 2.44 Let β1, . . . , βm ∈ R \ {0} where they are pairwise distict and C1, . . . , Cm ∈ gl(H). If limit limt→+∞(∑m
i=1 Cieβit

√
−1)

exists, then C1 = · · · = Cm = 0.

Proof Denote ∑m
i=1 Cieβit

√
−1 by L(t). Pick an arbitrary number ∆t from R \⋃1⩽i<j⩽m

2π
βi−β j

Q. Then

m

∑
i=1

Cieβi(t+j∆t)
√
−1 = L(t + j∆t), j = 0, 1, . . . , m − 1,

which can be written in the form of a Vandermonde matrix acting on the vector

(C1eβ1t
√
−1, . . . , Cmeβmt

√
−1)T .

The way of choosing ∆t make sure that the determinant of Vandermonde matrix does not vanish. Thus, for any
i ∈ {1, 2, . . . , m}, Cieβit

√
−1 is the linear combination of L(t), L(t + ∆t), L(t + (m − 1)∆t) given by the inverse of

the Vandermonde matrix. Since limt→+∞ L(t) exists, limt→+∞ Cieβit
√
−1 exists as well. The only possibility is that

C1 = C2 = · · · = Cm = 0 2
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We need to define a group G and its action on L GL(2)(H)× N which will facilitate the narration of the next

theorem.

G :=

{
C(z) = 1 +

∞

∑
m=1

Cmz−m

∣∣∣∣∣Cm ∈ gl−m(H), C(−z)TC(z) = 1

}
and its action is

(C(z); A(z), ν) 7→ (A(z)C(z), C(1)−1νC(1)).

Theorem 2.45 Let us shrink the set on which the group G acts into the set of all pairs (S(t, z), ν) consisting of a
calibration and a corresponding nilpotent operator ν. Then the group G acts faithfully and transitively on the set after
shrinking.

Proof The proof is in my master thesis. 2

2.4 Period vectors

The definition of the period map depends on the choice of a calibration of M. So we will use the notation of the
previous section. Let us fix a reference point (t◦, λ◦) ∈ (M × C)′ := {(t, λ)|det(λ − E•t) 6= 0} such that λ◦ is a
sufficiently large real number.

Proposition 2.46 The following functions provide a fundamental solution to the 2nd structure connection

I(n)(t, λ) =
∞

∑
k=0

(−1)kSk(t) Ĩ(n+k)(λ),

where

Ĩ(m)(λ) = e−∑∞
l=0 ν[−l](−∂λ)

l ∂m

(
λδ−m− 1

2

Γ(δ − m + 1
2 )

)
.

Proof First, let us show that ∇(n)
∂λ

I(n) = 0.

(λ − E•)∇(n)
∂λ

I(n) =(λ − E•)∂λ I(n) − (θ − n − 1
2
)I(n)

=
∞

∑
k=0

(−1)kSk(t)λ∂λ Ĩ(n+k)(λ)−
∞

∑
k=0

(−1)kE • ∂λSk(t) Ĩ(n+k)(λ)

−
∞

∑
k=0

(−1)k(θ − n − 1
2
)Sk(t) Ĩ(n+k)(λ)

We may apply (2.13) to the last line and it will be

−(θ − n − 1
2
) Ĩ(n)(λ)−

∞

∑
k=1

(−1)k

(
Sk(t)(θ − n − k − 1

2
) + E • Sk−1(t) +

k

∑
l=1

Sk−l(t)ν[−l]

)
Ĩ(n+k)(λ).

Let us rearrange these two summation and shift indices of S such that, in the summation over k, there is only Sk and
we will get

−
∞

∑
k=0

(−1)k

(
Sk(δ − n − k − 1

2
) Ĩ(n+k) − E • Sk Ĩ(n+k+1) +

∞

∑
l=0

(−1)lSkν[−l] Ĩ
(n+k+l)

)
.
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Note that ∂λ Ĩ(n+k) = Ĩ(n+k+1), the two terms with E• will cancel out each other. Similarly, Ĩ(n+k+l) = (∂λ)

l Ĩ(n+k)

and then

(λ − E•)∇(n)
∂λ

I(n) =
∞

∑
k=0

(−1)kSk(t)

(
λ∂λ − (δ − n − k − 1

2
)−

∞

∑
l=0

ν[−l](−∂λ)
l

)
Ĩ(n+k)(λ).

Next we will show that
(

λ∂λ − (δ − m − 1
2 )− ∑∞

l=0 ν[−l](−∂λ)
l
)

Ĩ(m)(λ) = 0. An observation is that (λ∂λ −

(δ − m − 1
2 ))

(
λδ−m− 1

2

Γ(δ−m+ 1
2 )

)
= 0. So we want to commute λ∂λ − (δ − m − 1

2 ) with −∑∞
l=0 ν[−l](−∂λ)

l∂m. The

calculation process is the following

(λ∂λ − (δ − m − 1
2
))(−

∞

∑
l=0

ν[−l](−∂λ)
l∂m) =−

∞

∑
l=0

ν[−l](−∂λ)
l∂m(λ∂λ − l) +

∞

∑
l=0

ν[−l](δ − l)(−∂λ)
l∂m

−
∞

∑
l=0

ν[−l](−∂λ)
l(∂mm − 1)− 1

2

∞

∑
l=0

ν[−l](−∂λ)
l∂m.

The two term with −l will cancel out each other.

(λ∂λ − (δ − m − 1
2
))(−

∞

∑
l=0

ν[−l](−∂λ)
l∂m) =−

∞

∑
l=0

ν[−l](−∂λ)
l∂m(λ∂λ − (δ − m − 1

2
)) +

∞

∑
l=0

ν[−l](−∂λ)
l .

And

(λ∂λ − (δ−m− 1
2
))e−∑∞

l=0 ν[−l](−∂λ)
l∂m = e−∑∞

l=0 ν[−l](−∂λ)
l∂m(λ∂λ − (δ−m− 1

2
))+

∞

∑
l=0

ν[−l](−∂λ)
le−∑∞

l=0 ν[−l](−∂λ)
l ∂m ,

which yields
(

λ∂λ − (δ − m − 1
2 )
)

Ĩ(m)(λ) = ∑∞
l=0 ν[−l](−∂λ)

l Ĩ(m)(λ). Since λ − E• is invertible on (M × C)′,

we finished the proof of ∇(n)
∂λ

I(n) = 0.

Finally, let us show that ∇(n)
∂ti

I(n) = 0 with the help of (λ − E•)∇(n)
∂λ

I(n) = 0. Let us consider

(λ − E•)∇(n)
∂ti

I(n) = (λ − E•)∂ti I
(n) + ϕi • (θ − n − 1

2
)I(n).

In virtue of (λ − E•)∇(n)
∂λ

I(n) = 0, i.e., (θ − n − 1
2 )I(n) = (λ − E•)∂λ I(n), we have

(λ − E•)∇(n)
∂ti

I(n) = (λ − E•)∂ti I
(n) + ϕi • (λ − E•)∂λ I(n) = (λ − E•)(∂ti + ϕi • ∂λ)I(n).

Again, we get ∇(n)
∂ti

I(n) = (∂ti + ϕi • ∂λ)I(n). Then, recalling (2.10), we have

∇(n)
∂ti

I(n) =
∞

∑
k=0

(−1)k∂ti Sk(t) Ĩ(n+k)(λ) +
∞

∑
k=0

(−1)k Ai(t)Sk(t) Ĩ(n+k+1)(λ)

=
∞

∑
k=0

(−1)k∂ti Sk(t) Ĩ(n+k)(λ)−
∞

∑
k=0

(−1)k+1∂ti Sk+1(t) Ĩ(n+k+1)(λ) = 0.

Hence we finished the proof. 2
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The 2nd structure connection has a Fuchsian singularity at infinity, therefore the series I(n)(t, λ) is convergent for all
(t, λ) sufficiently close to (t◦, λ◦). Using the differential equations we extend I(n) to a multi-valued analytic function
on (M × C)′. We define the following multi-valued functions taking values in H:

I(n)a (t, λ) := I(n)(t, λ)a, a ∈ H, n ∈ C

These functions will be called period vectors. Using analytic continuation we get a representation

π1((M × C)′, (t◦, λ◦)) → GL(H)

called the monodromy representation of the Frobenius manifold. The image W of the monodromy representation is
called the monodromy group.

Under the semi-simplicity assumption, we may choose a generic reference point t◦ on M, such that the Frobenius
multiplication •t◦ is semi-simple and the operator E•t◦ has N pairwise different eigenvalues u◦

i (1 ⩽ i ⩽ N). The
fundamental group π1((M × C)′, (t◦, λ◦)) fits into the following exact sequence

π1(F◦, λ◦)
i∗−→ π1((M × C)′, (t◦, λ◦)) → π1(M, t◦) → 1 (2.16)

where p : (M × C)′ → M is the projection on M, F◦ = p−1(t◦) = C{u◦
1 , . . . , u◦

N} is the fiber over t◦, and
i : F◦ → (M × C)′ is the natural inclusion. For a proof we refer to [47], Proposition 5.6.4 or [40], Lemma 1.5 C.
Using the exact sequence (2.16) we get that the monodromy group W is generated by the monodromy transformations
representing the lifts of the generators of π1(M, t◦) in π1((M × C)′, (t◦, λ◦)) and the generators of π1(F◦, λ◦).

The image of π1(F◦, λ◦) under the monodromy representation is a reflection group that can be described as
follows. Using the differential equations of the 2nd structure connection it is easy to prove that the pairing

(a|b) := (I(0)a (t, λ), (λ − E•)I(0)b (t, λ))

is independent of t and λ. This pairing is known as the intersection pairing. Suppose now that γ is a simple loop in
F◦, i.e., a loop that starts at λ◦, approaches one of the punctures u◦

i along a path γ′ that ends at a point sufficiently
close to u◦

i , goes around u◦
i , and finally returns back to λ◦ along γ′. By analyzing the second structure connection

near λ = ui it is easy to see that up to a sign there exists a unique a ∈ H such that (a|a) = 2 and the monodromy
transformation of a along γ is −a. The monodromy transformation representing γ ∈ π1(F◦, λ◦) is the reflection
defined by the following formula:

wa(x) = x − (a|x)a.

Let us denote by R the set of all a ∈ H as above determined by all possible choices of simple loops in F◦. We refer to
the elements of R as reflection vectors.

2.4.1 Reflection vectors (Vanishing cycles)

In this section, we shall assume that n ∈ Z. In the definition of the set R of reflection vectors that we gave just now, we
fixed a semi-simple point t◦ ∈ M and moved λ in C − {u◦

1 , . . . , u◦
N}. On a neighborhood of t◦, the semi-simplicity

assumption and that E•t has N pairwise different eigenvalues ui still hold. Next we will find a fundamental solution
Y(i)(u, λ) to differential equation ∇(n)

∂/∂λY(i)(u, λ) = 0 near λ = ui.
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Proposition 2.47 1. In a neighborhood of λ = ui, the differential equation ∇(n)
∂/∂λy = 0 has a (N − 1)-dimensional

space of holomorphic solutions.

2. In a neighborhood of λ = ui, the differential equation ∇(n)
∂/∂λy = 0 has a unique solution of the form

y(i)(λ) =
√

2π
(λ − ui)

−n− 1
2

Γ(−n + 1
2 )

(
1

√
ηi

∂

∂ui
+ O(λ − ui)).

Proof Let us denote by y(j) the jth of column vectors of the matrix Y(i)(u, λ),

y(j) = (λ − ui)
α(y(j)

0 +
∞

∑
k=1

y(j)
k (λ − ui)

k),

where y(j)
0 , y(j)

k are column vectors depending on u. Let us see the coefficient of (λ − ui)
α−1 in the equation

∇(n)
∂/∂λy(j) = 0 recalling (2.6) and then we have,

A(n)
i (u)y(j)

0 = αy(j)
0

According to the definition of A(n)
i (u) and Lemma 2.39,

EiiΨ̃−1(θ − n − 1
2
)Ψ̃(Ψ̃−1y(j)

0 ) = αΨ̃−1y(j)
0 .

By direct calculation,

det
(

α − EiiΨ̃−1(θ − n − 1
2
)Ψ̃
)
= αN−1(α −

(
Ψ̃−1(θ − n − 1

2
)Ψ̃
)

ii
).

Lemma 2.48 Let η be diag{η1, . . . , ηN}. Then (Ψ̃−1θΨ̃)Tη = −η(Ψ̃−1θΨ̃), where T represents the standard
matrix transposition, and thus

(
Ψ̃−1(θ − n − 1

2 )Ψ̃
)

ii
= −n − 1

2 .

Proof Note that θ is skew symmetric with respect to the Frobenius pairing, i.e.,

(θ(∂ui ), ∂uj) = −(∂ui , θ(∂uj)),

where

θ∂ui =
N

∑
a=1

∂ta

∂ui
θ(∂ta) =

N

∑
a,b=1

∂ta

∂ui
θba∂tb =

N

∑
a,b,j=1

Ψ̃aiθba(Ψ̃
−1)jb∂uj .

Thus, (θ(∂ui ), ∂uj) = ∑N
a,b=1 Ψ̃aiθba(Ψ̃−1)jbηj = ηj(Ψ̃−1θΨ̃)ji. Similarly, (∂ui , θ(∂uj)) = ηi(Ψ̃−1θΨ̃)ij. Therefore,

ηj(Ψ̃−1θΨ̃)ji = −ηi(Ψ̃−1θΨ̃)ij, 1 ⩽ i, j ⩽ N, and thus (Ψ̃−1θΨ̃)ii = 0. 2

Let us return to the proof of Proposition 2.47 have eigenvalue α = 0 and α = −n− 1
2 of A(n)

i (u). Since
(

Ψ̃−1(θ − n − 1
2 )Ψ̃

)
ii
=

−n− 1
2 6= 0, we have EiiΨ̃−1(θ − n− 1

2 )Ψ̃ and thus A(n)
i (u) are diagonalizable, namely, the dimension of eigenspace
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for eigenvalue α = 0 is N − 1 and that for eigenvalue α = −n − 1
2 is 1. Let y(j)

0 be the eigenvector of A(n)
i (u) for

eigenvalue α = 0 if j 6= i and let y(i)0 be that for eigenvalue α = −n − 1
2 . We will see that y(j) is uniquely determined

by y(j)
0 for all 1 ⩽ j ⩽ N. For the case j 6= i, let us see the coefficient of (λ− ui)

k+α−1 in the equation ∇(n)
∂/∂λy(j) = 0

recalling (2.6) and then we have,

(
k − A(n)

i (u)
)

y(j)
k − ∑

s 6=i

(
A(n)

s (u)
λ − us

y(j)

)
(λ−ui)k−1

= 0,

where 1
λ−us

= 1
ui−us

1
1− λ−ui

us−ui

= −∑∞
l′=0

(λ−ui)
l′

(us−ui)l′+1 . Then the above equation can be converted into

(
k − A(n)

i (u)
)

y(j)
k = − ∑

l′+l′′=k−1,s 6=i,1⩽s⩽N

A(n)
s (u)

(us − ui)l′+1 y(j)
l′′

Since det
(

k − A(n)
i (u)

)
6= 0, ∀k ∈ Z⩾1, we can determine y(j)

k by y(j)
l′′ , l′′ = 0, 1, . . . , k − 1. The first part

of the proposition was proved. The same argument holds for the case j = i. Thus, we get that Y(i)(u, λ) =

[y(1)(u, λ), . . . , y(N)(u, λ)] is a fundamental solution for ∇(n)
∂/∂λY(i)(u, λ) = 0 near λ = ui. The first part of

the proposition was proved.
Note that y(i)0 is proportional to ∂ui . This is because ei is an eigenvector with eigenvalue −n − 1

2 of EiiΨ̃−1(θ −
n − 1

2 )Ψ̃, i.e., Ψ̃ei = ∂ui is an eigenvector with eigenvalue −n − 1
2 of A(n) = Ψ̃EiiΨ̃−1(θ − n − 1

2 ). By choosing
the coefficient of ∂ui for the later purpose, we get the second part of the proposition. 2

Definition 2.49 φ ∈ H = Tt◦ M is called a reflection vector if there is a path from (t◦, λ◦) to (t, ui(t)) avoiding the
discriminant, such that,

I(n)(t, λ)φ =
√

2π
(λ − ui)

−n− 1
2

Γ(−n + 1
2 )

(
1

√
ηi

∂

∂ui
+ O(λ − ui)),

where gamma function comes from ∂λ I(n) = I(n+1) and the rest part of the coefficient is due to the intersection
pairing (φ|φ) = 2.

As I(n)(u, λ) is also a fundamental solution to ∇(n)
∂/∂λ I(n)(u, λ) = 0, there is a matrix C(i)(u) depending on u

such that I(n)(u, λ) = Y(i)(u, λ)C(i)(u), ∀1 ⩽ i ⩽ N.

Corollary 2.50 φi := (C(i)(u))−1ei is the reflection vector. Therefore for every reference path from (t◦, λ◦) to
(t, ui(t)) avoiding the discriminant, there exists a corresponding reflection vector.

2.4.2 Integral structure

Suppose that M is a semi-simple Frobenius manifold and t◦ is a semi-simple point. We will be interested only in
a small open neighborhood of t◦ in which the tangent bundle TM can be trivialized by a frame of flat vector fields
ϕa = ∂/∂ta (1 ≤ a ≤ N). The vector space H := Tt◦ M is identified with the space of flat vector fields via the flat
Levi–Civita connection of the Frobenius pairing. We would like to introduce the Z-submodule Λ of H generated by
all reflection vectors. Let us make the following assumption about the Frobenius manifold:
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(i) The grading operator θ is diagonalizable with rational eigenvalues.

(ii) There exists a calibration S(t, z) with a corresponding nilpotent operator ρ, such that, [θ, ρ] = −ρ.

All examples of Frobenius manifolds coming from quantum cohomology and singularity theory satisfy these condi-
tions. Let us fix a calibration S(t, z) = 1 + S1(t)z−1 + S2(t)z−2 + · · · , Sk(t) ∈ End(H) for which condition (ii)
above holds.

Lemma 2.51 Let e be the unit vector field of the Frobenius manifold. Put S1(t)e = ∑N
a=1 τa(t)ϕa. Then the coeffi-

cients τa(t) (1 ≤ a ≤ N) form a flat coordinate system in a neighborhood of t◦.

Proof Suppose that (t1, . . . , tN) is a flat coordinate system such that ϕa = ∂/∂ta and ϕ1 = e is the unit vector
field. We have z∂ta S(t, z) = ϕa • S(t, z). Comparing the coefficients in front of z0 we get ∂ta S1(t) = Ωa(t), where
Ωa(t) ∈ End(H) is the operator of Frobenius multiplication by ϕa. Since Ωa(t)e = ϕa we get ∂τb

∂ta
= δa,b ⇒

τa(t) = ta + ca where ca are constants independent of t, that is, τa(t) are also flat coordinates. 2

Therefore, after fixing a basis {ϕa}N
a=1 for the space H of flat vector fields and a calibration S(t, z), there is a canonical

choice of flat coordinates (t1, . . . , tN), such that, ϕa = ∂/∂ta (1 ≤ a ≤ N) and S1(t)e = t1ϕ1 + · · ·+ tNϕN .
Let us introduce the following pairing:

〈a, b〉 :=
1

2π
(a, eπiθeπiρb), a, b ∈ H.

We will refer to it as the Euler pairing. The following proposition is proved in [37].

Proposition 2.52 The interesection pairing is a symmetrization of the Euler pairing, that is, (a|b) := 〈a, b〉+ 〈b, a〉.

Definition 2.53 We say that the Frobenius manifold has an integral structure if the Z-submodule Λ of H generated
by the reflection vectors is a free Z-module of rank N and the Euler pairing is integral on Λ, that is, 〈a, b〉 ∈ Z for all
a, b ∈ Λ.

It is expected that the Frobenius manifold underlying the quantum cohomology of a smooth projective variety X
has an integral structure given by the image of the topological K-ring K0(X) via an appropriate modification of the
Chern character map (see [27]). Under the identification of Λ ∼= K0(X), the pairing 〈 , 〉 coincides with the Euler
pairing in K-theory which explains the name of 〈 , 〉 given above.

In singularity theory, the space of flat vector fields is naturally identified with the local algebra H f of some singu-
larity f . Given a primitive form in the sense of K. Saito, we can construct a Frobenius manifold structure on the space
of miniversal deformations of f . Moreover, it is known that the Frobenius structure has an integral structure with the
lattice Λ isomorphic to the Milnor lattice of the singularity f and the set of reflection vectors is identified with the
set of vanishing cycles. The main motivation for this thesis is to find out if the embedding of the Milnor lattice in the
local algebra H f has an explicit description similar to the one in quantum cohomology suggested by Iritani. Such a
description is important for the applications to integrable systems. Let us try to elaborate on this statement.

Suppose that our Frobenius manifold has an integral structure. Let us recall the notion of a lattice vertex algebra
VΛ (see [29] for some background). As a vector space

VΛ := Sym(H[s−1]s−1)⊗ C[Λ],
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where C[Λ] is the twisted group algebra of the lattice Λ, that is, formal linear combinations of eα (α ∈ Λ) with
multiplication

eα eβ = eπi〈α,β〉eα+β.

Put an := asn for a ∈ H and n ∈ Z. Let us recall that the vector space H[s, s−1]⊕CK has a structure of a Heisenberg
Lie algebra with Lie bracket defined by

[am, bn] = mδm,−n(a|b)K, a, b ∈ H, m, n ∈ Z.

The symmetric algebra Sym(H[s−1]s−1) is an irreducible highest weight representation for the Heisenberg Lie al-
gebra where the operators am with m < 0 act as multiplication operators, the action of an with (n ≥ 0) is uniquely
determined by the commutation relations in the Heisenberg Lie algebra and an1 := 0, and the central element K acts
by 1. The Fock space representation is extended to a representation on VΛ, such that,

aneβ = δn,0(a|β)eβ, n ≥ 0, a ∈ H.

A key structure in the lattice vertex algebra VΛ is the state-field correspondence: it is a map which to each vector
v ∈ VΛ, also called state, associates a formal series Y(v, ζ) := ∑n∈Z v(n)ζ−n−1 with coefficients v(n) ∈ End(VΛ).
The series Y(v, ζ) is also called a field which means that for each w ∈ VΛ, the Laurent series Y(v, ζ)w ∈ VΛ((ζ))

has a finite order pole at ζ = 0. The coefficients v(n) are also known as the modes of v. It is known that the state-field
correspondence for VΛ is uniquely determined by the definitions

Y(a−1, ζ) = ∑
n∈Z

anζ−n−1, a ∈ H (2.17)

Y(eα, ζ) = eαζα0 exp
(

∑
n<0

αn
ζ−n

−n

)
exp

(
∑
n>0

αn
ζ−n

−n

)
, (2.18)

where α ∈ Λ and ζα0 eβ = ζ(α|β)eβ, and the following Operator Product Expansion formula

Y(a(m)b, ζ) =
1
k!

∂k
ζ1

(
(ζ1 − ζ)m+1+kY(a, ζ1)Y(b, ζ)

)∣∣∣
ζ1=ζ

, (2.19)

where k is chosen so big that the the product of the fields Y(a, ζ1) and Y(b, ζ) has a pole along ζ1 = ζ of order at
most m + k + 1.

Remark 2.54 If the vertex algebra comes from a quantum field theory in the sense of Wightman, then the composition
of any two fields Y(a, ζ1)Y(b, ζ2)c is a symmetric (with respect to permutations of the pairs (a, ζ1) and (b, ζ2))
meromorphic function in (ζ1, ζ2) ∈ D2 with a finite order pole along the diagonal ζ1 = ζ2. In the mathematical
reformulation of Wightman’s theory, the fields Y(a, ζ) are expanded into Laurent series at ζ = 0 and the finite order
pole condition is replaced with locality: that is there exists N > 0, such that, (ζ1 − ζ2)

N [Y(a, ζ1), Y(b, ζ2)] = 0.

Let us recall yet another Fock space associated to the Frobenius manifold which is part of the so-called Givental’
quantization formalism (see [20]). Let H := H((z−1)) be the symplectic loop space of Givental, that is, the vector
space of formal Laurent series in z with coefficients in H equipped with the symplectic pairing

Ω( f (z), g(z)) = Resz=0( f (−z), g(z))dz,
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where the residue is interpreted formally as the coefficient in front of dz/z. The symplectic vector space has a natural
polzarization H = H+ ⊕H− where H+ = H[z] and H− = H[[z−1]]z−1 are Lagrangian vector subspaces. Let us
introduce the Fock space

ÔH+ ,−z := Ch̄[[q0, q1 + e, q2, . . . ]],

where Ch̄ = C((h̄)) (h̄ is a formal variable), qk = (qk,1, . . . , qk,N) are formal vector variables, and q1 + e = (q1,1 +

1, q1,2, . . . , q1,N) is the so-called dilaton shift. We think secretly of the Fock space as the completion of the space of
germs of holomorphic functions on H+ at the point −ez. The Fock space is a representation of the Heisenberg Lie
algebra H[z, z−1]⊕ C with Lie bracket

[ f (z), g(z)] = Ω( f (z), g(z)), f (z), g(z) ∈ H[z, z−1].

More precisely, let ϕi (1 ≤ i ≤ N) be the basis of H dual to {ϕi} (1 ≤ i ≤ N). The representation of the Heisenberg
Lie algebra is given by the following quantization rules:

ϕi(−z)−k−1 7→ (ϕi(−z)−k−1)̂:= qk,i/
√

h̄, ϕizk 7→ (ϕizk)̂:= −
√

h̄
∂

∂qk,i
.

Following Bakalov–Milanov (see [9]), we would like to define a representation of VΛ on ÔH+ ,−z, that is, a state-field
correspondence YM

t (v, λ) which for each fixed v ∈ VΛ is a multi-valued analytic function in (t, λ) ∈ M × C \ discr
with values End(ÔH+ ,−z). There is a subtlety in the construction however. The fields Yt(v, λ) act only on a certain
subsapce of the Fock space consisting of the so-called tame series. To define the latter, let us introduce the notation

(q + ez)m := (q1,1 + 1)m1,1 ∏
(k,i) 6=(1,1)

qmk,i
k,i

where m = (mk,i) is a sequence of non-negative integers, such that, only finitely many of them are non-zero. A
monomial h̄g−1(q + e)m is said to be tame if

∑
k,i

kmk,i ≤ 3g − 3 + ∑
k,i

mk,i.

The subspace of the Fock space ÔH+ ,−z consisting of formal power series involving only tame monomials is denoted
by Ôtame

H+ ,−z. Note that the vertex operators

Γα(t, λ) := exp
( ∞

∑
k=0

n

∑
i=1

(I(−k−1)
α (t, λ), ϕi)

qk,i√
h̄

)
exp

( ∞

∑
k=0

n

∑
i=1

(−1)k+1(I(k)α (t, λ), ϕi)
√

h̄
∂

∂qk,i

)
act on elements of the tame Fock space Ôtame

H+ ,−z and produce formal power series in q + e whose coefficients are
formal Laurent series in

√
h̄ whose coefficients are multi-valued analytic functions on M × C \ discr. The state-field

correspondence for the representation of VΛ is defined by Yt(1, λ) := 1,

Yt(a−1, λ) =
∞

∑
k=0

N

∑
i=1

(−1)k+1(I(k+1)
a (t, λ), ϕi)

√
h̄

∂

∂qk,i
+

∞

∑
k=0

N

∑
i=1

(I(−k)
a (t, λ), ϕi)

qk,i√
h̄

,



Chapter 2. Background 36
and

Yt(eα, λ) = bα(t, λ)Γα(t, λ),

where 1 = 1 ⊗ e0 is the vacuum of VΛ, a ∈ H, and α ∈ Λ. The scalar-valued functions bα(t, λ) should be chosen
appropriately so that certain locality and conformal invariance properties hold. Their precise value would not be
important to us. The remarkable fact discovered by Bakalov–Milanov (see [9], Proposition 3.2) is that the Operator
Product Expansion formula given in the form (2.19) remains the same for the representation. In other words, the states
of VΛ should be represented by fields such that

Yt(a(m)b, λ) =
1
k!

∂k
λ1

(
(λ1 − λ)m+1+kYt(a, λ1)Yt(b, λ)

)∣∣∣
λ1=λ

, (2.20)

where again k should be chosen sufficiently large so that the pole of the composition of the two fields at λ1 = λ is
canceled. It is clear that the OPE formulas (2.20) determines uniquely the state field correspondence Yt( , λ) from the
fields that we already defined. Moreover, the resulting fields Yt(a, λ) act on tame elements and produce formal power
series in q + e whose coefficients are Laurent series in

√
h̄ whose coefficients are multi-valued analytic functions on

M × C \ discr.
The relation to integrable systems is the following. Suppose that we can find an element ω ∈ VΛ ⊗ VΛ, such that,

(eα
(0) ⊗ 1 + 1 ⊗ eα

(0))ω = 0, ∀α ∈ R (2.21)

where R ⊂ Λ denotes the set of reflection vectors and eα
(0) are the 0-modes of eα. Then we would like to consider

the set of all elements A(h̄, q) of the tame Fock space satisfying the condition that Yt(ω, λ)A(h̄, q′)A(h̄, q′′) is
regular in λ, that is, the expansion into a formal power series in q′ + e and q′′ + e yields a formal power series whose
coefficients are formal Laurent series in

√
h̄ whose coefficients are polynomials in λ. The polynomiality condition

means that all coefficients in front of negative powers of λ, in the Laurent series expansion near λ = ∞, must vanish.
This is equivalent to an infinite system of quadratic equations for the coefficients of A(h̄, q) which we expect to be
equivalent to an integrable hierarchy of Hirota Quadratic Equations. Moreover, the higher genus reconstruction of
Givental, yields the so-called total ancestor potential of the Frobenius manifold. One can prove that the total ancestor
potential is a solution to the Hirota Quadratic Equations.

The problem is whether a state ω satisfying the equations (2.21) exists. The answer is known to be positive only
for the root lattices of type ADE. If Λ is a root lattice of type ADE and R is the corresponding root system, then the
Casimir operator

ω := ∑
α∈R

eα ⊗ e−α +
1
2

N

∑
i=1

(ais−1)⊗ (bis−1),

satisfies the equations (2.21), where {ai}N
i=1 and {bi}N

i=1 are bases of H dual with respect to the intersection pairing
( | ). The corresponding Hirota Quadratic Equations can be identified with a Kac–Wakimoto hierarchy – see [22, 18].

In order to motivate the problem in the current thesis. Let us suppose that we know how to find an element
ω satisfying (2.21). The next step would be to investigate the Hirota Quadratic equations defined by the bi-linear
operator Yt(ω, λ). The question then is: are there explicit formulas for the period vectors I(n)α (t, λ) when α ∈ Λ? In
fact, we have an obvious relation I(n+1)

α (t, λ) = ∂λ I(n)α (t, λ), so in some sense it is sufficient to find such formulas
for one of the periods. There is a further simplification which comes from the fact that the Hirota Quadratic Equations
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can be conjugated by the calibration S(t, z) which has the following effect

Yt(ω, λ) (Ŝ ⊗ Ŝ) = (Ŝ ⊗ Ŝ) Ỹ(ω, λ),

where Ŝ means the quantized action of the calibration on the Fock space in the sense of Givental (see [20]) and Ỹ( , λ)

is the state-field correspondence defined in the same way as Yt( , λ) except that instead of the periods I(n)α (t, λ) we
use the calibrated periods Ĩ(n)α (λ) defined in Proposition 2.46. The calibrated periods are given by explicit formulas
as long as we know α, that is, for the applications to integrable systems we need to know how the reflection lattice
Λ is embedded into the space H of flat vector fields. In the case of quantum cohomology there is a nice conjectural
answer which can be worked out from the work of Iritani. Our expectation is that a similar answer should be available
in singularity theory as well. Form the results of this thesis one can easily formulate a conjecture for all weighted-
homogeneous singularities corresponding to the so-called invertible polynomials. It would be interesting to generalize
our work to all weighted-homogeneous singularities. This however seems to require new ideas.

2.5 Weighted Homogeneous Singularities

A polynomial f = f (x1, . . . , xn) ∈ C[x1, . . . , xn] is called a weighted homogeneous polynomial if there are positive
integers w1, . . . , wn and d such that f (λw1 x1, . . . , λwn xn) = λd f (x1, . . . , xn) for all λ ∈ C∗.

Definition 2.55 A polynomial f ∈ C[x1, . . . , xn] is called invertible if the following conditions are satisfied.

• The number of variables coincides with the number of monomials in f :

f (x1, . . . , xn) =
n

∑
i=1

ci

n

∏
j=1

x
Eij
j

for some coefficients ci ∈ C∗ and non-negative integers Eij for i, j = 1, . . . , n.

• The weights qi of xi are uniquely determined by the condition that f has weighted degree 1. We can write the
qi as

qi =
wi
d

with gcd(d, w1, . . . , wn) = 1,

which is equivalent to the condition that the matrix E := (Eij) is invertible over Q.

The fact that a polynomial f is invertible implies that f is weighted homogeneous.
A weighted homogeneous polynomial f is called non-degenerate if it has at most an isolated critical point at the

origin in Cn, i.e., the system of equations { ∂ f
∂xi

= 0} has a unique solution at the origin. Let f ∈ C[x1, . . . , xn] be a
non-degenerated, weighted homogeneous polynomial. We define its maximal group of diagonal symmetries to be

G f = {(λ1, . . . , λn) ∈ (C∗)n| f (λ1x1, . . . , λnxn) = f (x1, . . . , xn)} .

In such a polynomial the ci can be absorbed by rescaling the variables, so we will always assume from now on that
ci = 1.
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The Jacobian ideal Jac( f ) of a non-degenerate polynomial f ∈ C[x1, . . . , xn] is the ideal generated by the partial

derivatives:
Jac( f ) :=

(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
and the Milnor ring H f (also called the local algebra) is H f := C[x1, . . . , xn]/ Jac( f ).

We also introduce the following complex vector space Ω f . Let Ωp(Cn) be the complex vector space of holomor-
phic p-forms of Cn. Consider the complex vector space

Ω f := Ωn(Cn)/d f ∧ Ωn−1(Cn).

Note that Ω f is naturally a free H f -module of rank one, namely, by using the standard volume form dx := dx1 ∧
dx2 ∧ · · · ∧ dxn we have the following isomorphism

H f
∼=→ Ω f , [ϕ(x)] 7→ [ϕ(x)dx].

One can define the weighted degree of monomials xk := xk1
1 . . . xkn

n and monomial volume form xkdx :=
xk1

1 . . . xkn
n dx1 ∧ · · · ∧ dxn in the following way.

wt(xk) =
n

∑
i=1

kiqi, wt(xkdx) =
n

∑
i=1

(ki + 1)qi.

Proposition 2.56 (cf. [23]). Define a C-bilinear form K(0)
f : Ω f × Ω f → C by

K(0)
f ([ϕ1(x)dx], [ϕ2(x)dx]) := Resx=0

ϕ1(x)ϕ2(x)dx
∂ f
∂x1

∂ f
∂x2

. . . ∂ f
∂xn

=
1

(2π
√
−1)n

∫
γϵ

ϕ1(x)ϕ2(x)dx
∂ f
∂x1

∂ f
∂x2

. . . ∂ f
∂xn

,

where γϵ is a sufficiently small cycle around the unique critical point x = 0 defined by | ∂ f
∂x1

| = · · · = | ∂ f
∂xn

| = ϵ.

Then, the bilinear form K(0)
f on Ω f is non-degenerate. We call it residue pairing on Ω f .

Let us denote by ( , ) the residue pairing on H f corresponding to the standard volume form dx, that is,

([ϕ1(x)], [ϕ2(x)]) := Resx=0
ϕ1(x)ϕ2(x)dx
∂ f
∂x1

∂ f
∂x2

. . . ∂ f
∂xn

, ϕ1, ϕ2 ∈ C[x1, . . . , xn].

The Milnor ring is a finite-dimensional C-vector space, graded by the weighted degree of the monomials. The
subspaces of highest weighted degree is one-dimensional, spanned by the Hessian determinant hess( f ), and has
weighted degree equal to the central charge

D =
n

∑
i=1

(1 − 2qi).

Let θ : Ω f → Ω f (resp. θ : H f → H f ) be a linear operator defined by

θ(ϕ(x)dx) :=
(n

2
− wt(ϕ(x)dx)

)
ϕ(x)dx
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and

θ(ϕ(x)) :=
(

D
2
− wt(ϕ(x))

)
ϕ(x)

where ϕ(x) is a weighted homogeneous polynomial.
The residue pairing ( , ) makes H fn into a Frobenius algebra; that is, for every a, b, c ∈ H fn we have

(a · b, c) = (a, b · c).

The residue pairing in H fn can be computed as

(a, b) = µ
ab

hess( f )
, (2.22)

by which we mean
ab = µ−1 hess( f )(a, b) + lower-degree terms,

where µ is the dimension of the vector space H f .

2.5.1 Opposite subspaces

Motivated by the miniversal deformation of the singularity, we introduce twisted de Rham cohomology and higher-
residue pairing. First, we define twisted de Rham complexes(

Ω•(Cn)[[w]]w−k, d f

)
, k ∈ Z

and (
Ω•(Cn)((w)), d f

)
,

where the differential d f := wd + d f∧. One may prove that the cohomologies of these complexes are concentrated
in degree n + 1. Therefore, let us introduce the following twisted de Rham cohomology groups:

Ĥ(k)
f := Hn

(
Ω•(Cn)[[w]]w−k, d f

)
= Ωn(Cn)[[w]]w−k/(wd + d f∧)Ωn−1(Cn)[[w]]w−k

and
Ĥ f := Hn

(
Ω•(Cn)((w)), d f

)
= Ωn(Cn)((w))/(wd + d f∧)Ωn−1(Cn)((w)).

Let us introduce the following involution ∗ on p ∈ C((w)):

p = ∑
k∈Z

pkwk 7→ p∗ := ∑
k∈Z

pk(−w)k.

A C-bilinear pairing
K f : Ĥ f × Ĥ f → C((w))

is said to be a higher residue pairing if the following properties are satisfied:

1. For all ω1, ω2 ∈ Ĥ f ,
K f (ω1, ω2) = (−1)nK f (ω2, ω1)

∗.
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2. For all p ∈ C((w)) and for all ω1, ω2 ∈ Ĥ f ,

pK f (ω1, ω2) = K f (pω1, ω2) = k f (ω1, p∗ω2).

3. If ω1, ω2 ∈ Ĥ(0)
f , then

K f (ω1, ω2) ∈ C[[w]]wn

and the following diagram is commutative

Ĥ(0)
f × Ĥ(0)

f C[[w]]wn

Ω f × Ω f C

K f

r(0) × r(0) mod C[[w]]wn+1

K(0)
f

where r(0) : Ĥ(0)
f → Ĥ(0)

f /wĤ(0)
f = Ω f is the natural quotient map.

4. The following version of the Leibnitz rule holds:

∂wK f (ω1, ω2) = K f (∇∂/∂w(ω1), ω2)− K f (ω1,∇∂/∂w(ω2)),

for all ω1, ω2 ∈ Ĥ f .

A theorem says that such higher residue pairing exists. We have the following formal power series

K f (ω1, ω2) :=
∞

∑
p=0

K(p)
f (ω1, ω2)wp+n,

for all ω1, ω2 ∈ Ĥ(0)
f .

Definition 2.57 A subspace P ⊂ Ĥ f is said to be a homogeneous opposite subspace if

1. P is Lagrangian with respect to

Ω(ϕ1, ϕ2) := Resw=0 K f (ϕ1, ϕ2)w−ndw

2. Ĥ f = Ĥ(0)
f ⊕ P

3. w−1P ⊂ P

4. (homogeneity) w∇∂/∂w(P) ⊂ P

Proposition 2.58 If P is a homogeneous opposite subspace, then

1. The quotient map r(0)

Ĥ(0)
f → Ĥ(0)

f /wĤ(0)
f = Ω f



Chapter 2. Background 41
induces an isomorphism

Ĥ(0)
f ∩ wP

∼=→ Ω f .

Let
σ : Ω f → Ĥ(0)

f ∩ wP ⊂ Ĥ(0)
f

be the corresponding inverse.

2. K(p)
f (ϕ1, ϕ2) = 0 for all p > 0, ϕ1, ϕ2 ∈ Ĥ(0)

f ∩ wP.

Proof 1. First, let us prove that the map is injective. Suppose that ϕ ∈ Ĥ(0)
f ∩ wP is mapped to 0 in Ω f , that is,

ϕ ∈ wĤ(0)
f . It follows that ϕ ∈ w

(
Ĥ(0)

f ∩ P
)
= 0. For the surjectivity, we need to prove that for a given

ϕ ∈ Ĥ(0)
f there exists ψ ∈ Ĥ(0)

f , such that, ϕ + wψ ∈ Ĥ(0)
f ∩ wP . Using condition (2) from the definition of

an opposite subspace (see Definition 2.57), we get that w−1ϕ = ψ1 + ψ2, for some ψ1 ∈ Ĥ(0)
f and ψ2 ∈ P.

Note that ψ = −ψ1 has the required property.

2. Suppose that ϕ1, ϕ2 ∈ Ĥ(0)
f ∩ wP. Note that

K(p)
f (ϕ1, ϕ2) = −Resw=0 K(p)

f (w−pϕ1, w−1ϕ2)w−ndw = −Ω(w−pϕ1, w−1ϕ2).

Since ϕ1, ϕ2 ∈ wP and w−1P ⊂ P, we get w−lϕ1 ∈ P and w−1ϕ2 ∈ P. The vanishing claim follows from the
fact that P is a Lagrangian subspace. 2

Remark 2.59 A basis of Ĥ(0)
f ∩ wP is usually called a good basis of Ĥ(0)

f , i.e., if ω1, . . . , ωµ ⊂ Ĥ(0)
f ∩ wP is a

basis, then

Ĥ(0)
f =

µ⊕
i=1

C[[w]]ωi, P =
µ⊕

i=1

C[w−1]w−1ωi.

2.5.2 Steenbrink’s Hodge filtration

Using the Hodge structure on Hn−1( f−1(1), C) we will prove the existence of a homogeneous opposite subspace.
Let us define the following complex vector bundle

⋃
λ∈C∗

Hn−1( f−1(λ), C) → C∗

with fiber Hn−1( f−1(λ), C). The complex vector bundle is called vanishing cohomology bundle and denoted by
Hn−1.

Put h := Hn−1( f−1(1), C) for the fiber of Hn−1 at λ = 1. Parallel transport along the unit circle |λ| = 1 in
counter clockwise direction defines a linear operator M ∈ End(h) which we called the classical monodromy operator.
A linear operator N with eigenvalues in (−1, 0] can be defined by M = e−2πiN .

Remark 2.60 (cf. Lemma 9.4 of [38])We have homoemorphism between fibers f−1(λ) and f−1(λ · eiθ) given by

f−1(λ) 3 x = (x1, . . . , xn) 7→ (eiθq1 x1, . . . , eiθqn xn).
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Recall that weighted homogeneity

eiθ f (x1, . . . , xn) = f (eiθq1 x1, . . . , eiθqn xn).

We can define a global section of Hn−1 which will be called elementary section. If A ∈ h, then

λN A ∈ Hn−1( f−1(λ); C) ∼= h,

is a global section. This is due to the fact that if we analytic continuate λ around λ = 0:

λN A 7→ λN e2πiN M(A) = λN A.

Given a holomorphic form ω ∈ Ωn(Cn) let us recall the so-called geometric sections of the vanishing cohomology
bundle

s(ω, λ) :=
∫

ω

d f
∈ Hn−1( f−1(λ); C),

where ω/d f denotes a holomorphic n − 1-form η defined in a tubular neighborhood of f−1(λ), such that, ω =

d f ∧ η. The choice of η is not unique, but its restriction to f−1(λ) is uniquely determined. Note that if ω = xkdx,
then

s(ω, λ) = λwt(ω)−1s(ω, 1), (2.23)

since ∫
ω

d f
=
∫

x∈ f−1(λ)

xkdx
d f (x)

= λwt(ω)−1
∫

y∈ f−1(1)

ykdy
d f (y)

where xi = λqi yi.
Let us recall the following defintion

Definition 2.61 Suppose that H is a complex vector space equipped with a real structure HR. A Polarized Hodge

Structure on H of weight r is the data of a decreasing filtration Fp(p ∈ Z) of H

Fp = 0 for p � 0, Fp+1 ⊆ Fp, Fp = H for p � 0

and a real (−1)r-symmetric form S, that is, S(x, y) = (−1)rS(y, x), such that,

1. H = Fp ⊕ Fr−p+1 for all p ∈ Z,

2. S(Fp, Fr−p+1) = 0, for all p,

3. ir
2+2r−2pS(x, x) > 0 for all x ∈ Fp ∩ Fr−p \ {0}.

Proposition 2.62 We define the following vector subspace for p ∈ Z

Fph := {A ∈ h|∃ω = ∑
i

ωi, ωi are weighted-homogeneous forms such that A = s(ω, 1) and wt(ωi) ≤ n− p}.

Then
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1. Fph ⊆ Fp−1h, i.e., it is a decreasing filtration.

2. The filtration Fph is M-invariant.

Proof 1. If A = s(ω, 1) for ω weighted homogeneous, we define the form

ω̃ = d f ∧ d−1ω,

where d−1ω denotes any homogeneous form η such that dη = ω. Then

s(ω̃, λ) =
∫

d−1ω.

Take partial derivative with respect to λ,

∂λs(ω̃, λ) = ∇∂/∂λ

∫
d−1ω =

∫
ω

d f
= s(ω, λ).

It is easy to see that ω̃ is homogeneous form of weight wt(ω) + 1. According to (2.23),

s(ω̃, λ) = λwt(ω̃)−1s(ω̃, 1) = λwt(ω)s(ω̃, 1)

Then,
λwt(ω)−1s(ω, 1) = s(ω, λ) = ∂λ

(
λwt(ω)s(ω̃, 1)

)
= wt(ω)λwt(ω)−1s(ω̃, 1).

To get A, we put λ = 1:
A = s(ω, 1) = wt(ω)s(ω̃, 1)

If A ∈ Fph, then wt(ω) ⩽ n − p. Therefore, wt(ω̃) ⩽ n − (p − 1), which implies A ∈ Fp−1h.

2. Let A = s(ω, 1) and ω = ∑i ωi where ωi are weighted homogeneous form of weight smaller or equal than
n − p. Denote Ai := s(ωi, 1) ∈ Fph. Analytic continuation around λ = 0 along |λ| = 1 yields

M(Ai) = e−2πi wt(ωi)Ai.

According to the definition of A, Ai, we have A = ∑i Ai. Thus,

Fph =
⊕
s∈S

Fph∩ hs,

where hs := Ker(M − s id) and S denotes the set o fcomplex numbers with absolute value 1. 2

From the proof of 2. of 2.62, we define Fphs = Fph∩ hs. We have

0 = Fnhs ⊆ Fn−1hs ⊆ · · · ⊆ F0hs = hs

where s ∈ S.
Furthermore, denote h 6=1 :=

⊕
s 6=1 hs. For h, we have

h = Hn−1( f−1(1), C) ⊃ Hn−1( f−1(1), R) =: hR,
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where hR is real structure. Recall Definition 2.61, we can find that {Fph 6=1}p∈Z is a Hodge filtration of weight n − 1,
i.e., h 6=1 = Fph 6=1 ⊕ Fn−ph 6=1. While, {Fph1}p∈Z is a Hodge filtration of weight n, i.e., h1 = Fph1 ⊕ Fn−p+1h1.

Let us define Polarizing form S as follows,

S : hZ × hZ → Z

S(A, B) :=

(−1)
(n−1)(n−2)

2 L(A, (M − id)−1B) if A, B ∈ h 6=1

−(−1)
(n−1)(n−2)

2 L(A, B) if A, B ∈ h1

where L is the Seifert form.
For the above two filtrations (restricted to hZ) and Polarizing form we have the following conclusion, S(Fph 6=1, Fn−ph 6=1) =

0 and S(Fph1, Fn−p+1h1) = 0for all p ∈ Z, equivalently,

S(Fph 6=1, Fqh 6=1) = 0 if p + q ⩾ n

and
S(Fph1, Fqh1) = 0 if p + q ⩾ n + 1.

Remark 2.63 If ω = xkdx is homogeneous, then

S(ω, 1) ∈ Fn+1−dwt(ω)eh

where dae is the ceiling of a, i.e., the smallest integer that is bigger or equal than a.

Definition 2.64 An increasing filtration {Uph}p∈Z, (i.e. Uph ⊂ Up+1h) is said to be an opposite filtration to {Fph}
if

1. Uph is M-invariant and we have similar decomposition:

Uph =
⊕
s∈S

Uphs,

where Uphs := Uph∩ hs.

2. The filtration is finite:

Uph =

0 for p � 0

h for p � 0
.

3. We have h =
⊕

p∈Z Fph∩ Uph.

4. S(Uph 6=1, Uqh 6=1) = 0 if p + q < n − 1.
S(Uph1, Uqh1) = 0 if p + q < n.

Note that Uph 6=1 := Fn−1−ph 6=1 and Uph1 := Fn−ph1 is an opposite filtration.
The idea to use opposite filtrations to construct opposite subspaces is due to M. Saito [44] (see also [24], Theorem

7.16).
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2.5.3 Opposite filtrations and opposite subspaces

Let us recall the twisted de Rham cohomology groups Ĥ f , Ĥ(0)
f equipped with the higher residue pairing K f . We are

going to construct an embedding
ψ : Hn( f−1(1), C) → Ĥ(0)

f .

If A ∈ Fph, then there is ω = ∑i ωi such that A = s(ω, 1), where ωi is weighted homogeneous and wt(ωi) ⩽ n− p.
Then ψ is defined by

ψ(A) = ∑
i
(−w)n−dwt(ωi)e[ωi].

Proposition 2.65 The higher residue pairing K(m)
f (ψ(A1), ψ(A2)) could be non-zero only if A1, A2 ∈ h 6=1 and

m = n, or A1, A2 ∈ h1 and m = n + 1. The following formula holds:

K(m)
f (ψ(A1), ψ(A2)) =

1
(2πi)m S(A1, A2),

where m = n in the first case and m = n + 1 in the second case.

Proposition 2.66 If Uph(p ∈ Z) is an opposite filtration, then the subspace

P := SpanC{ψ(A)w−p−k−1|p ∈ Z, A ∈ Fph∩ Uph, k ⩾ 0}

is a homogeneous opposite subspace.

To construct a good basis Remark 2.59, let Ai ∈ Fpih ∩ Upih, (1 ⩽ i ⩽ µ) be a basis of h. One may assume
that Ai are eigenvectors of M:

M(Ai) = e−2πiαi Ai, −1 < αi ⩽ 0.

Then the embedding ψ yields
ψ(Ai) = (−w)pi [ωi]

where ωi is a homogeneous form of weight n − pi + αi. Thus, we can say that the cohomology classes [ωi], (1 ⩽
i ⩽ µ) form a good basis of Ĥ(0)

f ∩ wP.
We want to define the linear map

Π : Hn−1( f−1(1), C) → Ω f
∼= H f

by

K(0)
f

(
1

Γ(θ + l + 1
2 )

Π(γ), ϕ

)
:=

1
(2π)l

∫
γ

ω

d f

where γ ∈ Hn−1( f−1(1), C), ϕ ∈ Ω f and ω ∈ Ωn(Cn) is a holomorphic form satisfying:

1. [ω] ∈ Ĥ(0)
f ∩ wP.

2. [[ω]] = ϕ.
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Chapter 3

ADE singularity

3.1 Introduction

3.1.1 Simple singularities

Let us give a precise statement of the problem that we want to solve. Let f (x1, x2, x3) = g(x1, x2) + x2
3, where g is

one of the polynomials listed in the following table:

Type AN DN E6 E7 E8

g xN+1
1 + x2

2 x2
1x2 + xN−1

2 x3
1 + x4

2 x3
1 + x1x3

2 x3
1 + x5

2

The polynomial f represents the germ of a simple singularity at x = 0. Let H f := C[x1, x2, x3]/( fx1 , fx2 , fx3) be the
Milnor ring of f , where fxi := ∂ f

∂xi
. Let us denote by ( , ) the residue pairing on H f corresponding to the standard

volume form ω = dx1 ∧ dx2 ∧ dx3, that is,

(ϕ1(x), ϕ2(x)) := Resx=0
ϕ1(x)ϕ2(x)ω

fx1 fx2 fx3

.

The hypersurfaces Vλ = {x ∈ C3 | f (x) = λ} for λ 6= 0 are non-singular and their union has a structure of a
smooth fibration on C \ {0} known as the Milnor fibration. Let us fix a reference point λ = 1 and consider the middle
homology group H2(V1; Z), known also as the Milnor lattice. Our interest is in the period vectors I(−1)

α (λ) ∈ H f

defined by

(I(−1)
α (λ), ϕi) :=

1
2π

∫
αλ

ϕi(x)
ω

d f
,

where α ∈ H2(V1; C), ϕi(x) (1 ≤ i ≤ N) is a set of polynomials representing a basis of H f , αλ ∈ H2(Vλ; C) is
obtained from α via a parallel transport along some reference path, and ω

d f is the so-called Gelfand–Leray form (see

[3]). Alternatively, we can view each period vector as a multivalued analytic function I(−1)
α : C \ {0} → H f .

Let us assign degree ci ∈ Q>0 to xi (1 ≤ i ≤ 3), such that, the polynomial f has degree 1. Then the Milnor ring
becomes a graded ring. The highest possible degree of a homogeneous element in H f is D = ∑3

i=1(1− 2ci) = 1− 2
h ,

where h is the Coxeter number of the corresponding root system. Put θ := D
2 − deg, where deg : H f → H f is the

linear operator uniquely determined by the following condition: if ϕ is a weighted homogeneous element of degree d,
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then deg(ϕ) = dϕ. For homogeneity reasons, the period vectors have the form

I(−1)
α (λ) =

λθ+1/2

Γ(θ + 3/2)
Ψ(α), (3.1)

where Ψ : H2(V1; C) → H f is a linear isomorphism. Our goal is to compute the image of the Milnor lattice
H2(V1; Z) via the map Ψ. The solution to this problem is given in Section 4.2. Explicit formulas for the image of
the Milnor lattice via the map Ψ are given in Sections 3.2.3–3.2.7. The main feature of our answer is that it involves
various Γ-constants and roots of unity. The second goal of this thesis is to show that although the formulas look
cumbersome, in fact there is an interesting structure behind them.

3.1.2 K-theoretic interpretation of the Milnor lattice

The polynomials f corresponding to a simple singularity are invertible polynomials in the sense of [10] (see also [31]).
Each polynomial is uniquely determined by a 3 × 3 matrix A = (aij)1≤i,j≤3 with non-negative integer coefficients,
such that,

f (x) =
3

∑
i=1

xai1
1 xai2

2 xai3
3 .

Following Fan–Jarvis–Ruan (see [16]) we consider also the Berglund–Hübsch dual polynomial

f T(x) =
3

∑
i=1

xa1i
1 xa2i

2 xa3i
3 .

Let GT be the group of diagonal symmetries of f T , that is,

GT := {t ∈ (C∗)3 | ta1i
1 ta2i

2 ta3i
3 = 1 ∀i}.

Let aij (1 ≤ i, j ≤ 3) be the entries of the inverse matrix A−1. The group GT is generated by the following elements

ρi = (e2πiai1
, e2πiai2

, e2πiai3
), 1 ≤ i ≤ 3.

Finally, let VT
1 = {x ∈ C3 | f T(x) = 1}. Our main interest is in the topological relative K-theoretic orbifold group

K0
orb([C

3/GT ], [VT
1 /GT ]) := K0

GT (C
3, VT

1 ).

In general, there is no satisfactory definition of K-theory for non-compact spaces. However, in our case the pair
(C3, VT

1 ) is GT-equivariantly homotopic to a pair of finite CW complexes, so we may think of (C3, VT
1 ) as a GT-

equivariant pair of finite CW-complexes. We refer to [46] for some background on equivariant topological K-theory.
Motivated by Iritani’s Γ-integral structure in quantum cohomology (see [27]), we will now construct a linear map

chΓ : K0
orb([C

3/GT ], [VT
1 /GT ])⊗ C // Horb([C

3/GT ], [VT
1 /GT ]; C) , (3.2)
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which is a certain Γ-class modification of the orbifold Chern character map. For a GT-equivariant space X and g ∈ GT ,
let us denote by Fixg(X) := {x ∈ X | gx = x} the set of fixed points. The elements in the relative K-group will be

identified with isomorphism classes [E → F] of two-term complexes E d // F of GT-equivariant vector bundles,
such that, the differential d is a morphism of GT-equivariant vector bundles and d|VT

1
: EVT

1
→ FVT

1
is an isomorphism.

Note that for g ∈ GT , the restriction of a vector bundle E|Fixg(C3) decomposes as a direct sum of eigen-subbundles

Eζ and that the restriction to Fixg(C3) of every two term complex E d // F decomposes as a direct sum of two

term subcomplexes Eζ

dζ // Fζ , where dζ = d|Eζ
. We have the following well known decomposition (e.g. see [8],

Theorem 2):

Tr : K0
GT (C

3, VT
1 )⊗ C

∼= // ⊕
g∈GT

[
K0(Fixg(C3), Fixg(VT

1 ))⊗ C
]GT

,

where [ ]G
T

denotes the GT-invariant part and the morphism Tr is defined by

Tr([E → F]) =
⊕

g∈GT

⊕
ζ∈C∗

ζ[Eζ → Fζ ].

Remark 3.1 The above decomposition is proved in [8] in the case of absolute K-theory. However, using the long
exact sequence of a pair, it is straightforward to extend the result to relative K-theory as well.

The standard Chern character map gives an isomorphism

ch : K0(Fixg(C3), Fixg(VT
1 ))⊗ C // Hev(Fixg(C3), Fixg(VT

1 ); C) .

Finally, if G is a finite group acting on a smooth manifold M, such that the quotient groupoid [M/G] is an effective
orbifold, then H∗(M/G; C) ∼= [H∗(M; C)]G. Indeed, for a finite group G the operation taking G-invariants is an
exact functor from the category of G-vector spaces to the category of vector spaces. Therefore

Hi(M/G; C) ∼= Hi([Γ(M,A∗
M)]G) = [Hi(M,A∗

M)]G ∼= [Hi(M; C)]G,

where A∗
M is the sheaf of smooth differential forms on M with complex coefficients, the first isomorphism is Satake’s

de Rham theorem for orbifolds (see [45]), and the last one is the de Rham’s theorem for the manifold M. Using the long
exact sequence of a pair, we get also that Hi(M/G, N/G; C) ∼= [Hi(M, N; C)]G for any G-invariant submanifold
N ⊂ M. On the other hand, by definition,

H∗
orb([C

3/GT ], [VT
1 /GT ]; k) =

⊕
g∈GT

H∗(Fixg(C
3)/GT , Fixg(VT

1 )/GT ; k), k = Q, R, C.

Therefore, the composition c̃h := ch ◦Tr defines a ring homomorphism

c̃h : K0
orb([C

3/GT ], [VT
1 /GT ])⊗ C // Hev

orb([C
3/GT ], [VT

1 /GT ]; C)

which is the orbifold version of the Chern character map. Clearly c̃h is an isomorphism over C.
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Remark 3.2 Orbifold cohomology H∗

orb has two natural gradings – standard topological degree grading coming from
the topological space underlying the orbit space and Chen–Ruan grading. In this thesis we work with the topological
grading and the topological cup product.

Let us recall also the definition of the Γ-class. If E ∈ K0
orb([C

3/GT ]) := K0
GT (C

3) is an orbifold vector bundle and
Tr(E) = ∑g ∑ζ ζEζ , then each eigenvalue ζ = e2πiα, where 0 ≤ α < 1 is a rational number and we define

Γ̂(E) = ∑
g

∏
ζ=e2πiα

rk(Eζ )

∏
i=1

Γ(1 − α + δζ,i) ∈ Hev
orb([C

3/GT ]),

where δζ,i (1 ≤ i ≤ rk(Eζ)) are the Chern roots of the vector bundle Eζ . If E = [TC3/GT ] is the orbifold tangent
bundle, then the Γ-class is denoted by Γ̂([C3/GT ]). The map (3.2) is defined by the following formula:

chΓ([E → F]) :=
1

2π
Γ̂([C3/GT ]) ∪ (2πi)degC ι∗c̃h([E → F]),

where degC(ϕ) = iϕ for ϕ ∈ H2i
orb([C

3/GT ], [VT
1 /GT ]; C) and ι∗ is an involution in orbifold cohomology that

exchanges the direct summands corresponding to g and g−1. Note that the definition of ι∗ makes sense because
Fixg = Fixg−1 .

Theorem 3.3 There exists a linear isomorphism

mir : H f // H∗
orb([C

3/GT ], [VT
1 /GT ]; C) ,

such that, the map

mir−1 ◦ chΓ : K0
orb([C

3/GT ], [VT
1 /GT ])

∼= // Ψ(H2( f−1(1); Z))

is an isomorphism of Abelian groups.

Unfortunately we do not have a conceptual definition of the map mir. Our definition is on a case by case basis. We
expect that H∗

orb([C
3/GT ], [VT

1 /GT ]; C) has a natural identification with the state space of FJRW-theory under which
mir is identified with the mirror map of Fan–Jarvis–Ruan (see [16]). Let us point out also that in all cases the following
two properties are satisfied:

1. If xm1
1 xm2

2 xm3
3 is a homogeneous monomial representing a vector in H f , then its image under mir is in the

twisted sector corresponding to g = ρ m1+1
1 ρ m2+1

2 ρ m3+1
3 .

2. The map mir is defined over Q, that is, mir provides an isomorphism

Q[x1, x2, x3]/( fx1 , fx2 , fx3)
∼= H∗

orb([C
3/GT ], [VT

1 /GT ]; Q).

3.2 Period map image of the Milnor lattice
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3.2.1 Suspension isomorphism in vanishing homology

We will reduce the problem of computing periods of the hypersurface Vλ to computing periods of the Riemann surfaces

Mµ := {(x1, x2) ∈ C2 | g(x1, x2) = µ}.

Consider the map Vλ → C, (x1, x2, x3) 7→ g(x1, x2). The fibers of this map are given by

Vλ,µ := Mµ × {−
√

λ − µ,
√

λ − µ}.

Suppose now that A ∈ H1(Mλ; Z) is any cycle. The following two maps

ϕ± : A × [0, 1] → Vλ, (x1, x2, t) 7→ (tc1 x1, tc2 x2,±
√

λ(1 − t))

have images that fit together and give a two-dimensional cycle α ∈ Vλ, that is, α = ΣA is the suspension of the
cycle A. It is known that the above suspension operation Σ : H1(Mλ; Z) → H2(Vλ; Z) is an isomorphism (see [3],
Theorem 2.9).

Note that we may choose the basis of H f to be such that ϕi = ϕi(x1, x2) does not depend on x3. Then the integral

1
2π

∫
αλ

ϕi
ω

d f
=

1
2π

∂λ

∫
αλ

d−1(ϕiω) =
1

2π
∂λ

∫
αλ

x3ϕi(x1, x2)dx1 ∧ dx2,

where in the first equality we used the Stoke’s theorem (see [3], Lemma 7.2). Using Fubini’s theorem (see [3], Lemma
7.2), we have

∫
αλ

x3ϕi(x1, x2)dx1 ∧ dx2 =
∫ λ

0
(λ − µ)1/2

∫
Aµ

ϕi(x1, x2)dx1dx2

dg
dµ −

∫ 0

λ
(−(λ − µ)1/2)

∫
Aµ

ϕi(x1, x2)dx1dx2

dg
dµ,

where the first integral represents integrating over ϕ+(A × [0, 1]), the second one over ϕ−(A × [0, 1]), and Aµ ∈
H1(Mµ) for µ = λt is obtained from A via the rescaling (x1, x2) 7→ (tc1 x1, tc2 x2). We get

1
2π

∫
αλ

ϕi
ω

d f
=

1
π

∂λ

∫ λ

0
(λ − µ)1/2

∫
Aµ

ϕi(x1, x2)dx1dx2

dg
dµ. (3.3)

The image of the Milnor lattice H2(V1; Z) will be computed with formula (3.3).

3.2.2 Simple singularities and root systems

Let us first recall several well known facts about simple singularities, which will be needed in our computation (see
[3], Theorem 3.14). The analytic continuation of I(−1)

α (λ) along a loop around λ = 0 yields I(−1)
σ(α)

(λ), where
σ : H2(V1; Z) → H2(V1; Z) is the so-called classical monodromy operator. Recalling the definition of Ψ (see
formula (3.1)), we get the following relation:

Ψ(σ(α)) = −e2πi θ Ψ(α), (3.4)
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where i :=

√
−1. In particular, knowing the image of one cycle α allows us to find the image of the entire σ-orbit of

α.
Let us define

(α|β) := λ(I(0)α (λ), I(0)β (λ)),

where I(0)α (λ) := ∂λ I(−1)
α (λ). It is straightforward to check that

(α|β) = 1
π
(Ψ(α), cos(πθ)Ψ(β)). (3.5)

It is known that (α|β) = −α ◦ β, where ◦ is the intersection pairing (see [22, 43]). In particular, the form ( | ) takes
integer values on the Milnor lattice.

Finally, let us also recall that we have the following remarkable facts (see [3], Theorem 3.14):

1. The set of vanishing cycles of the singularity f coincides with the set of all α ∈ H2(V1; Z) such that (α|α) = 2.

2. The triple (Milnor lattice, set of vanishing cycles, pairing ( | )) form a root system of the same type as the type
of the singularity f , that is, the set of vanishing cycles corresponds to the roots, the Milnor lattice corresponds
to the root lattice, and ( | ) corresponds to the invariant bilinear form.

3. The classical monodromy corresponds to a Coxeter transformation.

3.2.3 AN-singularity

Let us fix the following basis of H f :
ϕi = xi−1

1 , 1 ⩽ i ⩽ N.

The residue pairing takes the form

(ϕi, ϕj) =
1

4h
δi+j,h, 1 ⩽ i, j ⩽ N,

where h = N + 1 is the Coxeter number. The Riemann surface Mµ for µ 6= 0 is a non-singular curve in C2 defined
by the equation xN+1

1 + x2
2 = µ. The projection (x1, x2) 7→ x1 defines a degree 2 branched covering Mµ → C, with

branching points x1,k = µ
1

N+1 ηk
N+1 (k ∈ ZN+1), where ηN+1 := e2πi/(N+1) and ZN+1 := Z/(N + 1)Z.

Let us construct a basis of H1(Mµ; Z) ∼= ZN . Cycles on Mµ can be visualized easily via their projections on
the x1-plane C. Let Lk (k ∈ ZN+1) be the line segment [0, x1,k] (in the x1-plane). Let A′

k be a loop in the x1-plane
that starts at x1 = 0, it goes along the line segment Lk, just before hitting the branched point x1,k it makes a small
loop Ck counterclockwise around x1,k, it returns back to the starting point along the line segment Lk, and then the
loop continues to travel in a similar fashion along Lk+1 except that this time we make a small loop C−1

k+1 clockwise
around x1,k+1. In other words A′

k = L−1
k+1 ◦C−1

k+1 ◦ Lk+1 ◦ L−1
k ◦Ck ◦ Lk. Note that A′

k lifts to two loops Ak,a, a ∈ Z2

on Mµ, where the starting point of A′
k lifts to x2,k,a := µ

1
2 (−1)a. The cycles Ak,a satisfy the following relations

Ak,0 = −Ak,1 and ∑N
k=0 Ak,a = 0. Let us asume a ∈ Z2 \ {0} and k ∈ ZN+1 \ {0}, then we get N loops whose

homology classes, as we will see later on, represent a basis of H1(Mµ; Z).
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Let us compute the periods of the holomorphic forms

ϕi(x1, x2)
dx1dx2

dg
= −

xi−1
1 dx1

2x2

along the cycles Ak,a. The paths Lk and Ck can be parametrized as follows:

Lk : x1 = ηk
N+1µ

1
N+1 t

1
N+1 , 0 ⩽ t ⩽

(
1 − ϵ

µ
1

N+1

)N+1

,

Ck : x1 = ηk
N+1µ

1
N+1 + ϵeiθ 2k − N − 1

N + 1
π ⩽ θ ⩽ 2k + N + 1

N + 1
π.

The integrals along the lifts of Ck contribute to the period integral terms of order O(ϵ
1
2 ). These terms vanish in the

limit ϵ → 0. The periods that we want to compute are independent of ϵ for homotopy reasons. Therefore, by passing
to the limit ϵ → 0 we get

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
= (1 − (−1))(

∫
Lk,a

−
∫

Lk+1,a

)
−xi−1

1 dx1

2x2
= (

∫
Lk+1,a

−
∫

Lk,a

)
xi−1

1 dx1

x2
.

The integrals along Lk,a can be expressed in terms of Euler’s Beta function B(a, b) := Γ(a)Γ(b)
Γ(a+b) ,

∫
Lk,a

xi−1
1 dx1

x2
= (−1)a

∫ 1

0

ηki
N+1µ

i
N+1 t

i
N+1−1dt

(N + 1)µ
1
2 (1 − t)

1
2
= (−1)a ηki

N+1µ
i

N+1−
1
2

N + 1
B(

i
N + 1

,
1
2
).

Let αk,a = ΣAk,a be the suspension. Recalling formula (3.3) and using that

∫ λ

0
(λ − µ)1/2µadµ = λa+3/2B(a + 1, 3/2), (3.6)

we get

(I(−1)
αk,a (λ), ϕi) :=

1
2π

∫
αk,a

ϕi
ω

d f
=

1
π

∂λ

∫ λ

0
(λ − µ)

1
2

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
dµ

=(−1)a ηki
N+1(η

i
N+1 − 1)
2i

λ
i

N+1 .

Recalling the formulas for the residue pairing we get

I(−1)
αk,a (λ) = 4h

N

∑
i=1

(I(−1)
αk,a (λ), ϕh−i)ϕi.

By definition θ(ϕi) = ( 1
2 − i

N+1 )ϕi. Therefore, using (3.1), we get

Ψ(αk,a) = (−1)a2
N

∑
i=1

η−ki
N+1(η

−i
N+1 − 1)Γ(1 − i

N + 1
)ϕi (3.7)
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Let us point out that formula (3.4) yields the following formulas for the classical monodromy operator

σ(αk,a) = −αk+1,a+1 = αk+1,a k ∈ ZN+1, a ∈ Z2.

The intersection pairing takes the form

(αk,1|αl,1) =
1
π
(Ψ(αk,1), cos(πθ)Ψ(αl,1))

=
2
h

N

∑
i=1

η
(l−k)i
N+1 (1 − cos(

2iπ
h

)) = 2δk,l − δl−k,1 − δl−k,N ,

where k, l ∈ ZN+1 and the Kronecker delta is also on ZN+1. Note that (αk,1|αk,1) = 2, so αk,1 is a vanishing cycle.
The determinant of the intersection pairing in the basis {αk,1}, that is, the determinant of the matrix (αk,1|αl,1)

N
k,l=1 is

N + 1, which coincides with the determinant of the Cartan matrix of the simple Lie algebra of type AN . Therefore,
{αk,1} is a Z-basis of the root lattice, that is, H2(Vλ; Z) and hence their images Ψ(αk,1) (see formula (3.7)) give a
basis for the image of the Milnor lattice in H f .

3.2.4 DN-singularity

Let us fix the following basis of H f :

ϕi(x1, x2) =

xi−1
2 if 1 ≤ i ≤ N − 1,

2x1 if i = N.

The residue pairing takes the form

(ϕi, ϕj) =
1

2h
δi+j,N (1 ≤ i, j ≤ N − 1), (ϕi, ϕN) = −δi,N (1 ≤ i ≤ N),

where h = 2N − 2 is the Coxeter number. The Riemann surface Mµ for µ 6= 0 is a non-singular curve in C2 defined
by the equation x2

1x2 + xN−1
2 = µ. The projection (x1, x2) 7→ x2 defines a degree 2 branched covering Mµ → C∗,

with branching points x2,k = µ
1

N−1 η2k (1 ≤ k ≤ N − 1), where η = e2πi/h. Let A′
k be a simple loop in C∗ around

the line segment Lk := [0, x2,k], that is, A′
k is a loop starting at a point on the line segment Lk sufficiently close to 0,

it goes along the line segment Lk, just before hitting the branch point x2,k it makes a small loop Ck around it and it
returns back to the starting point along the line segment Lk, and finally it makes a small loop C0 around 0. Clearly, the
loop A′

k = C0 ◦ L−1
k ◦ Ck ◦ Lk lifts to a loop Ak in Mµ. Let us compute the periods of the holomorphic forms

ϕi(x1, x2)
dx1dx2

dg
=


xi−1

2 dx2
2x1x2

if 1 ≤ i ≤ N − 1,
dx2
x2

if i = N,



Chapter 3. ADE singularity 54
along the cycle Ak. If i = N, then the period integral is just 2πi. Suppose that 1 ≤ i ≤ N − 1. Let us parametrize
A′

k as follows:

C0 : x2 = ϵeiθ (0 ≤ θ ≤ 2π),

Lk : x2 = µ
1

N−1 η2k t (ϵµ
− 1

N−1 ≤ t ≤ 1 − ϵµ
− 1

N−1 ),

Ck : x2 = µ
1

N−1 η2k + ϵeiθ (0 ≤ θ ≤ 2π).

The integrals along the lifts of C0 and Ck contribute to the period integral terms of orders respectively O(ϵi−1/2) and
O(ϵ1/2). These terms vanish in the limit ϵ → 0. The two lifts of Lk, before and after going around the branch point
x2,k, have parametrizations, such that,

x2 = µ
1

N−1 η2k t, x1x2 =
√
(µ − xN−1

2 )x2 = ηkµ1/2+1/h(1 − tN−1)1/2t1/2

where t varies from 0 to 1, and

x2 = µ
1

N−1 η2k t, x1x2 = −
√
(µ − xN−1

2 )x2 = −ηkµ1/2+1/h(1 − tN−1)1/2t1/2

where t varies from 1 to 0. Now it is clear that the period integral, after passing to the limit ϵ → 0, takes the form

∫
Ak

ϕi
dx1dx2

dg
= µ

mi
h − 1

2 ηmik
∫ 1

0
ti− 3

2 (1 − tN−1)−1/2dt,

where mi := 2i − 1 (1 ≤ i ≤ N − 1). The above integral can be computed as follows,

∫ 1

0
ti−3/2(1 − tN−1)−1/2dt =

1
N − 1

∫ 1

0
s(2i−1) 1

h−1(1 − s)−
1
2 ds =

1
N − 1

B
(

mi
h

,
1
2

)
.

We get the following formulas:

∫
Ak

ϕi
dx1dx2

dg
=

 1
N−1 µ

mi
h − 1

2 ηmikB(mi
h , 1

2 ), if 1 ≤ i ≤ N − 1,

2πi, if i = N.

Let αk = ΣAk be the suspension. Recalling formula (3.3) and using (3.6), we get

1
2π

∫
αk

ϕi
ω

d f
=

 1
h ηmik λmi/h

mi/h , if 1 ≤ i ≤ N − 1,

2iλ1/2, if i = N.

Therefore,

I(−1)
αk (λ) = 2

N−1

∑
i=1

ηmik λmi/h

mi/h
ϕN−i − 2iλ1/2ϕN .
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Note that θ(ϕi) =
(

mN−i
h − 1

2

)
ϕi for 1 ≤ i ≤ N − 1 and θ(ϕN) = 0. Therefore

Ψ(αk) = 2
N−1

∑
i=1

ηmikΓ(mi/h)ϕN−i − iΓ(mN/h)ϕN , (3.8)

where mN = N − 1.

Remark 3.4 The numbers mi
h = 2i−1

h (1 ≤ i ≤ N − 1), mN
h = 1

2 are the Coxeter exponents.

Put

vk = 2
N−1

∑
i=1

ηmikΓ(mi/h)ϕN−i, 1 ≤ k ≤ N − 1,

and vN = iΓ(mN/h)ϕN .

Proposition 3.5 The image of the Milnor lattice under the map Ψ is the lattice in H f with Z-basis

β1 = v1 − v2, . . . , βN−1 = vN−1 − vN , βN = vN−1 + vN .

Proof Using formula (3.5), it is straightforward to check that {vi}1≤i≤N is an orthonormal basis of H f with respect to
the intersection pairing, that is, (vi|vj) = δi,j. We have Ψ(αk) = vk − vN and Ψ(σαk)−Ψ(αk+1) = 2vN . Therefore,
βi belongs to the image of the Milnor lattice. On the other hand, since (βi|βi) = 2, we get that βi is the image of a
vanishing cycle. Recalling the root system interpretation of the set of vanishing cycles, we get that βi (1 ≤ i ≤ N) are
simple roots and that the corresponding Dynkin diagram is the Dynkin diagram of type DN . Since the Milnor lattice
is spanned by the set of vanishing cycles, the claim of the proposition follows.

3.2.5 E6-singularity

Let us fix the following basis of H f :

ϕi =

xi−1
2 if 1 ⩽ i ⩽ 3,

x1xi−4
2 if 4 ⩽ i ⩽ 6.

The residue pairing takes the form

(ϕi, ϕj) =
1

2h
δi+j,7, (1 ⩽ i, j ⩽ 6),

where h = 12 is the Coxeter number. The Riemann surface Mµ for µ 6= 0 is a non-singular curve in C2 defined by the
equation x3

1 + x4
2 = µ. The projection (x1, x2) 7→ x2 defines a degree 3 branched covering Mµ → C, with branching

points x2,k = µ
1
4 ik, k ∈ Z4.

Let Lk (k ∈ Z4) be the line segment [0, µ
1
4 ik]. Let A′

k be a loop in the x2-plane C going around the branch points
x2,k and x2,k+1 in the following way: the loop starts at 0, it goes along the line segment Lk, just before hitting the
branch point x2,k it makes a small loop Ck counterclockwise around x2,k, it returns back to the starting point along
Lk; then the loop travels in a similar fashion along Lk+1 except that this time we make a small loop C−1

k+1 in clockwise

direction around x2,k+1. Clearly, the loop A′
k = L−1

k+1 ◦ C−1
k+1 ◦ Lk+1 ◦ L−1

k ◦ Ck ◦ Lk lifts to three loops Ak,a, a ∈ Z3

in Mµ, depending on how we choose the lift of the base point, i.e., the x1-coordinate of the lift of the base point of A′
k

could take the following values: x1,a = µ
1
3 ηa

3 , where η3 := e
2πi

3 .
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Let us consider the loops Ak,a with a ∈ Z3 \ {0} and k ∈ Z4 \ {0}. Let us compute the periods of the holomorphic

forms

ϕi(x1, x2)
dx1dx2

dg
=


xi−1

2 dx2

3x2
1

if 1 ⩽ i ⩽ 3,
xi−4

2 dx2
3x1

if 4 ⩽ i ⩽ 6,

along the cycles Ak,a. As a byproduct of our computation we will get that the homology classes of these 6 loops form
a basis of H1(Mµ; Z). Let us parametrize A′

k as follows:

Lk : x2 = ikµ
1
4 t

1
4 , 0 ⩽ t ⩽

(
1 − ϵ

µ
1
4

)4

,

Ck : x2 = ikµ
1
4 + ϵeiθ k − 2

2
π ⩽ θ ⩽ k + 2

2
π.

The integrals along the lifts of Ck contribute to the period integral terms of orders

O(ϵ
1
3 ) if 1 ⩽ i ⩽ 3

O(ϵ
2
3 ) if 4 ⩽ i ⩽ 6

. These

terms vanish in the limit ϵ → 0. Therefore, under this limit, the periods of the holomorphic forms

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
=


(1 − η−2

3 )(
∫

Lk,a
−
∫

Lk+1,a
) ϕidx2

3x2
1

if 1 ⩽ i ⩽ 3,

(1 − η−1
3 )(

∫
Lk,a

−
∫

Lk+1,a
) ϕidx2

3x2
1

if 4 ⩽ i ⩽ 6,

where η3 := e
2πi

3 and the integral

∫
Lk,a

ϕidx2

3x2
1

=


∫ 1

0
ikiµ

i
4 t

i
4 −1dt

12µ
2
3 (1−t)

2
3 η2a

3

= iki

12 ηa
3µ

i
4−

2
3 B( i

4 , 1
3 ) if 1 ⩽ i ⩽ 3,∫ 1

0
ik(i−3)µ

i−3
4 t

i−3
4 −1dt

12µ
1
3 (1−t)

1
3 ηa

3

= ik(i−3)

12 η2a
3 µ

i−3
4 − 1

3 B( i−3
4 , 2

3 ) if 4 ⩽ i ⩽ 6.

Then, ∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
=

(1 − η−2
3 )(1 − ii) iki

12 ηa
3µ

i
4−

2
3 B( i

4 , 1
3 ) if 1 ⩽ i ⩽ 3,

(1 − η−1
3 )(1 − ii−3) ik(i−3)

12 η2a
3 µ

i−3
4 − 1

3 B( i−3
4 , 2

3 ) if 4 ⩽ i ⩽ 6.

Let αk,a = ΣAk,a be the suspension. Recalling formula (3.3) and using (3.6)

(I(−1)
αk,a (λ), ϕi) :=

1
2π

∫
αk,a

ϕi
ω

d f
=

1
π

∂λ

∫ λ

0
(λ − µ)

1
2

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
dµ

=


√

3
12π ηa

3e−
π
6 iλ

i
4−

1
6

Γ( 3
2 )Γ(

i
4 )Γ(

1
3 )

Γ( i
4+

5
6 )

iki(1 − ii) if 1 ⩽ i ⩽ 3,
√

3
12π η2a

3 e
π
6 iλ

i−3
4 + 1

6
Γ( 3

2 )Γ(
i−3

4 )Γ( 2
3 )

Γ( i−3
4 + 7

6 )
ik(i−3)(1 − ii−3) if 4 ⩽ i ⩽ 6.

Recalling the formulas for the residue pairing in the basis {ϕi} we get

I(−1)
αk,a (λ) = 2h

6

∑
i=1

(I(−1)
αk,a (λ), ϕ7−i)ϕi.
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Recalling formula (3.1) and using that by definition θ(ϕi) =

( 2
3 − i

4 )ϕi if 1 ⩽ i ⩽ 3

( 1
3 − i−3

4 )ϕi if 4 ⩽ i ⩽ 6
, we get

Ψ(αk,a) =

√
3
π

3

∑
i=1

e
π
6 iη2a

3 Γ(1 − i
4
)Γ(

2
3
)i−ki(1 − i−i)ϕi+ (3.9)√

3
π

6

∑
i=4

e−
π
6 iηa

3Γ(1 − i − 3
4

)Γ(
1
3
)ik(3−i)(1 − i3−i)ϕi.

Let us also point out that by using formula (3.4), we get the following formulas for the classical monodromy operator:

σ(αk,a) = −αk+1,a+1 k ∈ Z4, a ∈ Z3.

Recalling formula (3.5), we get that the intersection pairing

(αk,a|αl,b) =
1
π
(Ψ(αk,a), cos(πθ)Ψ(αl,b))

=
1
8

3

∑
i=1

(ηb−a
3 i(l−k)i + ηa−b

3 i(k−l)i)
cos(( i

4 − 2
3 )π)

sin( i
4 π) sin(π

3 )
(2 − i−i − ii)

=
3

∑
i=1

cos(
2
3
(b − a)π +

i
2
(l − k)π)

cos(( i
4 − 2

3 )π)

sin(π
3 )

sin(
i
4

π).

Let us identify Z3 \ {0} = {1, 2} and Z4 \ {0} = {1, 2, 3}. Every 1 ≤ a′ ≤ 6 can be written uniquely in the form
a′ = 3(a − 1) + k, where 1 ≤ a ≤ 2 and 1 ≤ k ≤ 3. Let us define αa′ := αk,a. The intersection pairings (αa′ |αb′)

are straightforward to compute using the formula from above. We get that (αa′ |αb′) coincides with the (a′, b′)-entry
of the following matrix: 

2 −1 0 −1 0 0
−1 2 −1 1 −1 0
0 −1 2 0 1 −1
−1 1 0 2 −1 0
0 −1 1 −1 2 −1
0 0 −1 0 −1 2


.

The above matrix has determinant 3. Therefore, the set {αk,a | 1 ≤ a ≤ 2, 1 ≤ k ≤ 3} is a set of linearly independent
vanishing cycles. Since the set of all vanishing cycles is a root system of type E6 and the determinant of the Cartan
matrix of a root system of E6 is also 3, we get that the {αk,a} is a set of simple roots. In particular, it is a Z-basis of
the Milnor lattice.

3.2.6 E7-singularity

Let us fix the following basis of H f :

ϕi =


xi−1

1 if 1 ⩽ i ⩽ 3,

x2xi−4
1 if 4 ⩽ i ⩽ 6,

x2
2 if i = 7.
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The residue pairing takes the form

(ϕi, ϕj) =


1
h δi+j,7 (1 ⩽ i, j ⩽ 6),

− 1
6 i = j = 7,

0 otherwise,

where h = 18 is the Coxeter number. The Riemann surface Mµ for µ 6= 0 is a non-singular curve in C2 defined by
the equation x3

1 + x1x3
2 = µ. The projection (x1, x2) 7→ x1 defines a degree 3 branched covering Mµ → C∗, with

branching points x1,k = µ
1
3 ηk

3(0 ⩽ k ⩽ 2), where η3 = e
2
3 πi.

The method of constructing loops in Mµ is similar to that of DN-singularity. Let A′
k be a simple loop in C∗

around the line segment Lk := [0, x1,k], that is, A′
k is a loop starting at a point ϵ̃ηk

3 (0 < ϵ̃ � 1) on the line
segment Lk sufficiently close to 0, it goes along the line segment Lk, just before hitting the branch point x1,k it
makes a small loop Ck counterclockwise around it, it returns back to the starting point along the line segment Lk,
and finally it makes a small loop C0 counterclockwise around 0. Clearly, the loop A′

k = C0 ◦ L−1
k ◦ Ck ◦ Lk lifts

to a loop Ak,a, a = 0, 1, 2 in Mµ, where a indicates the lift of the base point, that is, the base point is lifted to

(x1,k,a = ϵ̃ηk
3, x2,k,a =

(
µ−ϵ̃3

ϵ̃

) 1
3

η
a− k

3
3 ) . We will compute the period integrals along Ak,a for 0 ≤ k, a ≤ 2. As

a biproduct of our computation we will get that the following set of 7 loops {A0,1, A1,1, A2,1, A0,2, A1,2, A2,2, A0,0}
represents a basis of H1(Mµ; Z).

Let us compute the periods of the holomorphic forms

ϕi(x1, x2)
dx1dx2

dg
=


− xi−2

1 dx1

3x2
2

if 1 ≤ i ≤ 3,

− xi−5
1

3x2
dx1 if 4 ≤ i ≤ 6,

− dx1
3x1

if i = 7.

along the cycle Ak,a. Let us parametrize A′
k as follows:

C0 : x1 = ϵ̃eiθ ,
2k
3

π ≤ θ ≤ 2k + 6
3

π,

Lk : x1 = ηk
3µ

1
3 t

1
3 ,

ϵ3

µ
⩽ t ⩽

(
1 − ϵ

µ
1
3

)3

,

Ck : x1 = ηk
3µ

1
3 + ϵeiθ ,

2k − 3
3

π ⩽ θ ⩽ 2k + 3
3

π.

The integrals along the lifts of C0 and Ck contribute to the period integral terms of orders respectively
O(ϵ̃i−1+ 2

3 ) and O(ϵ1− 2
3 ) if 1 ≤ i ≤ 3,

O(ϵ̃i−4+ 1
3 ) and O(ϵ1− 1

3 ) if 4 ≤ i ≤ 6,

O(ϵ̃0) and O(ϵ1) if i = 7.
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In the limit ϵ̃, ϵ → 0 all integrals along the loops C0 and Ck vanish except for the integral along C0 when i = 7. The
latter however is straightforward to compute. Therefore, after passing to the limit ϵ, ϵ̃ → 0, we get

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
=


(1 − η−2

3 )
∫

Lk,a

−ϕidx1
3x1x2

2
if 1 ≤ i ≤ 3,

(1 − η−1
3 )

∫
Lk,a

−ϕidx1
3x1x2

2
if 4 ≤ i ≤ 6,

− 2πi
3 if i = 7,

where η3 := e
2πi

3 and the integral

∫
Lk,a

−ϕidx1

3x1x2
2

=


∫ 1

0
−η

k(i− 1
3 )−2a

3 µ
1
3 (i−

7
3 )t

1
3 (i−

10
3 )dt

9(1−t)
2
3

= − η
k(i− 1

3 )−2a
3 µ

1
3 (i−

7
3 )

9 B( i
3 − 1

9 , 1
3 ) if 1 ⩽ i ⩽ 3,

∫ 1
0

−η
k(i−4+ 1

3 )−a
3 µ

1
3 (i−4− 2

3 )t
1
3 (i−4− 8

3 )dt

9(1−t)
1
3

= − η
k(i−4+ 1

3 )−a
3 µ

1
3 (i−4− 2

3 )

9 B( i−4
3 + 1

9 , 2
3 ) if 4 ⩽ i ⩽ 6.

Let αk,a = ΣAk,a be the suspension. Recalling formula (3.3) and using (3.6)

(I(−1)
αk,a (λ), ϕi) :=

1
2π

∫
αk,a

ϕi
ω

d f
=

1
π

∂λ

∫ λ

0
(λ − µ)

1
2

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
dµ

=


−

√
3

9π η
k(i− 1

3 )−2a
3 e−

π
6 iλ

i
3−

7
9+

1
2

Γ( 3
2 )Γ(

i
3−

1
9 )Γ(

1
3 )

Γ( i
3−

7
9+

3
2 )

if 1 ⩽ i ⩽ 3,

−
√

3
9π η

k(i−4+ 1
3 )−a

3 e
π
6 iλ

i−4
3 − 2

9+
1
2

Γ( 3
2 )Γ(

i−4
3 + 1

9 )Γ(
2
3 )

Γ( i−4
3 + 7

9+
1
2 )

if 4 ⩽ i ⩽ 6,

− 2
3 iλ

1
2 if i = 7,

Recalling the formulas for the residue pairing in the basis {ϕi} we get

I(−1)
αk,a (λ) = h

6

∑
i=1

(I(−1)
αk,a (λ), ϕ7−i)ϕi + 4iλ

1
2 ϕ7.

Recalling formula (3.1) and using that

θ(ϕi) =


( 4

9 − i−1
3 )ϕi if 1 ⩽ i ⩽ 3,

( 2
9 − i−4

3 )ϕi if 4 ⩽ i ⩽ 6,

0 if i = 7,

we get

Ψ(αk,a) =−
√

3
π

3

∑
i=1

e
π
6 iη

k( 1
3−i)−a

3 Γ(
3 − i

3
+

1
9
)Γ(

2
3
)ϕi (3.10)

−
√

3
π

6

∑
i=4

e−
π
6 iη

k(4−i− 1
3 )−2a

3 Γ(
7 − i

3
− 1

9
)Γ(

1
3
)ϕi + 2

√
−πϕ7.
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Recalling formula (3.4), we get the following formulas for the classical monodromy operator:

σ(αk,a) = −αk+1,a+1 k, a ∈ Z3.

Using formula (3.5), we get that the intersection pairing

(αk,a|αl,b) =
1
π
(Ψ(αk,a), cos(πθ)Ψ(αl,b))

=
2
3
+

1
6

3

∑
i=1

(η
b−a+(l−k)(i− 1

3 )
3 + η

a−b+(k−l)(i− 1
3 )

3 )
cos(( i

3 − 7
9 )π)

sin(( i
3 − 1

9 )π) sin(π
3 )

=
2
3
+

1
3

3

∑
i=1

cos(
2π

3
(a − b + (k − l)(i − 1

3
)))

cos(( i
3 − 7

9 )π)

sin(( i
3 − 1

9 )π) sin(π
3 )

.

Let us identify Z3 = {0, 1, 2}. Every 1 ≤ a′ ≤ 7 can be written uniquely in the form a′ = 3(a − 1) + k + 1,
1 ≤ a ≤ 3, 0 ≤ k ≤ 2. Put αa′ := αk,a, where 0 ≤ a ≤ 2 is the remainder of a modulo 3. Using the above formula,
we get that the intersection pairing in the basis {αa′}1≤a′≤7 takes the form



2 1 1 0 1 1 0
1 2 1 0 0 1 1
1 1 2 0 0 0 1
0 0 0 2 1 1 0
1 0 0 1 2 1 0
1 1 0 1 1 2 0
0 1 1 0 0 0 2


.

The above matrix has determinant 2. Since the determinant of the Cartan matrix of the root system of type E7 is also 2,
the conclusion is the same as in the case of E6-singularity, that is, the cycles (α1, . . . , α7) = (α0,1, α1,1, α2,1, α0,2, α1,2, α2,2, α0,0)

form a Z-basis of the Milnor lattice and hence their images under Ψ, computed by formula (3.10), give a Z-basis for
the image of the Milnor lattice in H f .

3.2.7 E8-singularity

Let us fix the following basis of H f :

ϕi =

xi−1
2 if 1 ⩽ i ⩽ 4,

x1xi−5
2 if 5 ⩽ i ⩽ 8.

The residue pairing takes the form

(ϕi, ϕj) =
1
h

δi+j,9, (1 ⩽ i, j ⩽ 8),

where h = 30 is the Coxeter number. The Riemann surface Mµ for µ 6= 0 is a non-singular curve in C2 defined by
equation x3

1 + x5
2 = µ. The projection (x1, x2) 7→ x2 defines a degree 3 branched covering Mµ → C, with branching

points x2,k = µ
1
5 ηk

5, k ∈ Z5, where η5 = e
2
5 πi.

The method for constructing loops in Mµ is almost the same as that for E6-singularity. Let us omit the similar
narration, i.e., we define the loops Ak,a in the same way, except that now a ∈ Z3 \ {0} and k ∈ Z5 \ {0}. We
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will see that the homology classes of these 8 loops form a Z-basis of H1(Mµ; Z). Let us compute the periods of the
holomorphic forms

ϕi(x1, x2)
dx1dx2

dg
=


xi−1

2 dx2

3x2
1

if 1 ⩽ i ⩽ 4,
xi−5

2 dx2
3x1

if 5 ⩽ i ⩽ 8,

along the cycle Ak,a. Let us parametrize A′
k as follows:

Lk : x2 = ηk
5µ

1
5 t

1
5 (0 ⩽ t ⩽

(
1 − ϵ

µ
1
5

)5

),

Ck : x2 = ηk
5µ

1
5 + ϵeiθ (

2k − 5
5

π ⩽ θ ⩽ 2k + 5
5

π).

The integrals along the lifts of Ck contribute to the period integral terms of orders

O(ϵ
1
3 ) if 1 ⩽ i ⩽ 3

O(ϵ
2
3 ) if 4 ⩽ i ⩽ 6

. These

terms vanish in the limit ϵ → 0. Therefore, under this limit, the periods of the holomorphic forms

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
=


(1 − η−2

3 )(
∫

Lk,a
−
∫

Lk+1,a
) ϕidx2

3x2
1

if 1 ⩽ i ⩽ 4,

(1 − η−1
3 )(

∫
Lk,a

−
∫

Lk+1,a
) ϕidx2

3x2
1

if 5 ⩽ i ⩽ 8
,

where η3 := e
2πi

3 and the integral

∫
Lk,a

ϕidx2

3x2
1

=


∫ 1

0
ηki

5 µ
i
5 t

i
5 −1dt

15µ
2
3 (1−t)

2
3 η2a

3

=
ηki

5
15 ηa

3µ
i
5−

2
3 B( i

5 , 1
3 ) if 1 ⩽ i ⩽ 4,∫ 1

0
η

k(i−4)
5 µ

i−4
5 t

i−4
5 −1dt

15µ
1
3 (1−t)

1
3 ηa

3

=
η

k(i−4)
5
15 η2a

3 µ
i−4

5 − 1
3 B( i−4

5 , 2
3 ) if 5 ⩽ i ⩽ 8.

Then, ∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
=

(1 − η−2
3 )(1 − ηi

5)
ηki

5
15 ηa

3µ
i
5−

2
3 B( i

5 , 1
3 ) if 1 ⩽ i ⩽ 4,

(1 − η−1
3 )(1 − ηi−4

5 )
η

k(i−4)
5
15 η2a

3 µ
i−4

5 − 1
3 B( i−4

5 , 2
3 ) if 5 ⩽ i ⩽ 8.

Let αk,a = ΣAk,a be the suspension. Recalling formula (3.3) and using (3.6)

(I(−1)
αk,a (λ), ϕi) :=

1
2π

∫
αk,a

ϕi
ω

d f
=

1
π

∂λ

∫ λ

0
(λ − µ)

1
2

∫
Ak,a

ϕi(x1, x2)
dx1dx2

dg
dµ

=


√

3
15π ηa

3e−
π
6 iλ

i
5−

1
6

Γ( 3
2 )Γ(

i
5 )Γ(

1
3 )

Γ( i
5+

5
6 )

ηki
5 (1 − ηi

5) if 1 ⩽ i ⩽ 4,
√

3
15π η2a

3 e
π
6 iλ

i−4
5 + 1

6
Γ( 3

2 )Γ(
i−4

5 )Γ( 2
3 )

Γ( i−4
5 + 7

6 )
η

k(i−4)
5 (1 − ηi−4

5 ) if 5 ⩽ i ⩽ 8.

Recalling the formulas for residue pairing, we get

I(−1)
αk,a (λ) = h

8

∑
i=1

(I(−1)
αk,a (λ), ϕ9−i)ϕi.
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By definition,

θ(ϕi) =

( 2
3 − i

5 )ϕi, if 1 ⩽ i ⩽ 4,

( 1
3 − i−4

5 )ϕi, if 5 ⩽ i ⩽ 8.

Therefore, recalling formula (3.1), we get

Ψ(αk,a) =

√
3
π

4

∑
i=1

e
π
6 iη2a

3 Γ(1 − i
5
)Γ(

2
3
)η−ki

5 (1 − η−i
5 )ϕi (3.11)

+

√
3
π

8

∑
i=5

e−
π
6 iηa

3Γ(1 − i − 4
5

)Γ(
1
3
)η

k(4−i)
5 (1 − η4−i

5 )ϕi.

Recalling formula (3.4), we get that the following formulas for the classical monodromy operator:

σ(αk,a) = −αk+1,a+1 k ∈ Z5, a ∈ Z3.

Recalling formula (3.5), the intersection pairing

(αk,a|αl,b) =
1
π
(Ψ(αk,a), cos(πθ)Ψ(αl,b))

=
1

10

4

∑
i=1

(ηb−a
3 η

(l−k)i
5 + ηa−b

3 η
(k−l)i
5 )

cos(( i
5 − 2

3 )π)

sin( i
5 π) sin(π

3 )
(2 − η−i

5 − ηi
5)

=
4
5

4

∑
i=1

cos(
2
3
(b − a)π +

2i
5
(l − k)π)

cos(( i
5 − 2

3 )π)

sin(π
3 )

sin(
i
5

π)

Let us identify Z3 \ {0} = {1, 2} and Z5 \ {0} = {1, 2, 3, 4}. Every 1 ≤ a′ ≤ 8 can be written uniquely in the form
a′ = 4(a − 1) + k, where 1 ≤ a ≤ 2 and 1 ≤ k ≤ 4. Put αa′ := αk,a. Then the intersection matrix (αa′ |αb′) takes the
following form: 

2 −1 0 0 −1 0 0 0
−1 2 −1 0 1 −1 0 0
0 −1 2 −1 0 1 −1 0
0 0 −1 2 0 0 1 −1
−1 1 0 0 2 −1 0 0
0 −1 1 0 −1 2 −1 0
0 0 −1 1 0 −1 2 −1
0 0 0 −1 0 0 −1 2


.

The above matrix has determinant 1. Since the determinant of the Cartan matrix of the root system of type E8 is also
1, the conclusion is the same as in the previous cases.

3.3 K-theoretic interpretation

The goal of this section is to prove Theorem 3.3
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3.3.1 Fermat cases

Let us compute explicitly the map chΓ for f (x) = f T(x) = xa1
1 + xa2

2 + xa3
3 with a3 = 2. In fact, our computation

works for arbitrary a3 as well, except for one small technical detail, that is, we will prove that the group K−1
GT (VT

1 ) is
torsion free. This fact should be true for any positive integer a3, but the argument that we give works only if a3 = 2.
The group

GT = {g = (g1, g2, g3) ∈ (C∗) | ga1
1 = ga2

2 = ga3
3 = 1}.

If g ∈ GT is such that I = {i | gi = 1} is a non-empty set, then it is easy to see that the map x = (x1, x2, x3) 7→
(xai

i )i∈I induces isomorphisms Fixg(C3)/GT ∼= CI and Fixg(VT
1 )/GT ∼= HI , where HI ⊂ CI is the hyperplane

∑i∈I yi = 1. Since the pair (CI , HI) is contractible the groups

K0(Fixg(C
3)/GT , Fixg(VT

1 )/GT) = H∗(Fixg(C
3)/GT , Fixg(VT

1 )/GT) = 0.

If g ∈ GT is such that gi 6= 1 for all i, then Fixg(C3) = {0} and Fixg(VT
1 ) = ∅. Note that the number of such g is

N = (a1 − 1)(a2 − 1)(a3 − 1), that is, the multiplicity of the singularity corresponding to the polynomial f .

Lemma 3.6 The group K−1
GT (VT

1 ) is torsion free.

Let us postpone the proof of this lemma until Section 3.3.4. Note that K−1
GT (VT

1 )⊗C = 0. Therefore, according to the
above Lemma 3.6, we have K−1

GT (VT
1 ) = 0. The long exact sequence of the pair (C3, VT

1 ) yields the following exact
sequence

0 // K0
GT (C

3, VT
1 ) // K0

GT (C
3) // K0

GT (VT
1 ) .

On the other hand, K0
GT (C

3) coincides with the representation ring of GT , that is,

K0
GT (C

3) = Z[L1, L2, L3]/(La1
1 − 1, La2

2 − 1, La3
3 − 1),

where Li = C3 × C is the trivial bundle with GT-action g · (x, λ) := (gx, giλ). Note that TC3 ∼= L1 + L2 + L3 in
the category of GT-equivariant bundles. We claim that

K0
GT (C

3, VT
1 ) = (L1 − 1)(L2 − 1)(L3 − 1)Z[L1, L2, L3]/(La1

1 − 1, La2
2 − 1, La3

3 − 1). (3.12)

Indeed, note that si(x) = (x, fxi ) is a GT-equivariant section of L−1
i . The Koszul complex corresponding to the

sequence (s1, s2, s3) has the form

L1L2L3 // ⊕
1≤i<j≤3 LiLj // ⊕

1≤i≤3 Li // C ,

where C is the trivial bundle with trivial GT-action. The sequence (s1, s2, s3) is regular, so the corresponding Koszul
complex is a resolution of the structure sheaf of the zero locus {s1 = s2 = s3 = 0}. The zero locus is {0} and
since 0 /∈ VT

1 the restriction of the Koszul complex to VT
1 is exact, i.e., the Koszul complex represents an element of

K0
GT (C

3, VT
1 ). This proves that the RHS of (3.12) is a Z-submodule of the LHS. Note that both the LHS and the RHS

of (3.12) are free Z-modules of rank N. Therefore, the quotient of LHS by RHS is a finite Abelian group. In order
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to prove that the quotient is 0, it is sufficient to prove that if g ∈ K0

GT (C
3) and mg belongs to the RHS of (3.12) for

some integer m, then g belongs to the RHS of (3.12) too. The proof is straightforward so we leave it as an exercise.
Let us fix the following basis of K0

GT (C
3, VT

1 ):

Am1,m2,m3 := Lm1
1 Lm2

2 Lm3
3 (L1 − 1)(L2 − 1)(L3 − 1), 0 ≤ mi ≤ ai − 2.

Let ek1,k2,k3 = 1 ∈ H0(Fixg(C3)/G, Fixg(VT
1 )/G), where g = (e2πik1/a1 , e2πik2/a2 , e2πik3/a3). We get

chΓ(Am1,m2,m3) =
1

2π

a1−1

∑
k1=1

a2−1

∑
k2=1

a3−1

∑
k3=1

3

∏
i=1

(
Γ
(

1 − ki
ai

)
e−2πi kimi/ai

(
e−2πiki/ai − 1

))
ek1,k2,k3 ,

where the ingredients of the above formula are computed as follows. Since Fixg(C3) = {0} and the action of g on
Li|Fixg(C3) is given by multiplication by e2πi ki/ai we get

Γ̂(Li)|Fixg(C3)/GT = Γ
(

1 − ki
ai

)
and ι∗c̃h(Li)|Fixg(C3)/GT = c̃h(L−1

i )|Fixg(C3)/GT = e−2πi ki/ai ,

where we used that ι∗(Li) = L−1
i . The orbifold tangent bundle [TC3/GT ] = L1 + L2 + L3 so its Γ-class is

∏3
i=1 Γ̂(Li), while ι∗c̃h|Fixg(C3)/GT is a ring homomorphism, so the computation of its value on Am1,m2,m3 amounts

to the substitution Li 7→ e−2πi ki/ai . Let us specialize the above formula to the cases of AN , E6, and E8 singularities.
In the first case a1 = N + 1, a2 = a3 = 2. The above formula takes the form

chΓ(Am,0,0) = 2
N

∑
k=1

η−km(η−k − 1)Γ
(

1 − k
N+1

)
ek,1,1.

Comparing with (3.7), we get that if we define mir(ϕi) = ei,1,1 (1 ≤ i ≤ N), then the images of Ψ and chΓ will
coincide. The vanishing cycle αk,a corresponds to (−1)a Ak,0,0.

For the case of E6 we have a1 = 3, a2 = 4, a3 = 2. The formula takes the form

chΓ(Am1,m2,0) = − 1√
π

2

∑
k1=1

3

∑
k2=1

Γ
(

1 − k1
3

)
Γ
(

1 − k2
4

)
η−k1m1

3 η−k2m2
4 (η−k1

3 − 1)(η−k2
4 − 1)ek1,k2,1,

where η3 = e2πi/3 and η4 = e2πi/4 = i. Note that η−1
3 − 1 = −

√
3eπi/6 and η−2

3 − 1 = −
√

3e−πi/6. Comparing
with (3.9) we get that if we define

mir(ϕi) =

e1,i,1, for 1 ≤ i ≤ 3,

e2,i−3,1, for 4 ≤ i ≤ 6,

then the images of Ψ and chΓ will coincide. The vanishing cycle αk,a corresponds to −Aa,k,0.
Suppose now that the singularity is of type E8, that is, a1 = 3, a2 = 5, and a3 = 2. The formula takes the form

chΓ(Am1,m2,0) = − 1√
π

2

∑
k1=1

4

∑
k2=1

Γ
(

1 − k1
3

)
Γ
(

1 − k2
5

)
η−k1m1

3 η−k2m2
5 (η−k1

3 − 1)(η−k2
5 − 1)ek1,k2,1,
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where η3 = e2πi/3 and η5 = e2πi/5. Comparing with formula (3.11) we get that if we define

mir(ϕi) =

e1,i,1, for 1 ≤ i ≤ 4,

e2,i−4,1, for 5 ≤ i ≤ 8,

then the images of Ψ and chΓ will coincide. The vanishing cycle αk,a corresponds to −Aa,k,0.

3.3.2 Suspension isomorphism

Suppose that X is a finite CW-complex equipped with an action of a finite (or more generally compact Lie) group G.
Let µ2 = {±1} and

ΣX = X × [−1, 1]/X × {−1} /X×{1}

be the suspension of X, where the double quotient simply means that the quotient is taken in two steps: first by, say,
X × {−1} and then by X × {1}. Note that G × µ2 acts naturally on ΣX via (g, ϵ) · (x, t) = (gx, ϵt) and that the
0-dimensional sphere S0 := ΣX − X × (−1, 1) is a G × µ2-equivariant subcomplex of ΣX.

Let L = [−1, 1]×C be the trivial µ2-equivariant line bundle on the interval I := [−1, 1], where the representation
of µ2 on C is given by ϵ · λ = ϵλ. It is an easy and amusing exercise to check that K0

µ2
(I, ∂I) = Z ℓ, where ℓ is

the relative K-theoretic class of the complex L t // C , where C = I × C is the trivial µ2-equivariant line bundle
corresponding to the trivial representation of µ2 on C and the map is induced by (t, λ) 7→ (t, tλ).

Lemma 3.7 The exterior tensor product by ℓ induces an isomorphism Ki
G(X) ∼= Ki

G×µ2
(ΣX,S0).

Proof By definition

Ki
G×µ2

(ΣX,S0) = K̃i
G×µ2

(ΣX/S0) = Ki
G×µ2

(X × I, X × ∂I) ∼= Ki
G(X)⊗ K0

µ2
(I, ∂I),

where we used that Ki
µ2
(I, ∂I) is isomorphic to Z for i even and 0 for i odd, so the last isomorphism is given by the

equivariant Künneth formula (see [39]).
Suppose now that Y ⊂ X is a G-invariant CW-subcomplex of X. Using the long exact sequence of the triple

S0 ⊂ ΣY ⊂ ΣX and Lemma 3.7, it is straightforward to prove the following corollary.

Corollary 3.8 The exterior tensor product by ℓ induces an isomorphism

Ki
G(X, Y) ∼= Ki

G×µ2
(ΣX, ΣY).

3.3.3 The relative K-ring for DN-singularity

Let us return to the settings of DN-singularity. We have f T(x) = x2
1 + x1xN−1

2 + x2
3. The group of diagonal symme-

tries of f T is

GT = {t ∈ (C∗)3 | t2
1 = t1tN−1

2 = t2
3 = 1}.
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Let Li = C3 × C be the GT-equivariant line bundle for which the action of GT on C is given by the character
GT → C∗, (t1, t2, t3) 7→ ti. Let us introduce the following N complexes of GT-equivariant vector bundles on C3 :

E•
i : L1Li−1

2 L3
d0 // L1Li−1

2 ⊕ Li−1
2 L3

d1 // Li−1
2 , 1 ≤ i ≤ N − 1,

where the differentials are defined by d0(x, λ) = (x,−x3λ, x1λ) and d1(x, λ1, λ3) = (x, x1λ1 + x3λ3),

E•
N : L3

d0 // C ⊕ L3
d1 // C ,

where d0(x, λ) = (x,−x3λ, x2
1λ) and d1(x, λ1, λ3) = (x, x2

1λ1 + x3λ3).

Proposition 3.9 The relative K-ring K0
GT (C

3, VT) ∼= ZN and the complexes E•
i (1 ≤ i ≤ N) represent a Z-basis.

Proof Note that the complex E•
i (1 ≤ i ≤ N − 1) is a tensor product of Li−1

2 , L1
x1 // C , and L3

x3 // C and

that the complex E•
N is a tensor product of C

x2
1 // C and L3

x3 // C . On the other hand, we have GT = A × ¯2,
where A = {t ∈ (C∗)2 | t2

1 = t1tN−1
2 = 1}. Recalling Corollary 3.8 we get K0

GT (C
3, VT) ∼= K0

A(C
2, M), where

M = {x ∈ C2 | x2
1 + x1xN−1

2 = 1}. Slightly abusing the notation we denote by L1 and L2 the restriction of the vector

bundles L1 and L2 to C2. Note that the operation tensor product by the complex L3
x3 // C is precisely the exterior

tensor product by the complex ℓ in the suspension isomorphism from Corollary 3.8. Therefore, it is sufficient to prove

that the complexes L1Li−1
2

x1 // Li−1
2 (1 ≤ i ≤ N − 1) and C

x2
1 // C represent a Z-basis of K0

A(C
2, M).

The long exact sequence of the pair (C2, M) yields the following exact sequence:

0 // K−1
A (M)

δ // K0
A(C

2, M)
ρ // K0

A(C
2) // K0

A(M) ,

where we used that K−1
A (C2) = 0. We have

K0
A(C

2) = Z[L1, L2]/〈L2
1 − 1, L1LN−1

2 − 1〉,

where the RHS is the representation ring of A. Just like in the Fermat cases it is easy to prove that the image of ρ

coincides with the ideal (L1 − 1)K0
A(C

2). Note that Im(ρ) ∼= ZN−1 and that ρ(E•
i ) = Li−1

2 (L1 − 1) (1 ≤ i ≤
N − 1) is a Z-basis. It remains only to prove that K−1

A (M) ∼= Z and that Im(δ) is generated as a Z-module by the
complex E•

N .
Let us first prove that K−1

A (M) ∼= Z. Let π : M → C∗ be the map (x1, x2) 7→ x2
1. The map π is a branched

covering with only one branch point, that is, 1 ∈ C∗. The corresponding ramification points are R = {(−1, 0), (1, 0)}.
Note that R is an A-invariant subset. The idea is to use the long exact sequence of the pair (M, M \ R). The action of
A on M \ R is free, so we have

Ki
A(M \ R) = Ki((M \ R)/A) = Ki(C \ {0, 1}).

Therefore K0
A(M \R) ∼= Z and K−1

A (M \R) ∼= Z2. The groups Ki(M, M \R) are also easy to compute. Let U ⊂ M
be a small A-invariant open neighborhood of R. Then by excision Ki

A(M, M \ R) = Ki
A(U, U \ R). Note that the

open neighborhood U can be identified with an open neighborhood of R in the normal bundle νR to R in M. Indeed,



Chapter 3. ADE singularity 67

the normal bundle is trivial νR = R×C and a point in (x1, x2) ∈ U satisfies x1 = 1
2 (−xN−1

2 ±
√

x2N−2
2 + 4), so the

map U → νR, (x1, x2) 7→ ((±1, 0), x2) identifies U with an open neighborhood of the zero section R in νR. Clearly,
the pullback of νR to U is L2 and the Thom class of νR is represented as an element of K0

A(νR) = K0
A(U, U \ R) by

the complex C
x2 // L2 . According to Thom isomorphism Ki

A(U, U \ R) ∼= Ki
A(R). Note that R is an A-orbit,

that is, R = A/B, where B is the cyclic subgroup of A generated by (1, η2). Therefore, K−1
A (R) = 0 and K0

A(R)
coincides with the representation ring of B. Since the Thom isomorphism is given by tensor product with the Thom
class, we get

K0
A(M, M \ R) =

N−1⊕
i=1

Z [ Li−1
2

x2 // Li
2] .

The long exact sequence of the pair (M, M \ R) takes the form

0 // K−1
A (M) // K−1

A (M \ R) δ // K0
A(M, M \ R) .

We already proved that K−1
A (M \ R) ∼= K−1(C2 \ {0, 1}) ∼= Z2. We will make use of the following explicit inter-

pretation of the K-group K−1
A ( ). By definition, for any finite CW-complex X, we have K−1

A (X) = K̃0
A(Σ(X t pt)).

Since the complement of X in Σ(X t pt) is contractible, we can think of an element of K−1
A (X) as a representation

of A on some vector space Cr and an A-equivariant isomorphism ϕ : X × Cr → X × Cr, that is, an A-equivariant
morphism X → GLr(C). In our case the elements of K−1

A (M \ R) are obtained by pullback from K−1(C \ {0, 1}).
The latter is generated by two elements that correspond, in the way described above, to the two maps C \ {0, 1} → C∗,
t 7→ t and t 7→ 1 − t. Therefore, the group K−1

A (M \ R) is generated by the two elements that correspond to the two
maps M \ R → C∗ defined by (x1, x2) 7→ x2

1 and (x1, x2) 7→ 1 − x2
1 = x1xN−1

2 . The connecting morphism δ can be
described as follows. Given an A-equivariant isomorphism ϕ : (M \ R)× Cr → (M \ R)× Cr, then let us pick an
extension to a vector bundle morphism ϕ̃ : M × Cr → M × Cr. The resulting complex clearly represents an element
of K0

A(M, M \ R) and that is what δ(ϕ) is. The extensions in our case are straightforward to construct. We get that

Im(δ) = Z [ C
x2

1 // C ] + Z [ C
x1xN−1

2 // C ].

Note however, that x1 6= 0 so x2
1 defines an isomorphism, i.e., the first complex is 0 in K0

A(M, M \R). In particular, the
kernel of the connecting homomorphism δ is ∼= Z and it is generated by the element in K−1

A (M \ R) corresponding
to the map M \ R → C∗, (x1, x2) → x2

1. This map extends to M, so we get that K−1
A (M) ∼= Z with generator

corresponding to the map M → C∗, (x1, x2) 7→ x2
1. Returning to the long exact sequence of the pair (C2, M), we get

that the connecting morphism K−1
A (M) → K0

A(C
2, M) maps the generator of K−1

A (M) to the complex C
x2

1 // C .
This completes the proof of the proposition.

3.3.4 Proof of Lemma 3.6

We follow the same strategy as in the proof of Proposition 3.9. Let us denote by M ⊂ C2 the Riemann surface defined
by xa1

1 + xa2
2 = 1. Let A = {t ∈ (C∗)2 | ta1

1 = ta2
2 = 1}. Since K−1

GT (VT
1 ) ∼= K−1

A (M), we get that it is sufficient to
prove that K−1

A (M) is torsion free. Let π : M → C be the map (x1, x2) 7→ xa1
1 . The map π is a branched covering
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with only one branching point, that is, 1 ∈ C. The corresponding ramification points are R = {(ξ, 0) | ξa1 = 1}.
The torsion freeness can be deduced easily from the long exact sequence of the pair (M, M \ R). The action of A on
M \ R is free, so we have

K−1
A (M \ R) = K−1((M \ R)/A) = K−1(C \ {1}) ∼= Z.

Using the Thom isomorphism for the normal bundle to R in M, we get K−1
A (M, M \ R) = K−1

A (R). On the other
hand, note that R is the orbit of A through the point (1, 0) ∈ M, we get R = A/B, where B ⊂ A is the cyclic
subgroup generated by (1, ηa2), ηa2 = e2πi/a2 . Therefore, K−1

A (R) = K−1
A (A/B) = K−1(B) = 0. Recalling the

long exact sequence of the pair (M, M \ R), we get

0 // K−1
A (M) // K−1

A (M \ R) δ // K0
A(M, M \ R) (3.13)

We get that K−1
A (M) can be embedded as a subgroup of K−1

A (M \ R) ∼= Z. The latter is torsion free, so K−1
A (M)

must be also torsion free.

Remark 3.10 The above argument can be continued to give a direct proof of the fact that K−1
A (M) = 0. Namely,

using the Thom isomorphism, we can prove that the group K0
A(M, M \ R) is a free Abelian group of rank a2 and that

the complexes [Li−1
2

x2 // Li
2] (1 ≤ i ≤ a2) represent a Z-basis. Moreover, the image of the connecting morphism

δ in (3.13) can be computed explicitly as well, that is, it coincides with the sum of the above complexes. In particular,
we get that δ is an injective map, and hence K−1

A (M) = 0.

Remark 3.11 The long exact sequences of the pairs (M, M \ R) and (C2, M) can be computed explicitly, that is,
both the groups and the differentials can be determined. This allows us to give an alternative proof of formula (3.12).
We leave the details to the interested reader.

3.3.5 The relative K-ring for E7-singularity

The argument from the previous section works also for E7-singularity. Let us only state the result. The proof is
completely analogous.

We have f T(x) = x3
1x2 + x3

2 + x2
3 The group of diagonal symmetries of f T is

GT = {t ∈ (C∗)3 | t3
1t2 = t3

2 = t2
3 = 1}.

Let Li = C3 × C be the GT-equivariant line bundle for which the action of GT on C is given by the character
GT → C∗, (t1, t2, t3) 7→ ti. Let us introduce the following 7 complexes of GT-equivariant vector bundles on C3 :

E•
i : Li−1

1 L−1
3

d0 // Li−1
1 ⊕ Li−1

1 L2L−1
3

d1 // Li−1
1 L2, 1 ≤ i ≤ 6,

where the differentials are defined by d0(x, λ) = (x,−x3λ, x2λ) and d1(x, λ2, λ3) = (x, x2λ2 + x3λ3),

E•
7 : L3

d0 // C ⊕ L3
d1 // C ,

where d0(x, λ) = (x,−x3λ, x3
2λ) and d1(x, λ2, λ3) = (x, x3

2λ2 + x3λ3).
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Proposition 3.12 Let VT = {x ∈ C3 | f T(x) = 1}. The relative K-ring K0

GT (C
3, VT) ∼= Z7 and the complexes E•

i
(1 ≤ i ≤ 7) represent a Z-basis.

3.3.6 Γ-integral structure for DN-singularity

Let us compute chΓ(E•
i ) for 1 ≤ i ≤ N. After a straightforward computation we get that the relative cohomology

group H(Fixg(C3), Fixg(VT))GT
is not zero only in the following two cases: 1) g = (g1, g2, g3) with gi 6= 1 for all

i and 2) g = (1, 1,−1). For the first case, there are N − 1 elements, that is, g = (−1, η2i−1,−1) (1 ≤ i ≤ N − 1)
and the fixed point subsets are Fixg(C3) = {0} and Fixg(VT) = ∅. Therefore, H(Fixg(C3), Fixg(VT); C)GT ∼= C

is non-trivial only in degree 0 and we denote by ei := 1 the unit of the cohomology group. For the second case,
Fixg(C3) = C2 and Fixg(VT) = M = {x2

1 + x1xN−1
2 = 1}. The relative cohomology group Hi(C2, M; C)GT ∼=

Hi−1(M/GT ; C) for i > 0 and = 0 for i = 0. As we already explained above M/GT = C∗, so the relative
cohomology is non-zero only in degree 2, i.e., for i = 2. Since M is a Stein manifold, we can describe the relative
cohomology in terms of the holomorphic de Rham complexes on C2 and M. Namely, consider the complex of Abelian
groups

Γ(C2, Ω•
C2)

GT ⊕ Γ(M, Ω•−1
M )GT

, d(ω, α) = (dω, ω|M − dα). (3.14)

A closed form (ω, α) in degree i, that is, d(ω, α) = 0, defines naturally a linear functional on the space of dimension
i relative chains γ ⊂ C2 with ∂γ ⊂ M, that is,

γ 7→
∫

γ
ω −

∫
∂γ

α.

Using the de Rham theorem for C2 and M, it is easy to prove that the above map induces an isomorphism between the
i-th cohomology of the complex (3.14) and Hi(C2, M; C)GT

. Let us denote by eN ∈ H2(C2, M; C) the cohomology
class corresponding to the form (0,− 1

2πi dx1/x1).
Suppose now that g = (−1, η2a−1,−1), 1 ≤ a ≤ N − 1. Let us compute the component of chΓ(E•

i ) for 1 ≤ i ≤
N − 1 in H0(Fixg(C3), Fixg(VT); C)GT

. Note that in this case we have an isomorphism K0(Fixg(C3), Fixg(VT)) ∼=
K0(Fixg(C3)). The image of ι∗ Tr(E•

i ) is

η−(2a−1)(i−1)Li−1
2 (L1L3 − (−L3 − L1) + C) = 4η−(2a−1)(i−1)C,

where again we abused the notation by denoting by Li the restriction of Li to Fixg(C3) = {0}. The component of the
Γ-class is

Γ(L1 + L2 + L3) = Γ(1 − 1/2)Γ(1 − (2a − 1)/h)Γ(1 − 1/2)ea,

where h := 2N − 2. Therefore, the component of chΓ(E•
i ) is

2η−(2a−1)(i−1)Γ(1 − ma/h)ea.

The component of chΓ(EN) is clearly 0, because the image of the complex E•
N in K0(Fixg(C3)) is 0.
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Suppose that g = (1, 1,−1). Let us compute the component of chΓ(E•

i ) in H2(Fixg(C3), Fixg(VT); C)GT
=

H2(C2, M)GT
= C eN . By definition the component of ι∗ Tr(E•

i ) in K0(C2, M)GT
is

−Li−1
2 [ L1L3

−x1 / / L3 // 0 ] + Li−1
2 [ 0 // L1

x1 // C ],

where the above complexes are concentrated in degrees 0, 1, and 2 and the vector bundles Li (1 ≤ i ≤ 3) are trivial line

bundles on C2. The second complex, as an element of K0(C2, M), is equivalent to the two-term complex C
x1 // C .

Therefore, the component of ι∗ Tr(E•
i ) (1 ≤ i ≤ N − 1) takes the form

−[ C
x1 // C ] + [ C

d // C ].

In order to compute the Chern character of the above complexes, we use the following commutative diagram:

K̃0(ΣM) ∼= K̃−1(M)

ch
��

∼= // K0(C2, M)

ch
��

H2(ΣM) ∼= H1(M)
δ // H2(C2, M)

,

where the horizontal arrows come from the long exact sequence of the pair (C2, M) and the vertical arrows are

isomorphisms. Under the isomorphism K̃0(ΣM) ∼= K0(C2, M), the complex C
x1 // C corresponds to P − 1,

where P is a line bundle on ΣM obtained by gluing two trivial line bundles along M using the gluing function
M → C∗, (x1, x2) 7→ x1. The first Chern class of P is easy to compute. If γ is a closed loop in M representing
a cohomology class in H1(M), then Σγ is a sphere in H2(ΣM) and hence P|Σγ is a line bundle on the sphere
obtained from gluing two trivial line bundles on the two hemi-spheres along the equator γ using the map γ → C∗,
(x1, x2) → x1. By definition 〈c1(P), Σγ〉 coincides with the degree of the map γ → S1, (x1, x2) 7→ x1/|x1|, that is,

〈c1(P), Σγ〉 = 1
2πi

∫
γ

dx1

x1
.

In other words, under the suspension isomorphism, c1(P) coincides with the de Rham cohomology class of the form
1

2πi dx1/x1. Recalling the de Rham model for the relative cohomology group H2(C2, M), we get that δ(c1(P)) = eN .

Note that c1(P) = ch(P − 1), so ch( C
x1 // C ) = eN . The vector bundle corresponding to the other complex

C
x1 // C is P−1, so we get

ch(ι∗ Tr(E•
i )) = −2eN .

Hence

chΓ(E•
i )g =

1
2π

Γ(1/2)(2πi)(−2eN) = −2iΓ(1/2)eN ,
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where the index g is to remind us that this is the component corresponding to the fixed point set of g = (1, 1,−1).
The computation of chΓ(E•

N) is the same, except that everywhere we have to replace the vector bundle P with P2, so

chΓ(E•
N)g =

1
2π

Γ(1/2)(2πi)(−4eN) = −4iΓ(1/2)eN .

Combining our computations we get the following result:

chΓ(E•
i ) = 2

N−1

∑
a=1

η−(2a−1)(i−1)Γ(1 − ma/h)ea − 2iΓ(1/2)eN

and chΓ(E•
N) = −4iΓ(1/2)eN . Comparing with formula (3.8) we get that if we define mir(ϕi) = ei for 1 ≤ i ≤

N − 1 and mir(ϕN) = 2eN , then the statement of Theorem 3.3 will hold. The vanishing cycle αk (1 ≤ k ≤ N − 1)
corresponds to the relative K-theoretic class of the complex E•

k .

3.3.7 Γ-integral structure for E7-singularity

The computation in this case is similar to the case of DN-singularity. Let us sketch only the main steps and leave
the details as an exercise. The goal is to compute chΓ(E•

l ) for 1 ≤ l ≤ 7. After a straightforward computation we
get that the relative cohomology group H(Fixg(C3), Fixg(VT))GT

is not zero only in the following two cases: 1)
g = (g1, g2, g3) with gi 6= 1 for all i and 2) g = (1, 1,−1). Put η = e2πi/9 and η3 = e2πi/3. For the first case, there
are 6 elements, that is, g = (η3i−r, ηr

3,−1) (1 ≤ i ≤ 3, 1 ≤ r ≤ 2) and the fixed-point subsets are Fixg(C3) = {0}
and Fixg(VT) = ∅. Therefore, H(Fixg(C3), Fixg(VT); C)GT ∼= C is non-trivial only in degree 0 and we denote by
e3i−r ∈ H(Fixg(C3), Fixg(VT); C)GT

the unit of the cohomology group. For the second case, Fixg(C3) = C2 and
Fixg(VT) = M = {x3

1x2 + x3
2 = 1}. The relative cohomology group Hi(C2, M; C)GT ∼= Hi−1(M/GT ; C) for

i > 0 and = 0 for i = 0. Just like in the DN-case, we have M/GT = C∗, so the relative cohomology is non-zero
only in degree 2, i.e., for i = 2. Let us denote by e7 ∈ H2(C2, M)GT

the cohomology class corresponding to the
differential form (0,− 1

2πi dx2/x2).
Suppose that g = (η3i−r, ηr

3,−1). We have

ι∗ Tr(E•
l )g = −2(1 − η−r

3 )η−(3i−r)(l−1)C ∈ K0(Fixg(C
3))

and the component of the Γ-class of [TC3/GT ] in H(Fixg(C3)/GT) is

Γ(1 − (3i − r)/9)Γ(1 − r/3)Γ(1/2).

Therefore

chΓ(E•
l )g = − 1√

π
(1 − η−r

3 )η−(3i−r)(l−1)Γ(1 − (3i − r)/9)Γ(1 − r/3)e3i−r, 1 ≤ l ≤ 6.

Note that chΓ(E•
7 )g = 0.

Suppose now that g = (1, 1,−1). Then we have

ι∗ Tr(E•
l )g = −[ C

x2 // C // 0 ] + [ 0 // C
x2 // C ]. (3.15)
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Under the isomorphism K̃0(ΣM) ∼= K0(C2, M), the complex [ C
x2 // C ] corresponds to P− 1, where P is a vector

bundle on ΣM obtained by gluing two trivial line bundles along M with gluing function M → C∗, (x1, x2) 7→ x2.
Under the suspension isomorphism H2(ΣM) ∼= H1(M), we have that ch(P − 1) = c1(P) is the cohomology class
corresponding to the form 1

2πi dx2/x2. The latter, under the boundary isomorphism H1(M) → H2(C2, M) is mapped

precisely to e7, that is, ch([ C
x2 // C ]) = e7. The Chern character of the second complex in (3.15) is −e7, so we

get ch(ι∗ Tr(E•
l ))g = −2e7. Hence

chΓ(E•
l )g =

1
2π

Γ(1/2)(2πi)(−2e7) = −2i
√

πe7.

The computation of chΓ(E•
7 )g is the same as above except that we have to replace the bundle P with P3, that is, we

get chΓ(E•
7 )g = −6i

√
πe7.

Collecting the results of our computations we get

chΓ(E•
l ) = −

2

∑
r=1

3

∑
i=1

1√
π
(1 − η−r

3 )η−(3i−r)(l−1)Γ(1 − (3i − r)/9)Γ(1 − r/3)e3i−r − 2i
√

πe7

for 1 ≤ l ≤ 6 and chΓ(E•
7 ) = −6i

√
πe7. Let us compare the above formula with (3.10). Note that 1 − η−1

3 =√
3eπi/6 and 1 − η−2

3 =
√

3e−πi/6. We would like to find k, a ∈ Z3, such that, mir ◦Ψ(αk,a) = chΓ(E•
l ). Let us

write l − 1 = 3m + k for 0 ≤ k ≤ 2, 0 ≤ m ≤ 1. Then the above formula will hold if we choose a = −m and define

mir(ϕi) = e3i−1 (1 ≤ i ≤ 3), mir(ϕj+3) = e3j−2 (1 ≤ j ≤ 3), mir(ϕ7) = −e7.

Note that mir ◦Ψ(αk,0 + αk,1 + αk,2) = chΓ(E•
7 ). Using these formulas, we get immediately that the maps mir ◦Ψ

and chΓ identify the Milnor lattice H2( f−1(1); Z) with the relative K-ring K0(C3, VT). This completes the proof of
Theorem 3.3.
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Chapter 4

Chain type singularity

4.1 Chain type singularity

Following the notions introduced at the beginning of Section 2.5, we would like to introduce the following proposition.

Proposition 4.1 (cf. [32]) Any non-degenerate, invertible polynomial can be written as a ThomSebastiani sum (or
decoupled sum) f = f1 ⊕ · · · ⊕ fp of invertible ones (in groups of different variables) fν, ν = 1, . . . p of the
following types

1. chain type xa1
1 x2 + xa2

2 x3 + · · ·+ xam−1
m−1 xm + xam

m , m ≥ 1, when m = 1, it is also Fermat type,

2. loop type xa1
1 x2 + xa2

2 x3 + · · ·+ xam−1
m−1 xm + xam

m x1, m ≥ 2.

We also assume that ai ≥ 2, so that there are no terms of the form xixj.

In this thesis, we will work with chain type polynomial or its modified version for even variables case. The
modification is due to the upper index of the period vectors being integer.

Let fn ∈ C[x1, . . . , x2b n
2 c+1] be the following,

fn =

xa1
1 x2 + xa2

2 x3 + · · ·+ xan−1
n−1 xn + xan

n , n is odd,

xa1
1 x2 + xa2

2 x3 + · · ·+ xan−1
n−1 xn + xan

n + x2
n+1, n is even.

(4.1)

The hypersurfaces Vλ = {x ∈ C2b n
2 c+1 | fn(x) = λ} for λ 6= 0 are non-singular and their union has a structure of a

smooth fibration on C \ {0} known as the Milnor fibration. Let us fix a reference point λ = 1 and consider the middle
homology group H2b n

2 c(V1; Z), known also as the Milnor lattice. One may refer to Section 2.5.3 and Section 2.4.2 to

find that our interest is in the period vectors I(−b n
2 c)

α (λ) ∈ H fn defined by

(I(−b n
2 c)

α (λ), ϕi) := (2π)−b n
2 c
∫

αλ

ϕi(x)
ω

d f
,

where α ∈ H2b n
2 c(V1; C), ϕi(x) (1 ≤ i ≤ N) is a set of polynomials representing a basis of H fn , αλ ∈ H2b n

2 c(Vλ; C)

is obtained from α via a parallel transport along some reference path, and ω
d f is the so-called Gelfand–Leray form (see

[3]). Alternatively, we can view each period vector as a multivalued analytic function I(−b n
2 c)

α : C \ {0} → H fn .
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For homogeneity reasons, the period vectors have the form

I(−b n
2 c)

α (λ) =
λθ−1/2+b n

2 c

Γ(θ + 1/2 + b n
2 c)

Ψ(α), (4.2)

where Ψ : H2b n
2 c(V1; C) → H fn is a linear isomorphism. Our goal is to compute the image of the Milnor lattice

H2b n
2 c(V1; Z) via the map Ψ. The solution to this problem is given in Section 4.2. Explicit formulas for the image

of the Milnor lattice via the map Ψ are given in Proposition 4.14. The main feature of our answer is that it involves
various Γ-constants and roots of unity using the basis of middle homology constructed by Otani-Takahashi [41]. We
give the Seifert form of the basis as well.

4.1.1 K-theoretic interpretation of the Milnor lattice

The modified chain type polynomial fn corresponds to a (2b n
2 c + 1) × (2b n

2 c + 1) matrix A = (aij)1≤i,j≤2b n
2 c+1

with non-negative integer coefficients, such that,

fn(x1, . . . , x2b n
2 c+1) =

2b n
2 c+1

∑
i=1

2b n
2 c+1

∏
j=1

x
aij
j ,

namely, when n is odd, A = (aij)1≤i,j≤n = (aiδi,j + δi+1,j)1≤i,j≤n.
when n is even,

A = (aij)1≤i,j≤n+1 =



a1 1 0 · · · 0 0

0 a2
. . . . . .

...
...

...
. . . . . . . . . 0

...
...

. . . . . . . . . 1
...

0 · · · · · · 0 an 0
0 · · · · · · · · · 0 2


.

Following Fan–Jarvis–Ruan (see [16]) we consider also the Berglund–Hübsch dual polynomial

f T
n (x1, . . . , x2b n

2 c+1) =
2b n

2 c+1

∑
i=1

2b n
2 c+1

∏
j=1

x
aji
j ,

Let G f T
n

be the maximal group of diagonal symmetries of f T
n , that is,

G f T
n

:=

t ∈ (C∗)2b n
2 c+1

∣∣∣∣∣∣
2b n

2 c+1

∏
j=1

t
aji
j = 1 ∀i

 .

Finally, let Vf T
n =1 = {x ∈ C2b n

2 c+1 | f T
n (x) = 1}. Our main interest is in the topological relative K-theoretic orbifold

group

K0
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
]) := K0

G f T
n
(C2b n

2 c+1, Vf T
n =1).
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In general, there is no satisfactory definition of K-theory for non-compact spaces. However, in our case the pair
(C2b n

2 c+1, Vf T
n =1) is G f T

n
-equivariantly homotopic to a pair of finite CW complexes, so we may think of (C2b n

2 c+1, Vf T
n =1)

as a G f T
n

-equivariant pair of finite CW-complexes. We refer to [46] for some background on equivariant topological
K-theory.

Motivated by Iritani’s Γ-integral structure in quantum cohomology (see [27]), we will now construct a linear map

chΓ : K0
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
])⊗ C // Horb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
]; C) , (4.3)

which is a certain Γ-class modification of the orbifold Chern character map. For a G f T
n

-equivariant space X and
g ∈ G f T

n
, let us denote by Fixg(X) := {x ∈ X | gx = x} the set of fixed points. The elements in the relative K-group

will be identified with isomorphism classes [E → F] of two-term complexes E d // F of G f T
n

-equivariant vector
bundles, such that, the differential d is a morphism of G f T

n
-equivariant vector bundles and d|Vf T

n =1
: E|Vf T

n =1
→ F|Vf T

n =1

is an isomorphism. Note that for g ∈ G f T
n

, the restriction of a vector bundle E|
Fixg(C

2b n
2 c+1)

decomposes as a direct sum

of eigen-subbundles Eζ and that the restriction to Fixg(C
2b n

2 c+1) of every two term complex E d // F decomposes

as a direct sum of two term subcomplexes Eζ

dζ // Fζ , where dζ = d|Eζ
. We have the following well known

decomposition (e.g. see [8], Theorem 2):

Tr : K0
G f T

n
(C2b n

2 c+1, Vf T
n =1)⊗ C

∼= // ⊕
g∈G f T

n

[
K0(Fixg(C

2b n
2 c+1), Fixg(Vf T

n =1))⊗ C
]G f T

n ,

where [ ]
G f T

n denotes the G f T
n

-invariant part and the morphism Tr is defined by

Tr([E → F]) =
⊕

g∈G f T
n

⊕
ζ∈C∗

ζ[Eζ → Fζ ].

Remark 4.2 The above decomposition is proved in [8] in the case of absolute K-theory. However, using the long
exact sequence of a pair, it is straightforward to extend the result to relative K-theory as well.

The standard Chern character map gives an isomorphism

ch : K0(Fixg(C
2b n

2 c+1), Fixg(Vf T
n =1))⊗ C // Hev(Fixg(C

2b n
2 c+1), Fixg(Vf T

n =1); C) .

Finally, if G is a finite group acting on a smooth manifold M, such that the quotient groupoid [M/G] is an effective
orbifold, then H∗(M/G; C) ∼= [H∗(M; C)]G. Indeed, for a finite group G the operation taking G-invariants is an
exact functor from the category of G-vector spaces to the category of vector spaces. Therefore

Hi(M/G; C) ∼= Hi([Γ(M,A∗
M)]G) = [Hi(M,A∗

M)]G ∼= [Hi(M; C)]G,

where A∗
M is the sheaf of smooth differential forms on M with complex coefficients, the first isomorphism is Satake’s

de Rham theorem for orbifolds (see [45]), and the last one is the de Rham’s theorem for the manifold M. Using the long
exact sequence of a pair, we get also that Hi(M/G, N/G; C) ∼= [Hi(M, N; C)]G for any G-invariant submanifold
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N ⊂ M. On the other hand, by definition,

H∗
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
]; k) =

⊕
g∈G f T

n

H∗(Fixg(C
2b n

2 c+1)/G f T
n

, Fixg(Vf T
n =1)/G f T

n
; k),

k = Q, R, C.

Therefore, the composition c̃h := ch ◦Tr defines a ring homomorphism

c̃h : K0
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
])⊗ C // Hev

orb([C
2b n

2 c+1/G f T
n
], [Vf T

n =1/G f T
n
]; C)

which is the orbifold version of the Chern character map. Clearly c̃h is an isomorphism over C.

Remark 4.3 Orbifold cohomology H∗
orb has two natural gradings – standard topological degree grading coming from

the topological space underlying the orbit space and Chen–Ruan grading. In this paper we work with the topological
grading and the topological cup product.

Let us recall also the definition of the Γ-class. If E ∈ K0
orb([C

2b n
2 c+1/G f T

n
]) := K0

G f T
n
(C2b n

2 c+1) is an orbifold vector

bundle and Tr(E) = ∑g ∑ζ ζEζ , then each eigenvalue ζ = e2πiα, where 0 ≤ α < 1 is a rational number and we
define

Γ̂(E) = ∑
g

∏
ζ=e2πiα

rk(Eζ )

∏
i=1

Γ(1 − α + δζ,i) ∈ Hev
orb([C

2b n
2 c+1/G f T

n
]),

where δζ,i (1 ≤ i ≤ rk(Eζ)) are the Chern roots of the vector bundle Eζ . If E = [TC2b n
2 c+1/G f T

n
] is the orbifold

tangent bundle, then the Γ-class is denoted by Γ̂([C2b n
2 c+1/G f T

n
]). The map (??) is defined by the following formula:

chΓ([E → F]) :=
1

(2π)b
n
2 c

Γ̂([C2b n
2 c+1/G f T

n
]) ∪ (2πi)degC ι∗c̃h([E → F]),

where degC(ϕ) = iϕ for ϕ ∈ H2i
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
]; C) and ι∗ is an involution in orbifold cohomology

that exchanges the direct summands corresponding to g and g−1. Note that the definition of ι∗ makes sense because
Fixg = Fixg−1 .

Conjecture 4.4 There exists a linear isomorphism

mir : H fn
// H∗

orb([C
2b n

2 c+1/G f T
n
], [Vf T

n =1/G f T
n
]; C) ,

such that, the map

mir−1 ◦ chΓ : K0
orb([C

2b n
2 c+1/G f T

n
], [Vf T

n =1/G f T
n
])

∼= // Ψ(H2b n
2 c( f−1

n (1); Z))

is an isomorphism of Abelian groups.

Unfortunately we do not have a conceptual definition of the map mir. Our definition is on a case by case basis. We
expect that H∗

orb([C
2b n

2 c+1/G f T
n
], [Vf T

n =1/G f T
n
]; C) has a natural identification with the state space of FJRW-theory

under which mir is identified with the mirror map of Fan–Jarvis–Ruan (see [16]).
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4.2 Period map image of the Milnor lattice

Let us start with formulating the maximal group of diagonal symmetries, C-basis of Milnor ring, etc., of chain type
invertible polynomial fn defined in (4.2), explicitly.

We denote by G fn the maximal group of diagonal symmetries of fn, that is,

G fn :=

t ∈ (C∗)2b n
2 c+1

∣∣∣∣∣∣
2b n

2 c+1

∏
j=1

t
aij
j = 1 ∀i

 .

It is not hard to find the following proposition

Proposition 4.5 Each element g ∈ G fn has a unique expression of the form g = (e[α1], . . . , e[αn]) with 0 ⩽ αi < 1,
where e[α] := exp(2π

√
−1α).

More concretely, set d0 := 1 and di := a1 · · · ai for i = 1, . . . , n. When n is odd, then Then G fn is a cyclic group
whose generator is (

e
[
(−1)n 1

dn

]
, . . . , e

[
(−1)n+i−1 di−1

dn

]
, . . . , e

[
−dn−1

dn

])
.

While, when n is even, then G fn is the direct sum of two cyclic groups whose generators are(
e
[
(−1)n 1

dn

]
, . . . , e

[
(−1)n+i−1 di−1

dn

]
, . . . , e

[
−dn−1

dn

]
, 1
)

and (1, . . . , 1,−1).

Definition 4.6 For each non-negative integer n, define sets B′
fn |s , (s = 0, 1, 2, . . . ,

⌊ n
2
⌋
), B fn of monomials in C[x1, . . . , xn]

as follows: Let B′
f0|0 := {1}, B′

f1|0
= {xk1

1 |0 ≤ k1 ≤ a1 − 2} and if n ≥ 2,

B′
fn |s :=

xa1−1
1 xa3−1

3 · · · xa2s−1−1
2s−1 xk2s+1

2s+1 xk2s+2
2s+2 . . . xkn

n

∣∣∣∣∣∣
0 ≤ k2s+1 ≤ a2s+1 − 2,

0 ≤ k2s+i ≤ a2s+i − 1 (i = 2, · · · , n − 2s)

 .

Let

B fn :=
b n

2 c⋃
s=0

B′
fn |s .

And we can identify the above set of monomials with the following set,

B̃′
fn |s :=

{
k = (k1, . . . , kn) ∈ Zn

∣∣∣xk ∈ B′
fn |s

}
.

Similarly,

B̃ fn :=
b n

2 c⋃
s=0

B̃′
fn |s .

Proposition 4.7 The set B fn defines a C-basis of the Milnor ring H fn . Namely, we have H fn = 〈[ϕ(n)(x)]|ϕ(n)(x) ∈
B fn〉C.

Remark 4.8 For n even, since ∂ fn
∂xn+1

= 2xn+1, we merge the cases where n is even and odd.

Define a positive integer µn by µn := ∑
b n

2 c
s=0

dn
d2s

− dn
d2s+1

(where dn
dn+1

= 0) = ∑n
i=0(−1)i dn

di
.
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Corollary 4.9 The Milnor number µ fn = dimC H fn is given by µn.

Denote by Ā the invertible matrix associated to

 fn n is odd

fn − x2
n+1 n is even

∈ C[x1, . . . , xn], which is given by

Ā = (aij)1≤i,j≤n = (aiδi,j + δi+1,j)1≤i,j≤n =



a1 1 0 · · · 0

0 a2
. . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . . . . 1
0 · · · · · · 0 an


.

Definition 4.10 For each k = (k1, . . . , kn), define rational numbers ω
(n)
k,1 , . . . , ω

(n)
k,n by

(ω
(n)
k,1 , . . . , ω

(n)
k,n ) := (k1 + 1, . . . , kn + 1)Ā−T.

In particular, ω
(n)
0,i are nothing but the weight of xi. Therefore, the central charge or conformal dimension is ∑n

i=1(1−
2ω

(n)
0,i )

Consider the following number set,

Ii :=

{a ∈ diZ/dnZ|di+1 ∤ a} i = 0, 1, . . . , n − 1

{0} := dnZ/dnZ i = n

For a ∈ Ik and i = 1, 2, . . . , n, set

ω
(n)
a,i =

(−1)n−ia mod di
di

,

apparently, ω
(n)
dn−a,i =

0 = ω
(n)
a,i i = 1, . . . , k

1 − ω
(n)
a,i i = k + 1, . . . , n

.

Proposition 4.11 The map

ψ : B̃′
fn |s :=

{
k = (k1, . . . , kn) ∈ Zn

∣∣∣xk ∈ B′
fn |s

} ∼=−→ I2s

defined by

ψ(k) = ψ(k1, . . . , kn) :=
n

∑
l=1

(−1)n−ldl−1(kl + 1)

is a bijection of sets of dn
d2s

− dn
d2s+1

elements and satisfies ω
(n)
ψ(k),i =

0 i = 1, . . . , 2s

ω
(n)
k,i i = 2s + 1, . . . , n

.
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Proposition 4.12 For each k ∈ B̃′

fn |s , set its dual k∗ ∈ B̃′
fn |s such that (k2s+1 + k∗2s+1, . . . , kn + k∗n) = (a2s+1 −

2, a2s+2 − 1, a2s+3 − 1, . . . , an − 1), which is equivalent to ψ(k)+ψ(k∗) = dn and therefore ω
(n)
k∗ ,i =


1 i = 1, 3, 5, . . . , 2s − 1

0 i = 2, 4, 6, . . . , 2s

1 − ω
(n)
k,i i = 2s + 1, . . . , n

.

Furthermore, we have recursion formula ω
(n)
k,i−1 = ki + 1 − aiω

(n)
k,i , i = 2s + 1, . . . , n, which will be useful in

the calculation afterwards.

Proposition 4.13 For k = (k1, . . . , kn), l = (l1, . . . , ln) such that xk := xk1
1 · · · xkn

n , xl := xl1
1 · · · xln

n ∈ B fn , we have
the following relation for the residue pairing.

ηkl := (xk, xl) := Resx=0
xk+ldx

2
1+(−1)n

2 ∏n
i=1

∂ fn
∂xi

=

2−
1+(−1)n

2
(−1)s

a1a3···a2s−1
· d2s

dn
k, l ∈ B̃′

fn |s and l = k∗

0 otherwise
.

Proof The result can be also calculated by (2.22) straightforwardly.

We denote its inverse by ηkl, i.e., ∑l∈B fn
ηklηlj = δkj, then

ηkl =

2
1+(−1)n

2 (−1)s · a1a3 · · · a2s−1 · dn
d2s

k, l ∈ B̃′
fn |s and l = k∗

0 otherwise

We construct vanishing cycle α
(n)
1 ∈ H2b n

2 c( f−1
n (1); Z) inductively according to [41] (section 5, with opposite orien-

tation and with modification for n being even) and generate the rest vanishing cycles α
(n)
j ∈ H2b n

2 c( f−1
n (1); Z), j =

2, . . . , µn by the following G fn -action

(x1, . . . , xi, . . . , xn) 7→
(

e
[
(−1)n j − 1

dn

]
· x1, . . . , e

[
(−1)n+i−1 (j − 1)di−1

dn

]
· xi, . . . , e

[
− (j − 1)dn−1

dn

]
· xn

)
.

when n is odd. While, when n is even, the action on the first n components are the same as that of the case n is odd,
and the last component remains.

If n is odd, the image of the vanishing cycles α
(n)
j ∈ H2b n

2 c( f−1
n (1); Z), j = 1, . . . , µn via the map Ψ is

Ψ(α
(n)
j ) = ∑

k,l∈B̃ fn

(Ψ(α
(n)
j ), xl)ηlkxk = ∑

k∈B fn

(Ψ(α
(n)
j ), xk∗)ηk∗kxk

= ∑
k∈B̃ fn

ηk∗kxk
∫ ∞

0
e−λ(I(−

n−1
2 )

α
(n)
j

(λ), xk∗)dλ

= (2π)−
n−1

2 ∑
k∈B̃ fn

ηk∗kxk
∫ ∞

0
e−λ

∫
(αλ)

(n)
j

xk∗ dx
d fn

dλ

= (2π)−
n−1

2 ∑
k∈B̃ fn

ηk∗kxk
∫

Γ(n)
j

e− fn xk∗dx,
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where Γ(n)
j is α

(n)
j ’s corresponding class in Hn(Cn, Re( fn) � 0; Z). According to section 5 of [41], when xk∗ ∈

B′
fn |s , ∫

Γ(n)
j

e− fn xk∗dx = e
[
−(j − 1)ω(n)

k,n

] ∫
Γ(n)

1

e− fn xk∗dx

=(ηk∗k)−1e
[
−(j − 1)ω(n)

k,n

]
· (2πi)s

d n
2 e−1

∏
j=s

(
e
[
ω
(n)
k,2j+1

]
− 1
)
·

n

∏
k=2s+1

Γ
(

ω
(n)
k∗ ,k

)
.

If n is even, let us calculate (I(−b n
2 c)

α
(n)
j

(λ), xk∗) first. Recall (3.3)

(I(−b n
2 c)

α
(n)
j

(λ), xk∗) = (2π)−b n
2 c
∫
(αλ)

(n)
j

xk∗ dx1 . . . dxn+1

d fn

=
2

(2π)b
n
2 c

∂λ

∫ λ

0
(λ − µ)

1
2

∫
Aµ

xk∗ dx1 . . . dxn

d( fn − x2
n+1)

dµ

=
2

(2π)b
n
2 c

∂λ

∫ λ

0
(λ − µ)

1
2

µθ+ n
2 −1

Γ(θ + n
2 )

∫
Γ(n)

j

e−( fn−x2
n+1)xk∗dxdµ

=

√
π

(2π)b
n
2 c

λθ+ n
2 −

1
2

Γ(θ + n
2 + 1

2 )

∫
Γ(n)

j

e−( fn−x2
n+1)xk∗dx,

where Γ(n)
j is α

(n)
j ’s corresponding class in Hn(Cn, Re( fn) � 0; Z), up to a suspension. Again, according to section

5 of [41], when xk∗ ∈ B′
fn |s ,∫

Γ(n)
j

e−( fn−x2
n+1)xk∗dx = e

[
−(j − 1)ω(n)

k,n

] ∫
Γ(n)

1

e−( fn−x2
n+1)xk∗dx

=2(ηk∗k)−1e
[
−(j − 1)ω(n)

k,n

]
· (2πi)s

d n
2 e−1

∏
j=s

(
e
[
ω
(n)
k,2j+1

]
− 1
)
·

n

∏
k=2s+1

Γ
(

ω
(n)
k∗ ,k

)
,

where we need to mulitply by 2 since the residue pairing changes. Combining these two cases, we have the following

Proposition 4.14 The image of the vanishing cycles α
(n)
j ∈ H2b n

2 c( f−1
n (1); Z), j = 1, . . . , µn via the map Ψ is

Ψ(α
(n)
j ) =

(2
√

π)
1+(−1)n

2

(2π)b
n
2 c

∑
k∈B̃ fn

xke
[
−(j − 1)ω(n)

k,n

]
· (2πi)s

d n
2 e−1

∏
j=s

(
e
[
ω
(n)
k,2j+1

]
− 1
)
·

n

∏
k=2s+1

Γ
(

ω
(n)
k∗ ,k

)
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Let us calculate Seifert form 〈αa, αb〉 := 1
2π (e

π
√
−1θΨ(αa), Ψ(αb)), θ(xk) =

(
n
2 − ∑n

i=1 ω
(n)
k,i

)
xk =

(
n
2 − s − ∑n

i=2s+1 ω
(n)
k,i

)
xk

to show that the vanishing cycles α
(n)
j ∈ H2b n

2 c( f−1
n (1); Z), j = 1, . . . , µn give us a Z-basis of Milnor lattice.

〈αa, αb〉

=
(4π)

1+(−1)n
2

(2π)2b n
2 c+1

b n
2 c

∑
s=0

∑
k∈B̃′

fn |s

ηk∗k · e

[
n
4
− s

2
+ (b − a)ω(n)

k,n − 1
2

n

∑
i=2s+1

ω
(n)
k,i

]
·

· (2πi)2s
d n

2 e−1

∏
j=s

(
2 − e

[
ω
(n)
k,2j+1

]
− e

[
−ω

(n)
k,2j+1

])
·

n

∏
k=2s+1

Γ
(

1 − ω
(n)
k,k

)
Γ
(

ω
(n)
k,k

)

=2in
b n

2 c

∑
s=0

∑
k∈B̃′

fn |s

ηk∗k · e

[
(b − a)ω(n)

k,n − 1
2

n

∑
i=2s+1

ω
(n)
k,i

]
·

·
d n

2 e−1

∏
j=s

sin2(πω
(n)
k,2j+1) ·

n

∏
k=2s+1

1

sin(πω
(n)
k,k )

For clarity, we consider the following factor in the summation, where l ∈ {s, s + 1, s + 2, . . . , d n
2 e − 2},

e
[
−1

2
ω
(n)
k,2l+1 −

1
2

ω
(n)
k,2l+2

]
· sin(πω

(n)
k,2l+1) ·

1

sin(πω
(n)
k,2l+2)

=e
[
−1

2
ω
(n)
k,2l+1 −

1
2

ω
(n)
k,2l+2

]
·

e
[

1
2 ω

(n)
k,2l+1

]
− e

[
− 1

2 ω
(n)
k,2l+1

]
2i

· 2i

e
[

1
2 ω

(n)
k,2l+2

]
− e

[
− 1

2 ω
(n)
k,2l+2

]
=−

1 − e
[
−ω

(n)
k,2l+1

]
1 − e

[
ω
(n)
k,2l+2

] = −
1 − e

[
a2l+2ω

(n)
k,2l+2 − k2l+2 − 1

]
1 − e

[
ω
(n)
k,2l+2

] = −
1 − e

[
a2l+2ω

(n)
k,2l+2

]
1 − e

[
ω
(n)
k,2l+2

]
=−

a2l+2−1

∑
m=0

e
[
mω

(n)
k,2l+2

]
.

For the last factor containing (b − a) in the summation, when n is even and 2s < n, under the same procedure, we
obtain,

e
[
(b − a)ω(n)

k,n − 1
2

ω
(n)
k,n−1 −

1
2

ω
(n)
k,n

]
· sin(πω

(n)
k,n−1) ·

1

sin(πω
(n)
k,n )

=−
an−1

∑
m=0

e
[
(b − a + m)ω

(n)
k,n

]
,
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when n = 2s we do not need to do anything, since ω
(n)
k,n = 0 and e

[
(b − a)ω(n)

k,n

]
= 1,

while n is odd, we get

e
[
(b − a)ω(n)

k,n − 1
2

ω
(n)
k,n

]
· sin(πω

(n)
k,n )

=e
[
(b − a)ω(n)

k,n − 1
2

ω
(n)
k,n

]
·

e
[

1
2 ω

(n)
k,n

]
− e

[
− 1

2 ω
(n)
k,n

]
2i

=− i
2

(
e
[
(b − a)ω(n)

k,n

]
− e

[
(b − a − 1)ω(n)

k,n

])
.

To simplify the result of Seifert form, we start from decomposing the summation ∑k∈B̃′
fn |s

into ∑the first n−1 components of k ranges in B̃′
fn |s

and ∑kn =


∑an−1

kn=0, 2s + 1 < n

∑an−2
kn=0, 2s + 1 = n

kn = 0, 2s = n

. According to the definition ω
(n)
k,i , it depends only on the (2s + 1)-th to i-th com-

ponent of k. Thus, the summation ∑k∈B̃′
fn |s

could be transformed into the following form,

∑
the first n−1 components of k ranges in B̃′

fn |s

d n
2 e−2

∏
l=s

the factors with l

∑
kn

the last factor

Then we exchange the order of summations ∑kn and ∑an−1
m=0 , when n is even and 2s < n. Hence, when n = 2s,

∑kn the last factor = 1.
When 2s + 1 < n and n is even,

∑
kn

the last factor =− an

an−1

∑
m=0

δm,a−b mod an e
[
−1
an

(b − a + m)ω
(n)
k,n−1

]
=− ane

[⌊
−1
an

(b − a)
⌋

ω
(n)
k,n−1

]
.

When 2s + 1 = n,

∑
kn

the last factor = − i
2

an(δ0,b−a mod an − δ0,b−a−1 mod an).

When 2s + 1 < n and n is odd, ∑kn the last factor

= − i
2

an

(
δ0,b−a mod an e

[
−1
an

(b − a)ω(n)
k,n−1

]
− δ0,b−a−1 mod an e

[
−1
an

(b − a − 1)ω(n)
k,n−1

])
.

The case that 2s + 1 = n can be merged into the last case. Here the result that Kronecker deltas are zero is from the
sum of an(at most)-th root of unity (up to a certain rotation e

[
−1
an
(b − a + m)ω

(n)
k,n−1

]
around zero for each of them)

is zero.
We can do almost the same but relatively simplier decomposing summation procedures for l = d n

2 e − 2, . . . , s,
which has to be done in this reverse order due to the property of ω

(n)
k,i . Let us see how the recursion goes for l =



Chapter 4. Chain type singularity 83
d n

2 e − 2, . . . , s + 1

−
a2l+1−1

∑
k2l+1=0

a2l+2−1

∑
k2l+2=0

a2l+2−1

∑
m=0

e
[
(m − pl+1)ω

(n)
k,2l+2

]

=−
a2l+1−1

∑
k2l+1=0

a2l+2−1

∑
m=0

a2l+2−1

∑
k2l+2=0

e
[
(m − pl+1)ω

(n)
k,2l+2

]

=−
a2l+1−1

∑
k2l+1=0

a2l+2−1

∑
m=0

a2l+2δm,pl+1 mod a2l+2e
[

−1
a2l+2

(m − pl+1)ω
(n)
k,2l+1

]

=− a2l+2

a2l+1−1

∑
k2l+1=0

e
[
qlω

(n)
k,2l+1

]
ql :=

⌊
pl+1
a2l+2

⌋

=− a2l+2a2l+1δ0,ql mod a2l+1e
[
−ql

aa2l+1

ω
(n)
k,2l

]
pl :=

ql
aa2l+1

for l = s,

−
a2s+1−2

∑
k2s+1=0

a2s+2−1

∑
k2s+2=0

a2s+2−1

∑
m=0

e
[
(m − ps+1)ω

(n)
k,2s+2

]

=− a2s+2

a2s+1−2

∑
k2s+1=0

e
[
qsω

(n)
k,2s+1

]
=− a2s+2

(
a2s+1δ0,qs mod a2s+1 − 1

)
notice that ω

(n)
k,2s = 0,

where p ∈ Z is from the previous step, i.e., the (2l + 3)-th component. And the recursion terminates not only when
l = s but also when δ0,ql mod a2l+1 = 0,

ql =



⌊
1

a2l+2
1

a2l+3

⌊
. . .
⌊

a−b
an

⌋⌋⌋
n is even⌊

a−b
an

⌋
2l + 2 = n⌊

1
a2l+2

1
a2l+3

⌊
. . .
⌊

b−a
an−1an

⌋⌋⌋
n is odd, for the first term, i.e., (b − a) term instead of (b − a − 1)term

b − a 2l + 1 = n for the first term, i.e., (b − a) term instead of (b − a − 1)term

.

Eventually, we can finish the calculation of Seifert form.
Set l0 to be the biggest l ∈ {0, 1, 2, . . . , n

2 − 3
4 − (−1)n

4 } such that δ0,ql mod a2l+1 = 0. If there is no such l, make a
convention that l0 = −1.

Consider the summation ∑
b n

2 c
s=0 in 〈αa, αb〉.

The term with s < l0 vanishes due to δ0,ql mod a2l+1 = 0.
We consider the easier case that n is even.
The term with s = n

2 is (−1)
n
2

a1a3 ...an−1
. The term with s = l0 is

−
(

(−1)l0

a1a3 · · · a2l0−1
·

d2l0
dn

) n
2 −1

∏
l=l0+1

a2l+1

 n
2 −1

∏
l=l0

(−a2l+2)

 =
(−1)

n
2 −1

a1a3 . . . a2l0+1
.
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The term with s = l0 + 1, . . . , n

2 − 1 is

n
2 −1

∑
s=l0+1

(
(−1)s

a1a3 · · · a2s−1
· d2s

dn

)
(a2s+1 − 1)

 n
2 −1

∏
l=s+1

a2l+1

 n
2 −1

∏
l=s

(−a2l+2)


=

n
2 −1

∑
s=l0+1

(−1)
n
2

a1a3 . . . a2s+1
(a2s+1 − 1)

=(−1)
n
2

(
1

a1a3 . . . a2l0+1
− 1

a1a3 . . . an−1

)
Therefore, we find that

〈αa, αb〉 =

1 l0 = −1

0 otherwise
.

We can argue that the determinant of Seifert form above is 1. In particular, it is lower triangular matrix if we treat
a as row index and b as column index. Obviously, if a = b, then 〈αa, αb〉 = 1. Namely, diagonal entries are 1.

We want to show that if a − b < 0, a, b ∈ {1, . . . , µn} then 〈αa, αb〉 = 0. Equivalently, we will show that if
a − b < 0, 〈αa, αb〉 = 1, then a − b < 1 − µn. It is easy to find that if a − b < 0, then ql < 0 regardless of the
value of l.

Since l0 = −1, we have a1 | q0. Due to the fact that q0 < 0, the biggest possible q0 is −a1, i.e., we get⌊
1
a2

1
a3

q1

⌋
= −a1. One can find that the biggest possible q1 such that a3 | a1 is −a1a2a3 + a2a3 − a3. The same

procedures can be done all the way until we find that the biggest possible a − b is −µn, i.e., a − b < 1 − µn.
Then we can solve the case that n is odd.
The first term, i.e., (b − a)-term, of the term with s = l0 is

i
2

(
(−1)l0

a1a3 · · · a2l0−1
·

d2l0
dn

) n−1
2 −1

∏
l=l0+1

a2l+1

 n−1
2 −1

∏
l=l0

(−a2l+2)

 an =
i
2

(−1)
n−1

2

a1a3 . . . a2l0+1
.

The first term, i.e., (b − a)-term, of the term with s = l0 + 1, . . . , n−1
2 is

− i
2

n−1
2 −1

∑
s=l0+1

(
(−1)s

a1a3 · · · a2s−1
· d2s

dn

)
(a2s+1 − 1)

 n−1
2 −1

∏
l=s+1

a2l+1

 n−1
2 −1

∏
l=s

(−a2l+2)

 an

− i
2

(−1)
n−1

2

a1a3 · · · an−2
· dn−1

dn
an

=− i(−1)
n−1

2

2

 1
a1a3 . . . an−2

+

n−1
2 −1

∑
s=l0+1

1
a1a3 . . . a2s+1

(a2s+1 − 1)


=− i(−1)

n−1
2

2
1

a1a3 . . . a2l0+1
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Similarly, we find that

The first term, i.e., (b − a)-term, of 〈αa, αb〉 =

1 l0 = −1

0 otherwise
.

Denote by l′0 the counterpart of the second term, i.e., (b − a − 1)-term. Therefore,

〈αa, αb〉 =


1 l0 = −1 and l′0 non-negative

−1 l′0 = −1 and l0 non-negative

0 otherwise

.

Similarly, we can also argue that the determinant of Seifert form above is 1 by showing it is upper triangular
matrix if we treat a as row index and b as column index and its diagonal entries are 1. For simplicity, we consider the
contribution from the first term, i.e., (b − a)-term. Almost the same argument for the case that n is even tells us that
the biggest possible b − a such that the first term, i.e., (b − a)-term of 〈αa, αb〉 equals to 1 is −µn − 1. We can apply
the result to the second term, i.e., (b − a − 1)-term of 〈αa, αb〉. That is to say, the biggest possible b − a such that the
second term, i.e., (b − a − 1)-term of 〈αa, αb〉 equals to −1 is −µn. Combining these facts, Seifer form 〈αa, αb〉 is
upper triangular matrix with diagonal entries 1.

4.3 K-theoretic interpretation of chain type

Proposition 4.15 The group G f T
n

is a cyclic group of order dn generated by the element

ggen. :=
(

e
[
(−1)n−1 1

d1

]
, . . . , e

[
(−1)i−1 1

dn+1−i

]
, . . . , e

[
1
dn

])
.

Definition 4.16 For each non-negative integer n, define sets B′
f T
n

, B f T
n

of monomials in C[x1, . . . , xn] inductively as
follows: Let B′

f T
0

:= {1} and

B′
f T
n

:= {xk1
1 xk2

2 · · · xkn
n |0 ≤ ki ≤ ai − 1(i = 1, . . . , n − 1), 0 ≤ kn ≤ an − 2}, n ≥ 1.

For n = 0, 1, let B f T
0

:= B′
f T
0
= {1} and B f T

1
:= B′

f T
1
= {xk1

1 |0 ≤ k1 ≤ a1 − 2}.
For n ≥ 2, let

B f T
n

:= B′
f T
n
∪
{

ϕ(n−2)(x1, . . . , xn−2)xan−1
n |ϕ(n−2)(x1, . . . , xn−2) ∈ B f T

n−2

}
.

Proposition 4.17 The set B f T
n

defines a C-basis of the Jacobian algebra Jac( f T
n ). Namely, we have Jac( f T

n ) =

〈[ϕ(n)(x)]|ϕ(n)(x) ∈ B f T
n
〉C.

Set d0 := 1 and di := a1 · · · ai for i = 1, . . . , n. Define a positive integer µ̃n by µ̃n := ∑n
i=0(−1)n−idi, which

satisfies µ̃n = dn − dn−1 + µ̃n−2.

Corollary 4.18 The Milnor number µ f T
n
= dimCJac( f T

n ) is given by µ̃n.
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Let Ωp(Cn) be the complex vector space of regular p-forms on Cn. Consider the complex vector space

Ω f T
n

:= Ωn(Cn)/d f T
n ∧ Ωn−1(Cn).

If n = 0, then set Ω f T
n

:= C, the complex vector space of constant functions on a point. Note that Ω f T
n

is naturally a
free Jac( f T

n )-module of rank one, namely, by choosing a nowhere vanishing n-form dx := dx1 ∧ · · · ∧ dxn we have
the following isomorphism

Jac( f T
n )

∼=−→ Ω f T
n

, [ϕ(x)] 7→ [ϕ(x)dx].

Our first step is to show the dimension of complexified relative K-ring K0
G f T

n
(Cn, VT

1 ) ⊗ C. Let us state the

following lemma.

Lemma 4.19 If n is even,
[
Ω f T

n

]G f T
n is spanned by the single G f T

n
-invariant class of n-form

[
∏

n
2
i=1 xa2i−1

2i dx
]
, i.e.,

[
Ω f T

n

]G f T
n = C ·

 n
2

∏
i=1

xa2i−1
2i dx

 .

Proposition 4.20

dimC

(
K0

G f T
n
(Cn, VT

1 )⊗ C

)
=

n

∑
i=0

(−1)i dn

di
.

Proof Consider g = ga
gen. ∈ G f T

n
of the form (1, . . . , 1, ∗, . . . , ∗) where the first i components are 1 and the rest

components are not 1, i.e., ∗ represent a number in U(1) \ {1}, where i = 0, 1, . . . , n. Then, we obtain that g =

ga
gen. ∈ G f T

n
is of such a form if and only if a ∈ Ii :=

{a ∈ diZ/dnZ|di+1 ∤ a} i = 0, 1, . . . , n − 1

{0} i = n
. In this case,

Fixg(Cn) ∼= Ci and Fixg(VT
1 ) ∼= {x ∈ Ci| f T

i (x) = 1} which is of homotopy type Si−1 ∨ · · · ∨ Si−1.
Let us apply the decomposition that we stated in the introduction

Tr : K0
G f T

n
(Cn, VT

1 )⊗ C
∼= // ⊕

g∈G f T
n

[
K0(Fixg(Cn), Fixg(VT

1 ))⊗ C
]G f T

n ,

When i is odd, we have the following exact sequence of reduced K-groups
for K0(Fixg(Cn), Fixg(VT

1 )) = K̃
(
Ci/

{
x ∈ Ci| f T

i (x) = 1
})

,

K̃−1 (Ci) // K̃−1 ({x ∈ Ci| f T
i (x) = 1

}) ∼= // K̃
(
Ci/

{
x ∈ Ci| f T

i (x) = 1
})

// K̃
(
Ci) ,

where the isomorphism is due to the fact that the reduced K-groups of the two sides are trivial.
Therefore, K0(Fixg(Cn), Fixg(VT

1 )) ∼= K̃−1 ({x ∈ Ci| f T
i (x) = 1

}) ∼= K̃−1 (Si−1 ∨ · · · ∨ Si−1) = 0.
When i is even, the standard Chern character map gives an isomorphism

K0(Fixg(C
n), Fixg(VT

1 ))⊗ C → Hev(Fixg(C
n), Fixg(VT

1 ); C).

Again, due to the fact that Fixg(VT
1 ) ∼= {x ∈ Ci| f T

i (x) = 1} is of homotopy type Si−1 ∨ · · · ∨ Si−1, we have the
following equation
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Hev(Fixg(C
n), Fixg(VT

1 ); C) = Hi(Ci, {x ∈ Ci| f T
i (x) = 1}; C) ∼= Ω f T

i
.

Applying the lemma, we have

dimC

[
K0(Fixg(C

n), Fixg(VT
1 ))⊗ C

]G f T
n = dimC

[
Ω f T

i

]G f T
i = 1.

Finally, since |Ii| = dn
di
− dn

di+1
(i = 0, 1, 2, . . . , n − 1), |In| = 1, we obtain that

dimC

(
K0

G f T
n
(Cn, VT

1 )⊗ C

)
= ∑

i even
|Ii| =

n

∑
i=0

(−1)i dn

di
.

Our next step is to construct a Z-basis of torsion-free part of the relative K-ring K0
G f T

n
(Cn, VT

1 ).

Since Cn is G f T
n

-homotopy equivalent to the origin, K0
G f T

n
(Cn) coincides with the representation ring of G f T

n
, that

is,
K0

G f T
n
(Cn) = Z[L1, . . . , Ln]/(La1

1 − 1, L1La2
2 − 1, . . . , Ln−1Lan

n − 1) = Z[Ln]/(Ldn
n − 1),

where Li = Cn × C is the trivial bundle with G f T
n

-action g · (x, λ) := (gx, giλ) and 1 = Cn × C =: C is the trivial
bundle with G f T

n
-action g · (x, λ) := (gx, λ). Note that TCn ∼= ∑n

i=1 Li in the category of G f T
n

-equivariant bundles.
Let us construct the following two types of complexes of G f T

n
-line bundle

E•
2s−1 :

(
L−1

2s−1 = L
(−1)n−2s dn

d2s−1
n

)
x2s−1 // C , s = 1, 2, . . . ,

⌈n
2

⌉
,

F•
2s−1 : C

x
d2s−1
2s−1 // C , s = 1, 2, . . . ,

⌊n
2

⌋
,

and E•
2s−1, F•

2s−1 represent two elements of the relative K-ring K0
G f T

n
(Cn, {x2s−1 6= 0}). Note that E•

2s−1 ⊗ F•
2s′−1

represents an element of the relative K-ring K0
G f T

n
(Cn, {x2s−1 6= 0 or x2s′−1 6= 0}) and that there is an inclusion

K0
G f T

n

(
Cn, {x1 6= 0 or x3 6= 0 or · · · or x2d n

2 e−1 6= 0}
)
⊆ K0

G f T
n

(
Cn, VT

1

)
.

We consider the following exact sequence derived from the couple (C, VT
1 ),

0 i // K−1
G f T

n
(VT

1 )
j // K0

G f T
n
(Cn, VT

1 )
k // K0

G f T
n
(Cn)

i // K0
G f T

n
(VT

1 ) ,

where the sequence starts from 0 is due to the fact that K−1
G f T

n
(Cn) = K−1

G f T
n
({0}) = 0. Furthermore, it is splitted up

into the short exact sequence,

0 // K−1
G f T

n
(VT

1 )
j // K0

G f T
n
(Cn, VT

1 )
k // Im k // 0 ,
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Proposition 4.21 The image of k is a principal ideal of K0

G f T
n
(Cn) generated by

d n
2 e

∏
s=1

(L−1
2s−1 − 1),

which is a Z-module of rank dn
d0

− dn
d1

. There is a morphism u : Im k → K0
G f T

n
(Cn, VT

1 ) such that k ◦ u = idIm k, i.e.,

the above exact sequence right splits.

Proof We will prove the first statement by showing Ker i is the principal ideal. Let us denote L(−1)n

n by L̃n. Then

K0
G f T

n
(Cn) = Z[L̃n]/(L̃dn

n − 1) and L−1
2s−1 = L̃

dn
d2s−1
n . For any polynomial ∑dn−1

i=0 ci L̃i
n ∈ Z[L̃n]/(L̃dn

n − 1). Apply

Euclidean division to the polynomial with divisor (L−1
1 − 1), though the degree of a non-zero polynomial here is in

Zdn . We will stop the division as a normal polynomial, i.e., stop the process as long as the degree smaller than dn
d1

.

Otherwise the process can be done endlessly due to the relation L̃dn
n = 1. We obtain

dn−1

∑
i=0

ci L̃i
n = (L−1

1 − 1)q1(L̃n) + r̃1(L̃n),

where deg r̃1 < dn
d1
(r̃1 ∈ spanZ{L̃i

n}
dn
d1

−1

i=0 ) and deg q1 < dn
d0

− dn
d1

. For q1, it is divided by (L−1
3 − 1). However,

we will do polynomial long division for it eventhough its degree is smaller than dn
d3

until its degree is zero, due to the

relation L̃dn
n = 1. But this time, the process will terminate since deg q1 < dn

d0
− dn

d1
< dn − dn

d3
. Then

q1(L̃n) = (L−1
3 − 1)q3(L̃n) + r̃3(L̃n),

where q3(L̃n) ∈ spanZ{L̃i
n}

dn
d0

− dn
d1

− dn
d3

i=− dn
d3

and r̃3 ∈ spanZ{L̃i
n}−1

i=− dn
d3

. The remaining dividing process (s = 3, 4, . . . ,
⌈ n

2
⌉
)

follows the pattern of dividing (L−1
3 − 1), in other words, each time we do polynomial long division with at most

dn
d0

− dn
d1

steps. Finally, we get

dn−1

∑
i=0

ci L̃i
n =

d n
2 e

∏
s=1

(L−1
2s−1 − 1)qd n

2 e(L̃n) +
d n

2 e
∑
j=1

r̃2j−1(L̃n)
j−1

∏
s=1

(L−1
2s−1 − 1),

where qd n
2 e(L̃n) ∈ spanZ{L̃i

n}
dn
d0

− dn
d1

−∑
d n

2 e
s=2

dn
d2s−1

i=−∑
d n

2 e
s=2

dn
d2s−1

and r̃2j−1(L̃n) ∈ spanZ{L̃i
n}

−1−∑
j−1
s=2

dn
d2s−1

i=−∑
j
s=2

dn
d2s−1

. By multiplying

L̃
∑
d n

2 e
s=2

dn
d2s−1

n to both sides of the equation, we have that any polynomial in K0
G f T

n
(Cn) can be decompose into the

following form
d n

2 e
∏
s=1

(L−1
2s−1 − 1)q(L̃n) +

d n
2 e

∑
j=1

r2j−1(L̃n)
j−1

∏
s=1

(L−1
2s−1 − 1),
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where q(L̃n) ∈ spanZ{L̃i
n}

dn
d0

− dn
d1

i=0 and r2j−1(L̃n) ∈ spanZ{L̃i
n}

−1+∑
d n

2 e
s=j

dn
d2s−1

i=∑
d n

2 e
s=j+1

dn
d2s−1

.

Since {x1 6= 0 or x3 6= 0 or · · · or x2d n
2 e−1 6= 0} ⊇ VT

1 , the tensor product
⊗d n

2 e
s=1 E•

2s−1 is exact on VT
1 ,

which gives a G f T
n

-isomorphism between the two G f T
n

-vector bundles from ∏
d n

2 e
s=1 (L−1

2s−1 − 1). Therefore, for i :
K0

G f T
n
(Cn) → K0

G f T
n
(VT

1 ), we derived that

i

d n
2 e

∏
s=1

(L−1
2s−1 − 1)

 = 0.

It is left to show that

i

d n
2 e

∑
j=1

r2j−1(L̃n)
j−1

∏
s=1

(L−1
2s−1 − 1)

 = 0

if and only if r2j−1 = 0, ∀j = 1, 2, . . .
⌈ n

2
⌉
.

Assume that j0 ∈ {1, 2, . . .
⌈ n

2
⌉
} is the smallest index such that r2j−1 is non-zero polynomial. We consider a

subspace VT
1 |2j0−2 := {(x1, . . . , xn) ∈ VT

1 |x2j0 = x2j0+1 = . . . xn = 0} of VT
1 , where dim VT

1 |2j0−2 = 2j0 − 2.
One may find that

d n
2 e

∑
j=j0+1

r2j−1(L̃n)
j−1

∏
s=1

(L−1
2s−1 − 1)

has a factor ∏
j0
s=1(L−1

2s−1 − 1). Thus, on the subspace, the complex
⊗j0

s=1 E•
2s−1 yields a G f T

n
-isomorphism between

the two G f T
n

-vector bundles from ∑
d n

2 e
j=j0+1 r2j−1(L̃n)∏

j−1
s=1(L−1

2s−1 − 1).

While for r2j0−1(L̃n)∏
j0−1
s=1 (L−1

2s−1 − 1), on the subspace VT
1 |2j0−2, we cannot get any exact complex from

r2j0−1(L̃n). From ∏
j0−1
s=1 (L−1

2s−1 − 1), there is no way to get (j0 − 1) two-term complexes so that one of them is
exact on {x1 6= 0 or x3 6= 0 or · · · or x2j0−1 6= 0} ⊇ VT

1 |2j0−2

Conjecture 4.22 Denote by G•
s the complex

F•
1 ⊗ · · · ⊗ F•

2s−1 ⊗ E•
2s+1 ⊗ · · · ⊗ E•

2d n
2 e−1.

The set {
G•

s ⊗ Lis−1
n

∣∣∣∣s = 0, 1, 2, . . . ,
⌊n

2

⌋
, 1 ≤ is ≤

dn

d2s
− dn

d2s+1
, if 2s + 1 > n then

dn

d2s+1
= 0

}
represents a Z-basis of the relative K-ring K0

G f T
n
(Cn, VT

1 ). Furthermore, the set

{
G•

0 ⊗ Li0−1
n

∣∣∣∣1 ≤ i0 ≤ dn

1
− dn

d1

}
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represents a Z-basis of direct summand Im u of the relative K-ring K0

G f T
n
(Cn, VT

1 ). The set

{
G•

s ⊗ Lis−1
n

∣∣∣∣s = 1, 2, . . . ,
⌊n

2

⌋
, 1 ≤ is ≤

dn

d2s
− dn

d2s+1
, if 2s + 1 > n then

dn

d2s+1
= 0

}
represents a Z-basis of direct summand Im j of the relative K-ring K0

G f T
n
(Cn, VT

1 ).

Let us calculate their image under ι∗c̃h. Consider g = ga
gen. ∈ G f T

n
, where a ∈ Ii, i ∈ {0, 1, 2, . . . , n} ∩ 2Z. The

component where i < 2s − 1 of ι∗ Tr(G•
s ⊗ Lis−1

n ) is 0. While, its component where i > 2s − 1 is

e
[
−a(is − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−2j−1a

d2j+1

]
− 1

)
· G•

s,i,

where G•
s,i := F•

1 ⊗ · · · ⊗ F•
2s−1 ⊗ E•

2s+1 ⊗ · · · ⊗ E•
i−1 ∈

[
K0(Fixg(Cn), Fixg(VT

1 ))
]G f T

n (i > 2s − 1) and G•
0,0 :=

C ∈
[
K0({0}, ∅)

]G f T
n .

Then, by using the multiplicativity of Chern character map on different pairs (different subspaces), the non-trivial
(i.e., i > 2s − 1) component of ι∗c̃h(G•

s ⊗ Lis−1
n ) = ch ι∗ Tr(G•

s ⊗ Lis−1
n ) is

a1a3 · · · a2s−1 · e
[
−a(is − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−2j−1a

d2j+1

]
− 1

)
· ea,

where ea is the generator of
[
Hi(Fixg(Cn), Fixg(VT

1 ); Z)
]G f T

n ∼= Z.
We claim that ι∗c̃h(G•

s ⊗ Lis−1
n ) are linearly independent, and thus G•

s ⊗ Lis−1
n represents a C-basis of K0

G f T
n
(Cn, VT

1 )⊗
C.

In fact, let us consider a matrix with row index (i, a), a ∈ Ii, i ∈ {0, 1, 2, . . . , n} ∩ 2Z with the first |I0| indices
(0, a)(a increases) then i increases, and with column index (s, is) with the first |I0| indices (0, is)(is increases) then s
increases. Note that when i < 2s − 1, entries are zero, which implies this matrix is a upper triangular block matrix of
which block matrices on the main diagonal (i = 2s) are square matrices. We find that the block matrices on the main
diagonal are essentially Vandermonde matrices whose determinants are not zero.

The Γ-class of the orbifold tangent bundle is

Γ̂

(
n

∑
k=1

Lk

)
=

n

∏
k=1

Γ

(
1 − (−1)n−ka mod dk

dk

)
.

Then, the non-trivial component of the Γ-class modification of the Chern character map chΓ(G•
s ⊗ Lis−1

n ) is

1
2π

· (2πi)
i
2 · a1a3 · · · a2s−1 · e

[
−a(is − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−1a

d2j+1

]
− 1

)
·

n

∏
k=i+1

Γ

(
1 − (−1)n−ka mod dk

dk

)
· ea,

One can prove Conjecture 4.4 using the above result and Proposition 4.14.



Chapter 4. Chain type singularity 91
Let us construct the following complexes of G f T

n
-line bundle

E•
2s−1 :

(
L−1

2s−1 = L
(−1)n−2s dn

d2s−1
n

)
x2s−1 // C , s = 1, 2, . . . ,

⌈n
2

⌉
,

and E•
2s−1 represent an element of the relative K-ring K0

G f T
n
(Cn, {x2s−1 6= 0}). Note that E•

2s−1 ⊗ E•
2s′−1 represents

an element of the relative K-ring K0
G f T

n
(Cn, {x2s−1 6= 0 or x2s′−1 6= 0}) and that there is an inclusion

K0
G f T

n

(
Cn, {x1 6= 0 or x3 6= 0 or · · · or x2d n

2 e−1 6= 0}
)
⊆ K0

G f T
n

(
Cn, VT

1

)
.

We state the following conjecture.

Conjecture 4.23 Denote by F• the complex E•
1 ⊗ · · · ⊗ E•

2d n
2 e−1

. The set
{

F• ⊗ Lj−1
n

∣∣∣1 ≤ j ≤ µn

}
represents a

Z-basis of the torsion-free part of the relative K-ring K0
G f T

n
(Cn, VT

1 ).

Remark 4.24 One only need to prove Conjecture 4.22 or Conjecture 4.23, since the other can be proved using the
following relation

F•
2s−1 = E•

2s−1 ⊗
d2s−1⊕
i=1

L−i
2s−1.

Let us calculate the image of the basis in Conjecture 4.23 under ι∗c̃h. Consider g = ga
gen. ∈ G f T

n
, where a ∈

Ii, i ∈ {0, 1, 2, . . . , n} ∩ 2Z. The component of ι∗ Tr(F• ⊗ Lj−1
n ) is

e
[
−a(j − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−2j−1a

d2j+1

]
− 1

)
· F•

i ,

where F•
i := E•

1 ⊗ · · · ⊗ E•
i−1 ∈

[
K0(Fixg(Cn), Fixg(VT

1 ))
]G f T

n and F•
0 := C ∈

[
K0({0}, ∅)

]G f T
n .

Then, by using the multiplicativity of Chern character map on different pairs (different subspaces), the component
of ι∗c̃h(F• ⊗ Lj−1

n ) = ch ι∗ Tr(F• ⊗ Lj−1
n ) is

e
[
−a(j − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−2j−1a

d2j+1

]
− 1

)
· ea,

where ea is the generator of
[
Hi(Fixg(Cn), Fixg(VT

1 ); Z)
]G f T

n ∼= Z.
We claim that ι∗c̃h(F•⊗ Lj−1

n ) are linearly independent, and thus F•⊗ Lj−1
n represents a C-basis of K0

G f T
n
(Cn, VT

1 )⊗
C.

In fact, let us consider a matrix with row index (i, a), a ∈ Ii, i ∈ {0, 1, 2, . . . , n} ∩ 2Z with the first |I0| indices
(0, a)(a increases) then i increases, and with column index j = 1, . . . , µn. We find that the matrix can be decomposed

into a Vandermonde matrix times a diagonal matrix with entries ∏
d n

2 e−1

j= i
2

(
e
[
(−1)n−2j−1a

d2j+1

]
− 1
)
6= 0. Thus the matrix

is invertible.
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The Γ-class of the orbifold tangent bundle is

Γ̂

(
n

∑
k=1

Lk

)
=

n

∏
k=1

Γ

(
1 − (−1)n−ka mod dk

dk

)
.

Then, the non-trivial component of the Γ-class modification of the Chern character map chΓ(G•
s ⊗ Lis−1

n ) is

1
2π

· (2πi)
i
2 · e

[
−a(j − 1)

dn

] d n
2 e−1

∏
j= i

2

(
e

[
(−1)n−1a

d2j+1

]
− 1

)
·

n

∏
k=i+1

Γ

(
1 − (−1)n−ka mod dk

dk

)
· ea.

Similarly, Conjecture 4.4 can be proved using the above result and Proposition 4.14.
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