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1 Non-susy preliminaries

1.1 One-loop running
Recall the one-loop renormalization of the gauge coupling in a general Lagrangian field theory:

E
d

dE
g = − g3

(4π)2

[
11

3
C(adj)− 2

3
C(Rf )−

1

3
C(Rs)

]
. (1.1.1)

Here, E is the energy scale at which g is measured, and we use the convention that all fermions
are written in terms of left-handed Weyl fermions. Then Rf and Rs are the representations of
the gauge group to which the Weyl fermions and the complex scalars belong, respectively. The
quantity C(ρ) is defined so that

tr ρ(T a)ρ(T b) = C(ρ)δab (1.1.2)

where T a are the generators of the gauge algebra and ρ(T a) is the matrix in the representation ρ,
normalized so that C(adj) is equal to the dual Coxeter number. For SU(N), we have

C(adj) = N, C(fund) =
1

2
. (1.1.3)

For SO(N), we have
C(adj) = N − 2, C(vec) = 1. (1.1.4)

1.2 Flavor anomaly
Non-abelian gauge theories have an important source of non-perturbative effects, called instantons.
This is a nontrivial classical field configuration in the Euclidean R4 with nonzero integral of

16π2k :=

∫
R4

trFµνF̃
µν . (1.2.1)

In the standard normalization of the trace for SU(N), k is automatically an integer, and is called
the instanton number. The theta term in the Euclidean path integral appears as

exp

[
i
θ

16π2
trFµνF̃

µν

]
. (1.2.2)

Therefore, a configuration with the instanton number k has a nontrivial phase eiθk. Note that a
shift of θ by 2π does not change this phase at all. Therefore, even in a quantum theory, the shift
θ → θ + 2π is a symmetry.

Using
trFµνFµν =

1

2
tr(Fµν ± F̃µν)

2 ∓ trFµνF̃µν ≥ ∓ trFµνF̃µν , (1.2.3)

we find that ∫
d4x trFµνFµν ≥ 16π2|k| (1.2.4)
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which is saturated only when

Fµν + F̃µν ∝ Fαβ = 0 or Fµν − F̃µν ∝ Fα̇β̇ = 0 (1.2.5)

depending on the sign of k. Therefore, within configurations of fixed k, those satisfying relations
(1.2.5) give the dominant contributions to the path integral. The solutions to (1.2.5) are called
instantons or anti-instantons, depending on the sign of k.

In an instanton background, the weight in the path integral coming from the gauge kinetic term
is

exp

[
− 1

2g2

∫
trFµνF

µν + i
θ

16π2

∫
trFµνF̃

µν

]
= e2πiτk. (1.2.6)

We similarly have the contribution e2πiτ̄ |k| in an anti-instanton background. The fact that we have
just τ or τ̄ , instead of more complicated combinations, is related to the fact that in the instanton
background in a supersymmetric theory, δλα̇ = Fα̇β̇ε

β̇ = 0 assuming the D-term is also zero, and
thus the dotted supertranslation is preserved. Similarly, the undotted supersymmetry is unbroken
in the anti-instanton background.

Now, consider charged Weyl fermions ψα coupled to the gauge field, with the kinetic term

ψ̄α̇Dµσ
µα̇αψα. (1.2.7)

Let us say ψα is in the representation R of the gauge group. It is known that the number of zero
modes in ψα minus the number of zero modes in ψ̄α̇ is 2C(R)k. In particular, the path integral
restricted to the k-instanton configuration with positive k is vanishing unless we insert k additional
ψ’s in the integrand. More explicitly,

〈O1O2 · · · 〉 =
∫
[Dψ][Dψ̄]O1O2 · · · e−S = 0 (1.2.8)

unless the product of the operators O1O2 · · · contains 2C(R)k more ψ’s than ψ̄’s. This is in-
terpreted as follows: the path integral measures [Dψ] and [Dψ̄] contain both infinite number of
integrations. However, there is a finite number, 2C(R)k, of difference in the number of integration
variables. Equivalently, under the constant rotation

ψ → eiϕψ, ψ̄ → e−iϕψ̄, (1.2.9)

the fermionic path integration measure rotates as

[Dψ] → [Dψ]e+∞iϕ+2C(R)kiϕ,

[Dψ̄] → [Dψ̄]e−∞iϕ.
(1.2.10)

When combined, we have

[Dψ][Dψ̄] → [Dψ][Dψ̄]e2C(R)kiϕ = [Dψ][Dψ̄] exp

[
2C(R)ϕ

i

16π2

∫
trFµνF̃

µν

]
. (1.2.11)

This can be compensated by a shift of the θ angle, θ → θ + 2C(R)ϕ. As we recalled before, the
shift θ → θ + 2π is a symmetry. Therefore, the rotation of the field ψ by exp( 2πi

2C(R)
) is a genuine,

unbroken symmetry.
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1.3 Gauge anomaly
When we perform the path integral of a gauge theory, we first need to consider

Z[Aµ] =

∫
[Dψ][Dψ̄]e−

∫
ψ̄Dµσµψ (1.3.1)

where the chiral fermion ψ is in a representation R of G. To perform a further integration over Aµ
consistently, we need

Z[Aµ] = Z[Agµ], Agµ = g−1Aµg + g−1∂µg. (1.3.2)

for any gauge transformation g : R4 → G.
However, due to the reason similar to the gauge-gauge-flavor anomaly above,

Z[Agµ] = (something)Z[Aµ] (1.3.3)

where the prefactor is not 1 in general. For g continuously connected to a trivial transformation
g ≡ 1, the prefactor is characterized by an object called the anomaly polynomial, which is a cubic
polynomial in the formal variablesFa where a is the adjoint index ofG. The prefactor is identically
1 if and only if the anomaly polynomial vanishes. Concretely, this anomaly polynomial for a chiral
fermion in representation R of G is given by the formula

A =
1

6
trR F

3 (1.3.4)

where F = FaT
a where T a is the matrix in the representation R.

Since trR̄ F 3/6 = − trR F
3/6, if a chiral fermion appears in a real representation, the anomaly

automatically cancels. In this lectures we only treat this case but the Standard Model is more subtle.
The chiral fermions in a generation is given as follows

QL ūR d̄R `L ēR
SU(3) 3 3̄ 3̄ 1 1

SU(2) 2 1 1 2 1

U(1) 1/6 −2/3 1/3 −1/2 1

(1.3.5)

Let us check the U(1) part of the cancellation. Denoting the formal variable for the U(1) generator
T by c, cT evaluates to c/6 in the QL, etc, so

A =
c3

6
(3 · 2 ·

(
1

6

)3

+ 3 ·
(
−2

3

)3

+ 3 ·
(
1

3

)3

+ 2 ·
(
−1

2

)3

+ 1 · 13) = 0. (1.3.6)

Exercise. Check the cancellation of the full anomaly polynomial of the Standard Model.

One also needs to be careful about Witten’s global anomaly [1]. Take a chiral fermion in
the doublet of gauge SU(2). There’s no perturbative anomaly, since C can be conjugated to
diag(c,−c).
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Since continuous change of g doesn’t change the phase of [Dψ][Dψ̄], what matters is maps
g : R4 → SU(2) up to continuous change. They are characterized by π4(SU(2)). It is known that

π4(SU(2)) = π4(S
3) = Z2. (1.3.7)

Let g0 : R4 → SU(2) be the one corresponding to the nontrivial element in this Z2. It is known
that under this [Dψ][Dψ̄] gets a minus sign. So, one cannot have an odd number of Weyl fermions
in the doublet representation of gauge SU(2).

Exercise. Check that there are even number of SU(2) doublets in the Standard Model.

2 Pure super Yang-Mills

2.1 Construction of the Lagrangian
An N=1 vector multiplet consists of a Weyl fermion λα and a vector field Aµ, both in the adjoint
representation of the gauge groupG. We combine them into the superfieldWα with the expansion

Wα = λα + F(αβ)θ
β +Dθα + · · · (2.1.1)

where D is an auxiliary field, again in the adjoint of the gauge group. Fαβ = i
2
σµβγ̇ σ̄

ν γ̇
αFµν is the

anti-self-dual part of the field strength Fµν .
The kinetic term for a vector multiplet is given by∫

d2θ
−i

8π
τ trWαW

α + cc. (2.1.2)

where
τ =

4πi

g2
+

θ

2π
(2.1.3)

is a complex number combining the inverse of the coupling constant and the theta angle. We call
it the complexified coupling of the gauge multiplet. Expanding in components, we have

1

2g2
trFµνF

µν +
θ

16π2
trFµνF̃

µν +
1

g2
trD2 − 2i

g2
tr λ̄∂

/
λ. (2.1.4)

We use the convention that trT aT b = 1
2
δab for the standard generators of gauge algebras, which

explain why we have the factors 1/(2g2) in front of the gauge kinetic term. The θ term is a total
derivative of a gauge-dependent term. Therefore, it does not affect to perturbative computations.
It does affect non-perturbative computations.

Here we constructed the Lagrangian using superfields, but it’s important that it’s just a gauge
field and a chiral massless fermion in the adjoint representation. The only tuning is to make the
fermion massless, which is technically natural because of the R-symmetry, discussed soon below.
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Exercise. Check the supersymmetry of this Lagrangian from various viewpoints.

2.2 One-loop exactness of the perturbative running
There is a renormalization scheme where the superpotential remains a holomorphic function of
the chiral superfields, including background fields whose vevs are the gauge and superpotential
couplings. This is the core of Seiberg’s holomorphy argument.1

In a supersymmetric theory, the coupling g is combined with the theta angle θ and enters in the
Lagrangian as ∫

d2θ
−i
8π
τ trWαW

α + cc. (2.2.1)

where τ is given by

τ =
4πi

g2
+

θ

2π
. (2.2.2)

We call this τ the complexified gauge coupling. We can consider τ to be an expectation value of a
background chiral superfield.

In this scheme, the one-loop running coupling at the energy scale E can be expressed as

τ(E) = τUV − b

2πi
log

E

ΛUV
+ · · · (2.2.3)

where b is the rational number appearing on the right hand side of (3.3.4). Note that the coupling
τ starts from 1/g2, and therefore the n loop diagram would have the dependence g2(n−1). The
constant shift as in the imaginary part in (2.2.3) is then a one-loop effect.

Perturbation theory is independent of the θ angle, since FµνF̃µν is a total derivative, although
of a gauge-dependent quantity. Therefore the n loop effect is a function of (Im τ)1−n, which is
not holomorphic unless n = 1. We conclude that the running (2.2.3) is one-loop exact in the
holomorphic scheme. We find that the combination

Λb = Ebe2πiτ(E) (2.2.4)

is invariant to all orders in perturbation theory. We call this Λ the complexified dynamical scale
of the theory.2 Note that Λ is a complex quantity, and can be considered as a vev of a background
chiral superfield.

In the case of SU(N) pure Yang-Mills, the one-loop running of the coupling is given by

E
∂

∂E
τ(E) = 3N, (2.2.5)

1Recently an obstruction to this philosophy was found for 2dN=(2, 2) theories [2]; but the analysis there confirms
that there’s no problem in 4d N=1.

2A redefinition of the form Λ → cΛ by a real constant c corresponds to a redefinition of the coupling of the form
1/g2 → 1/g2 − c′ where c′ is another constant, or equivalently g2 → g2 + c′g4 + · · · . Therefore this is a redefinition
starting at the one-loop order, keeping the leading order definition of g2 fixed. In this lecture note, we do not track
such finite renormalization of the coupling very carefully.
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and therefore we define the dynamical scale Λ by the relation

Λ3N = e2πiτUV Λ3N
UV . (2.2.6)

This is not the end of the story: in the infrared the field Wα doesn’t make sense. We need to
make sense of the dynamics.

2.3 R-symmetry
We assign R-charge zero to the gauge field, and R-charge 1 to the gaugino λα. The phase rotation
λα → eiϕλα is anomalous, and needs to be compensated by θ → θ + 2Nϕ. The shift of θ by 2π

is still a symmetry, therefore the discrete rotation

λα → eπi/Nλα, θ → θ + 2π (2.3.1)

is a symmetry generating Z2N . Note that under the R-symmetry, Λ defined above has the transfor-
mation

Λ → e2πi/(3N)Λ. (2.3.2)

This theory is believed to confine, with nonzero gaugino condensate 〈λαλα〉. What would be
the value of this condensate? This should be of mass dimension 3 and of R-charge 2. The only
candidate is

〈λαλα〉 = cΛ3 (2.3.3)

for some constant c. The symmetry (2.3.2) acts in the same way on both sides by the multiplication
by e2πi/N . Assuming that the numerical constant c is non-zero, this Z2N is further spontaneously
broken to Z2, generating N distinct solutions

〈λαλα〉 = ce2πi`/NΛ3 (2.3.4)

where ` = 0, 1, . . . , N − 1. Unbroken Z2 acts on the fermions by λα → −λα, which is a 360◦

rotation. This Z2 symmetry is hard to break.
It is now generally believed that this theory has these N supersymmetric vacua and not more.

For other gauge groups, the analysis proceeds in the same manner, by replacing N by the dual
Coxeter number C(adj) of the gauge group under consideration. For example, we have N − 2

vacua for the pure N=1 SO(N) gauge theory.

2.4 The theory in a box
2.4.1 SU(N)

It is instructive to recall another way to compute the number of vacua in the N=1 pure Yang-Mills
theory with gauge group G, originally discussed in [3]. We put the system in a spatial box of size
L×L×Lwith the periodic boundary condition in each direction. We keep the time direction as R.

8



By performing the Kaluza-Klein reduction along the three spatial directions, the system becomes
supersymmetric quantum mechanics with infinite number of degrees of freedom.

The box still preserves the translation generators P µ and the supertranslations Qα unbroken.
We just use a linear combination Q of Qα and Q†

α, satisfying

H = P 0 = {Q,Q†}. (2.4.1)

We also have the fermion number operator (−1)F such that

{(−1)F ,Q} = 0. (2.4.2)

Consider eigenstates of the Hamiltonian H , given by

H|E〉 = E|E〉. (2.4.3)

In general, the multiplet structure under the algebra of Q, Q†, H and (−1)F is of the form

↔ Q†|E〉 ↔ (Q†Q−QQ†)|E〉
|E〉 ↔ Q|E〉 ↔ (2.4.4)

involving four states. When Q|E〉 = 0 or Q†|E〉 = 0, the multiplet only has two states. If
Q|E〉 = Q†|E〉 = 0, the multiplet has only one state, and E is automatically zero due to the
equality

E〈EE〉 = 〈E|H|E〉 = 〈E|(QQ† +Q†Q)|E〉 = |Q|E〉|2 + |Q†|E〉|2. (2.4.5)

We see that a bosonic state is always paired with a fermionic state unless E = 0.
This guarantees that the Witten index

tr e−βH(−1)F = tr
∣∣
E=0

(−1)F (2.4.6)

is a robust quantity independent of the change in the size L of the box: when a perturbation makes
a number of zero-energy states to non-zero energy E 6= 0, the states involved are necessarily
composed of pairs of a fermionic state and a bosonic state. Thus it cannot change tr(−1)F .

Therefore, we can compute the Witten index in the limit where the box sizeL is far smaller than
the scale Λ−1 set by the dynamics. Then the system is weakly coupled, and we can use perturbative
analysis. To have almost zero energy, we need to have Fµν = 0 in the spatial directions, since
magnetic fields contribute to the energy. Then the only low-energy degrees of freedom in the
system are the holonomies

Ux, Uy, Uz ∈ SU(N), (2.4.7)

which commute with each other. Assuming that they can be simultaneously diagonalized, we have

Ux = diag(eiθ
x
1 , . . . , eiθ

x
N ), (2.4.8)

Uy = diag(eiθ
y
1 , . . . , eiθ

y
N ), (2.4.9)

Uz = diag(eiθ
z
1 , . . . , eiθ

z
N ). (2.4.10)
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together with gaugino zero modes

λα=1
1 , . . . , λα=1

N , λα=2
1 , . . . , λα=2

N (2.4.11)

with the condition that∑
i

θxi =
∑
i

θyi =
∑
i

θzi = 0,
∑
i

λα=1
i =

∑
i

λα=2
i = 0. (2.4.12)

The wavefunction of this truncated quantum system is given by a linear combination of states of
the form

λα1
i1
λα2
i2

· · ·λα`
i`
ψ(θxi ; θ

y
i ; θ

z
i ) (2.4.13)

which is invariant under the permutation acting on the index i = 1, . . . N . To have zero energy, the
wavefunction cannot have dependence on θx,y,zi anyway, since the derivatives with respect to them
are the components of the electric field, and they contribute to the energy. Thus the only possible
zero energy states are just invariant polynomials of λs. We find N states with the wavefunctions
given by

1, S, S2, . . . , SN−1 (2.4.14)

where S =
∑

i λ
α=1
i λα=2

i . They all have the same Grassmann parity, and contribute to the Witten
index with the same sign. Thus we found N states in the limit of small box, too.

2.4.2 SO(3)

It is known that three commuting holonomies Ux,y,z ∈ G for general G can not be diagonalized in
general; SU(N) is very special. The simplest case is in fact SO(3), where we take

Ux = diag(+−−), Uy = diag(−+−), Ux = diag(−−+). (2.4.15)

You might exclaim “they are simultaneously diagonalized” but the point is that they are not in the
same Cartan subgroup.

What happens is the following [4]. Lifting from SO(3) to SU(2), we find that the holonomies
g1,2,3 lift to Pauli matrices σ1,2,3. Note that g1g2 = g2g1 but σ1σ2 = −σ2σ1. This means that
the Stiefel-Whitney class3 w2 of the SO(3) bundle, evaluated on the face C12 of the T 3, gives −1.
Here and in the following, Cij is the T 2 formed by the edges in the i-th and the j-th directions
of T 3. We can similarly compute w2(C23) and w2(C31); we have (w2(C23), w2(C31), w2(C12)) =

(−1,−1,−1).
In general, the possible choices of w2 are (±1,±1,±1). The commuting triples in the class

(+1,+1,+1) are the ones that can be simultaneously conjugated to the Cartan torus T ⊂ SO(3)

discussed above, and they give 2 states. For each of the other seven choices of w2, there is one
isolated commuting triple, that gives one zero-energy state.4 In total, we find

|ZSO(3)(L)| = 2 + 7 = 9 (LΛ � 1). (2.4.16)
3This is the w2 of the gauge bundle. In this note we only consider tori with trivial spin structure.
4The fermion number (−1)F1 of these seven states is the same as the fermion number (−1)F0 of the two states

we found earlier. To see this, let us consider the partition function on a small T 4 with fixed w2. When w2 is trivial
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Therefore, we should find the same when L is very, very big. But how? There are still two
vacua, with 〈trλλ〉 = ±Λ3. But one vacuum has magnetic Z2 gauge symmetry while the other
does not [5].

Assuming this, we can see how a very big T 3 gives 9 states: on a very big T 3, the first vacuum
gives 23 states due to the choice of the holonomies on T 3, and the second vacuum gives just 1. In
total5, we find

|ZSO(3)(L)| = 23 + 1 = 9 (LΛ � 1). (2.4.17)

This is again consistent with the computation in the opposite regime (2.4.16).

2.5 Discrete gauge field in the confined phase
In the last section we saw that for pure SU(2) SYM, two vacua are equivalent and trivial, but
for pure SO(3) SYM, one vacuum is trivial but the other has Z2 gauge field. Is there a way to
understand this difference heuristically?

2.5.1 Spectrum of line operators

For SU(2), Here, the spectrum of operators includes Wilson lines in the fundamental representation
(λe, λm) = (1, 0), or (ze, zm) = (1, 0). Locality determines the remaining lines to be (λe, λm)with
λe ∈ Z, λm ∈ 2Z, so no other nontrivial representations of the center are allowed.

For SO(3), the purely electric lines are now (λe, λm = 0) with λe ∈ 2Z. This set of lines can
be completed in two different ways, leading to two distinct theories [6]:

• SO(3)+: Here the line operators are (λe, λm) with λe ∈ 2Z, λm ∈ Z. In other words,
they have (ze, zm) = (0, 0) or (ze, zm) = (0, 1), including the ’t Hooft line operator in the
fundamental representation of the dual gauge group.

• SO(3)−: Here the line operators are (λe, λm) with λe, λm ∈ Z such that λe+λm ∈ 2Z; they
have (ze, zm) = (0, 0) or (ze, zm) = (1, 1). In particular, the purely electric line (1, 0) and
the purely magnetic line (0, 1) are not present, but the dyonic line (1, 1) is present.

along the spatial T 3, the T 4 partition function has the phase (−1)F0 , independent of w2 along the temporal-spatial
directions. When w2 is nontrivial along the spatial T 3 but trivial along the temporal-spatial direction, the partition
function has the phase (−1)F1 . These two configurations can be mapped to each other by exchanging the time and the
space directions. Therefore, we should have (−1)F0 = (−1)F1 .

5Again, all the states have the same (−1)F . Note that the Z2 gauge theory on T 3 has a global symmetry G :=

H1(T 3,Z2), given by tensoring the gauge bundle by another Z2 bundle. The charge under G is G∨ = H2(T 3,Z2).
Now, the 23 states coming from the first vacuum are permuted by G; let us say they have (−1)F = (−1)Fa . The
additional state from the second vacuum is invariant under G, with (−1)F = (−1)Fb . Stated differently, there are one
state with (−1)F = (−1)Fa for each charge in G∨, and another state with (−1)F = (−1)Fb with zero charge in G∨.
Now, the two states with zero charge in G∨ are the same two states in the SU(2) theory, and therefore have the same
(−1)F . Therefore we see that (−1)Fa = (−1)Fb .

11



SU(2) SO(3)+ SO(3)−

Figure 1: The weights of line operators of gauge theories with the Lie algebra su(2). There, the
horizontal axis is for λe and the vertical axis is for λm. The shaded regions in the figure give the
Z2 charges.

We presented the two SO(3) theories through their different line operators. Alternatively, they
can be described by shifting θ by 2π

SO(3)θ+ = SO(3)θ+2π
− . (2.5.1)

Indeed, the Witten effect shows that under θ → θ + 2π, (λe, λm) → (λe + λm, λm), which leads
to the equation above. This means that when G = SO(3) the periodicity of θ is 4π. This is due to
the fact that on spin manifolds6, the instanton number of SO(3) gauge theories is a multiple of 1

2
.

Naively, the shift of θ by 2π does not change the local physics. But since the insertion of the line
operators in R4 creates a nontrivial topology, it allows us to distinguish θ from θ + 2π locally on
R4. Note that the insertion of lines in R4 keeps it a spin manifold, and therefore shifting θ by 4π

maps the theory to itself, relabeling the line operators.

2.5.2 Structure of the confined vacua

When G = SU(2), nothing strange happens. Indeed, if this theory is obtained via a mass defor-
mation of the N=2 pure SYM theory, these two vacua arise from the condensation of a magnetic
monopole or a dyon [7], and hence the Wilson line in the fundamental representation (and all lines
with (ze, zm) = (1, 0)) exhibits confinement in both vacua.

How does this story change in the theory with G = SO(3)? First, in this theory we no longer
have the Z4 global symmetry, which is associated with the shift θ → θ+2π. Instead, the anomaly
free R-symmetry is a Z2 symmetry, associated with shifting θ → θ + 4π. This symmetry (taking
λ→ −λ) is part of the Lorentz group, given by a 2π rotation in spacetime. Second, it is clear that
the theory still has the same two vacua as the SU(2) theory, but since these two vacua are related
by θ → θ + 2π, they are now inequivalent. The difference between the two vacua can be seen by
probing the behavior of the line operators. The SO(3)+ theory has purely magnetic line operators
with charge (λe, λm) = (0, 1). In one of the two vacua dyons condense. Since they have both
electric and magnetic charges, these ’t Hooft lines have an area law – they are confined. In the
other vacuum, the condensed particles are purely magnetic. Hence the same line operators have
a perimeter law. In fact, the charge of the condensed monopole is twice that of the loop operator,

6On non-spin manifolds there can be “quarter instantons” and the periodicity of θ is 8π.
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Figure 2: Energy of two vacua for softly broken N=1 SU(2) SYM.

and is given by (λe, λm) = (0, 2). Therefore, at low energy we find in this vacuum an unbroken Z2

gauge theory, acting by ±1 on the magnetic line with charge (λe, λm) = (0, 1) (or, more generally,
on all lines with (ze, zm) = (0, 1)). This is an explicit example of our comment above about an
unbroken discrete gauge symmetry which appears out of the magnetic degrees of freedom. The
situation is similar in the SO(3)− theory, except that the two vacua are exchanged.

2.6 Non-supersymmetric deformation
We can perform an analogous analysis also for the non-supersymmetric pure gauge theory with
gauge groups SU(2) or SO(3). One way to obtain this theory is by adding a gluino massmg to the
N = 1 supersymmetric theory discussed above, which generically splits the two vacua, and taking
the limit of large |mg|.

Consider first the case |mg| � |Λ|. Since we have a mass gap, the dynamics in each vacuum
is essentially the same as above, Indeed, the soft mass term for the gaugino is just

δL = mgλλ+ c.c. (2.6.1)

and we have the condensate 〈λλ〉 ' ±Λ3. So, their vacuum energy is [8, 9].

∼ ±Re(mgΛ
3). (2.6.2)

Thus, in the (unique) vacuum of the resulting theory, the SU(2) theory confines (exhibits an
area law for its nontrivial line operator), while (depending on the phase of mg and on the value of
the θ-angle) one of the SO(3) theories has a perimeter law for its nontrivial line operator, with an
unbroken Z2 gauge symmetry, while the other SO(3) has an area law. In the SO(3) gauge theory
the θ-angle still has periodicity 4π, such that the two theories (and the two low-energy behaviors)
are exchanged by θ → θ + 2π.

In particular, something happens at θ = π. When |mg| � |Λ|, the CP is spontaneously broken
there and there is a 1st order phase transition, realizing Dashen’s idea [10] explicitly. The change
in the behavior of the line operator at θ = π almost forces something nontrivial there, even when
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|mg| � |Λ|. To study it in detail, we need to study the CP anomaly of the system more carefully
[11].

2.7 Spin(N) vs SO(N)

2.7.1 Spin(N)

Let us first recall the situation when G = Spin(N), first studied in the Appendix I of [12].
The dual Coxeter number is N − 2, and therefore, there are N − 2 vacua in the far infrared,

distinguished by the gaugino condensate

〈trλλ〉 = Λ3, ωΛ3, . . . , ωN−3Λ3 (2.7.1)

where ω = exp(2πi/(N − 2)). Therefore when the size L of T 3 is very big, we find

|ZSpin(N)(L)| = N − 2, (LΛ � 1). (2.7.2)

The commuting holonomies (g1, g2, g3) can be put into either of the following standard forms:

ga ∈ T ⊂ Spin(N) (2.7.3)

where T is the Cartan torus of Spin(N), or

ga = g(7)a sa (2.7.4)

where g(7)1,2,3 is a lift to Spin(7) of the following SO(7) matrices

diag(+1,+1,+1,−1,−1,−1,−1),

diag(+1,−1,−1,+1,+1,−1,−1),

diag(−1,+1,−1,+1,−1,+1,−1),

(2.7.5)

and sa ∈ T ′ where T ′ is the Cartan torus of Spin(N − 7) ⊂ Spin(N) commuting with g(7)1,2,3.
The former component gives 1 + rankT zero-energy states, and the latter component gives

1 + rankT ′ zero-energy states. In total, we find

|ZSpin(N)(L)| = (bN
2
c+ 1) + (bN − 7

2
c+ 1) = N − 2, (LΛ � 1). (2.7.6)

2.7.2 SO(N)

Now, we move on to the case G = SO(N). In this case, there are two choices of the discrete theta
angle, so there are two theories SO(N)±, see [5]. As argued there, in the SO(N)+ theory all vacua
have Z2 gauge symmetry for SO(N)+, but in the SO(N)− theory all vacua have just Z1 gauge
symmetry. Therefore, in the infrared, we find

|ZSO(N)+ | = 8(N − 2), (LΛ � 1) (2.7.7)
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and
|ZSO(N)−| = (N − 2), (LΛ � 1). (2.7.8)

Let us confirm this result in a computation in the ultraviolet, LΛ � 1. The topological type of
the bundle is given by the Stiefel-Whitney class evaluated on the faces, (m23,m31,m12) ∈ {±1}3.

When (m23,m31,m12) = (+1,+1,+1), all the commuting holonomies are obtained by pro-
jecting the Spin(N) commuting holonomies down to SO(N). Then, these give (1 + rankT ) +

(1 + rankT ′) = N − 2 zero-energy states as before.
For seven other choices (m23,m31,m12) 6= (+1,+1,+1), we can always apply SL(3,Z) to

have (m23,m31,m12) = (−1,+1,+1). In [13] it was proved that the commuting holonomies are
either of the form

ga = g(3)a sa (2.7.9)

where g(7)1,2,3 is the following SO(3) matrices

diag(+1,+1,+1), diag(−1,−1,+1), diag(−1,+1,−1), (2.7.10)

and sa ∈ T ′′ where T ′′ is the Cartan torus of SO(N − 3) ⊂ SO(N) commuting with g(3)1,2,3, or of
the form

ga = g(4)a sa (2.7.11)

where g(4)1,2,3 is the following SO(4) matrices

diag(−1,−1,−1,−1), diag(−1,−1,+1,+1), diag(−1,+1,−1,+1), (2.7.12)

and sa ∈ T ′′′ where T ′′′ is the Cartan torus of SO(N − 4) ⊂ SO(N) commuting with g(4)1,2,3.
Quantization of the zero modes then give

(1 + rankT ′′) + (1 + rankT ′′′) = N − 2 (2.7.13)

states for each of the seven choices (m23,m31,m12) 6= (+1,+1,+1). In the SO(N)+ theory they
are all kept, but in the SO(N)− theory, they have a nontrivial induced discrete electric charge
e = (m23,m31,m12) due to the non-zero theta angle. This causes these states to be projected out.

In total, we find
|ZSO(N)+ | = 8(N − 2), (LΛ � 1) (2.7.14)

and
|ZSO(N)−| = (N − 2), (LΛ � 1) (2.7.15)

in the ultraviolet computation, agreeing with the infrared computations.
What is the distinction between SO(N)± from the point of the view of the line operators and

the point of view of the Lagrangian? As lines in N even are complicated, consider the case N
odd. Then the spectrum of the line operators look similar to SO(3). But the smallest instanton in
SO(5) is in fact smaller by a factor of 2 compared to that of SO(3). This makes the 2π shift of θ
preserves SO(N)±, instead of exchanging ±.
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Spin(N) SO(N)+ SO(N)−

Figure 3: The weights of line operators of gauge theories with the Lie algebra so(N) for N odd.

In terms of the Lagrangian, what is going on is that we can have nontrivial Stiefel-Whitney
classes w2. Then we can include a term P(w2)/2 where P is the Pointrjagin square. This is
roughly of the form w2 ∧ w2 in the Lagrangian. This is defined mod 2, and therefore can have the
coefficient 0 or π. P(w2) is defined mod 4 on a spin manifold. We have the relation

p1 = P(w2) + w4 mod 2 (2.7.16)

for any SO bundle. The difference between smallN and large enoughN is that p1 = 4k forN = 3

but p1 = 2k for N ≥ 4. This means that k can be half-integral for N = 3 but not for N ≥ 4, etc.

3 Preliminaries on theories with Matters

3.1 Chiral multiplets
AnN=1 chiral multipletQ consists of a complex scalarQ and a Weyl fermionψα, both in the same
representation of the gauge group. It is represented by a chiral superfield satisfying D̄α̇Q = 0, and
has the expansion

Q(y) = Q
∣∣
θ=0

+ 2ψα(y)θ
α + F (y)θαθ

α (3.1.1)
where F is auxiliary. The coefficient 2 in front of the middle component is unconventional, but
this choice allows us to remove various annoying factors of

√
2 appearing in the formulas later.

Here yµ = xµ + iθσµθ̄ is the combination D̄α̇y
µ = 0.

The complex conjugate is antichiral, satisfying DαQ
† = 0. The product of two chiral super-

fields is chiral, etc.
The (effective) action has the general form∫

d4θK(Q†, Q) +

∫
d2θW (Q) + cc. (3.1.2)

Expanding in components, we find that the kinetic term contains ∝ F iF̄ j̄gij̄ where gij̄ =

∂i∂̄j̄K, and the superpotential term contains ∝ F i∂iW . Eliminating F , we have F̄ j̄gij̄ = ∂iW ,
and the potential is

V ∼ gij̄∂iW∂̄j̄W̄ . (3.1.3)
The potential is automatically positive. The zero means it’s supersymmetric, and then

∂iW = 0. (3.1.4)
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3.2 RG of the chiral multiplets
As the UV Lagrangian let’s take ∫

d4θΦ†Φ +

∫
d2θgΦ3 + cc. (3.2.1)

How does it renormalize? Promote g to a background chiral superfield Y :∫
d4θΦ†Φ +

∫
d2θY Φ3 + cc. (3.2.2)

Assign R-charge +2 to Y , zero to Φ. Due to the R-charge conservation and the choice of holomor-
phic gauge, all-loop computations can only give∫

d4θK(Φ†,Φ) +

∫
d2θY f(Φ) + cc. (3.2.3)

When Y is small, the perturbation theory is applicable, and this means that there’s only the tree
term in the superpotential. So we conclude f(Φ) = Φ3. This is called the perturbative non-
renormalization theorem.

What happens to K? To see this, it is useful to note that Φ†Φ is not only the kinetic term
but also the superfield version of the U(1) current associated to Φ → ei?Φ. Indeed, the θσµθ̄
component of Φ†Φ contains jµ = φ†∂µφ− (∂µφ

†)φ. In our Lagrangian, the term Φ3 breaks U(1)
to Z3. Accordingly, there’s a source term in the (non)conservation equation:

D̄2(Φ†Φ) = 3gΦ3 (3.2.4)

This is obtained by taking the variation of Φ → eXΦ where X is an arbitrary chiral superfield.
This is the super version of the Noether procedure. Equivalently, this can be written as the OPE

(Φ†Φ)(x)Φ3(0) ∼ 3 · 1

|x|2
Φ3(0) + · · · (3.2.5)

Equivalently, this can be written as the three-point function

〈Φ3(x)Φ†3(y)(Φ†Φ)(z)〉 = 3

|x− y|4|x− z|2|y − z|2
(3.2.6)

This can be re-written as the OPE of Φ3 and Φ̄3:

Φ3(x)Φ†3(0) ∼ 1

|x|6
+ 3

1

|x|4
(Φ†Φ)(0) + · · · (3.2.7)

This is exactly what is needed to compute the leading perturbation in gg†:∫
d4xd2θgΦ3(x)

∫
d2θ̄g†Φ†3(0) ∼

∫
d4θgg†3(2π2)(log µ)Φ†Φ(0) (3.2.8)
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So, if we write the renormalized kinetic term as
∫
d4θZΦ†Φ, we see

µ
∂

∂µ
Z = (2π2) · 3 · gg†. (3.2.9)

Or equivalently, if you slightly lower the cutoff from µ′ to µ,

δK = ((2π2) · 3 · gg†) · log(µ′/µ)Φ†Φ. (3.2.10)

This corresponds to the scaling dimension 1 + γ of the operator Φ given by

γ =
1

2
(2π2) · 3 · gg†. (3.2.11)

So far we used the holomorphic scheme. To keep K fixed instead to have canonical kinetic
term, we use the (non)conservation equation (3.2.4) again:∫

d4θδK = −1

2

∫
d2θD̄2δK + c.c.

= −1

2
3g[(2π2) · 3 · gg†) ˙log(µ′/µ)]

∫
d2θΦ3 + cc.

(3.2.12)

Therefore we see
µ
∂

∂µ
g =

1

2
3g[(2π2) · 3 · gg†)] (3.2.13)

to the leading order; g renormalizes to zero.
Of course this is doable in the ordinary perturbation theory, but this way of doing things man-

ifest every numerical factor rather transparently. For more details, see [14].

Exercise. Confirm this in the standard perturbation theory. This is a two-loop effect. Where in
the above computation was the two-loop computation carried out?

3.3 With gauge multiplets
When there areN chiral multipletsQa, (Qa)

†Qb is the U(N) current, as we saw. So, to the leading
order ∫

d4V āb(Qa)
†Qb (3.3.1)

is the coupling to the vector multiplet; the all-order version is∫
d4(Qa)

†(eV )ābQb. (3.3.2)

Here we want to gauge with SU(N), so V is assumed to be traceless. This is anomalous (due
to the perturbative triangle anomaly for N ≥ 3, and due to the global anomaly for N = 2.) So we
add Q̃b to cancel the anomaly.
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In fact we can add Nf pairs (Qi
a, Q̃

a
i ) for a = 1, . . . , N and j = 1, . . . , Nf . We’d like to know

what happens to this theory.
Let’s first analyze the one-loop running. The general formula reduces to N=1 case to

E
d

dE
g = − g3

(4π)2
[3C(adj)− C(R)] (3.3.3)

or equivalently

E
d

dE

Im τ

8π
=

1

16π2
[3C(adj)− C(R)], . (3.3.4)

Then
η := Λ3C(adj)−C(R) := E3C(adj)−C(R)e2πiτ(E) (3.3.5)

is RG-invariant in the holomorphic scheme, and can be regarded as a background chiral superfield.
Note that this contains eiθ in the exponent, and represents the one-instanton contribution.

In our case 3C(adj)−C(R) is 3N−Nf . So it is IR free whenNf > 3N , it is almost conformal
when Nf = 3N (but turns out to be IR free as you soon see), and Nf < 3N the coupling starts to
grow.

Let’s first analyze the region where (3N − Nf ) � Nf . The change in
∫
d2θτ trWW is one-

loop exact in the holomorphic gauge. What’s the change inK = Q†Q+ Q̃†Q̃? Again the essential
relation is the non-conservation

D̄2Q†
iQi = 2C(R)

1

16π2
trWW, (3.3.6)

where the sum is over a but not over i. This is known as the Konishi anomaly [15] and due to this
reason the operator Q†Q is often called the Konishi operator.

The leading order change in K is

δK = −dimG

dimR
4C(R)

1

2π Im τ
log(µ′/µ)(Q†Q+ Q̃†Q̃) (3.3.7)

from the standard perturbation theory. (This can be deduced from the non-conservation equation
too. For details, see [14]).

Now, to keep the kinetic term canonically normalized, we use the non-conservation to rewrite
this as a change in τ , as always using

∫
d4θδK = −(1/2)

∫
d2θD̄2K + c.c:

µ
∂

∂µ

Im τ

8π
=

1

16π2
(3C(adj)− 2C(R)Nf )−

2Nf ·
1

2
· (dimG

dimR
4C(R)

1

2π Im τ
)(2C(R)

1

16π2
) + · · · (3.3.8)

to this order.
We find the zero of (3.3.8) at

g2

8π2
=

1

2π Im τ
=

3N − 2NfC(R)

2Nf

dimR

4C(R)2 dimG
+ · · · (3.3.9)
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Note that the δK above means that the dimension 1 + γ of the field Q is given by

γ = −dimG

dimR
2C(R)

1

2π Im τ
+ · · · (3.3.10)

as in the case of the Wess-Zumino model. This becomes

= −1

2

3N − 2NfC(R)

2NfC(R)
+ · · · = −3N −Nf

2Nf

+ · · · (3.3.11)

at the conformal point. We will soon see that in fact that the value of γ at the conformal point is
exact.

4 SQCD and Seiberg duality

4.1 The conformal window
At the zero of the beta function, the system is invariant under the scaling transformation D. It’s
expected that the theory is not only invariant under scale symmetry, but also under conformal
symmetry. The inversion is a particular conformal symmetry disconnected to the identity:

I : xµ 7→ xµ
|x|2

. (4.1.1)

Conjugating Pµ with I, we get Kµ. In the supersymmetric case, we get Sα̇ from conjugating Qα

by I.
One important commutation relation is

{Qα, S
†
β} = εαβ(2iD + 3R) +Mαβ (4.1.2)

where R here is the superconformal R symmetry. This implies that a chiral scalar operator, anni-
hilated by Qα, satisfies ∆ = (3/2)R. Indeed, in a free theory, Φ has dimension 1 and R-charge
2/3.

Note that any U(1) symmetry that rotates Q with charge ±1 is called an R-symmetry. The su-
perconformal symmetry picks a particular R-symmetry, which needs to be conserved. In favorable
cases, this fact can be used to fix the scaling dimension of the operators.

So, let us consider SU(N) with Nf flavors again. We are forced to assign R-charge 1 to the
gaugino λ. To make the R-gauge-gauge anomaly vanish, the R-charge r of the fermion components
ψ, ψ̄ of Q, Q̃ should satisfy

N + r · 2 · 1
2
·Nf = 0 (4.1.3)

meaning that r = −N/Nf , meaning that R(Q) = 1−N/Nf , meaning that

∆(Q) =
3

2
− 3N

2Nf

(4.1.4)
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meaning that γ = −(3N −Nf )/(2Nf ). This is exact.
WhenNf is very close to 3N , we have a weakly-coupled conformal fixed point. What happens

when we gradually lower Nf? Consider the gauge invariant operator Q̃Q, which has dimension
3(1 − N/Nf ). As we will soon review below, this is ≥ 1. Therefore, Nf ≥ 3N/2 to have a
conformal point.

4.2 Aside: unitarity bound
Let us review how such a unitarity bound is derived. Here we recall a lesser-known version [16].7
Consider a scalar operator O of dimension ∆. Then its Euclidean two-point function behaves as

〈O(x)O(0)〉 = C

|x|2∆
. (4.2.1)

The constant C is guaranteed to be positive: Consider smearing the operators around x and 0 with
compact support. Then it should be the norm of a wave function.

A slightly more detailed use of unitarity leads ∆ ≥ 1. To see this, we first Fourier-transform
the 2pt function and write

C

|x|2∆
= C

(2π)2Γ(2−∆)

4∆−1Γ(∆)

∫
d4k

(2π)4
eikx|k|2(∆−2). (4.2.2)

Wick rotating back to Minkowski signature, we find the spectral density at 4-momentum k, which
is given by

C
(2π)2Γ(2−∆)

4∆−1Γ(∆)
Im(−k2 − iε)∆−2 = C

(2π)2Γ(2−∆)

4∆−1Γ(∆)
sin(π(∆− 2))|k|2(∆−2)

= C
(2π)2π(∆− 1)

4∆−1Γ(∆)2
|k|2(∆−2).

(4.2.3)

This requires ∆ > 1.

4.3 Seiberg duality
Long before Nf hits this lower bound 3N/2, the anomalous dimension is of order 1 and we lose
perturbative control. Is there any way out? Here comes Seiberg duality to the rescue [17].

So far we considered the SU(N)withNf pairs ofQi and Q̃ĩ, with zero superpotential. Consider
another gauge theory, with the gauge group SU(N ′) with Nf pairs of qi and q̃ĩ, a set of gauge
invariant scalarsM i

j̃
, and withW = qiq̃

j̃M i
j̃
. Seiberg said that these two theories become the same

in the infrared limit, when N + N ′ = Nf , N,N ′ ≥ 2. (When one of N and N ′ is 1, we need a
small modification.)

7I learned this from Yonekura-kun.
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There are many checks of this duality. We’ll perform an extremely detailed check in Sec. 6.
For now let’s see the basic ones. Firstly, the list of gauge-invariant chiral operators matches:

original dual
M i

j̃
:= QiQ̃j̃ ↔ M i

j̃

Bi1,...,iN := εa1,...,aNQi1
a1
· · ·QiN

aN
↔ bi1,...,iN′ := εa1,...,aN′q

a1
i1
· · · qaN′

iN′

B̃ĩ1,...,̃iN
:= εa1,...,aN Q̃

a1
ĩ1
· · · Q̃aN

ĩN
↔ b̃ĩ1,...,̃iN′ := εa1,...,aN′ q̃

ĩ1
a1
· · · qĩN′

aN′

(4.3.1)

where B ↔ b and B̃ ↔ b̃ are to be related by the ε symbol for SU(Nf ). Note also that mj̃
i := qiq̃

j̃

is killed by the superpotential:
∂W

∂M i
j̃

= mj̃
i . (4.3.2)

[NEED TO BE CAREFUL ABOUT THE CONVERSION FACTORS]
The R-charges of these operators do match too. We first need to fix the superconformal R-

charge on the dual side. M doesn’t contribute to R-gauge-gauge anomaly anyway, so R(q) =

R(q̃) = 1 − N ′/Nf = N/Nf . Since R(W ) = 2, we have R(M) = 2 − 2N/Nf , as before. We
also see R(b) = NN ′/Nf = R(B).

The flavor-flavor-flavor anomalies also match. Let’s just consider SU(Nf )
3
untilded. We have the

formal variable F = FsT
s where s = 1, . . . , N2

f − 1. On the original side, we just have

1

6
N trNf

F 3. (4.3.3)

On the dual side, we have

1

6
(N ′ trN̄f

F 3 +Nf trNf
F 3) =

1

6
(Nf −N ′) trNf

F 3 (4.3.4)

where the first comes from q and the second comes from M . They agree.
Just for fun, consider R-SU(Nf )untilded-SU(Nf )untilded. Introduce the formal variable C = cx

where x is the generator of U(1)R . On the original side, we have

1

2
N(− N

Nf

)c trNf
F 2 (4.3.5)

and on the dual side

1

2

[
N ′(−N ′

Nf

)c trN̄f
F 2 +Nf (1−

2N

Nf

)c trNf
F 2

]
. (4.3.6)

Again they agree, thanks to N +N ′ = Nf .
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Exercise. Check the agreement of other anomalies, such as R-R-R.

Let us next check that the duality is compatible with decoupling a flavor. Consider giving a
non-zero mass to one flavor, by adding

W = mQi=Nf Q̃i=Nf
. (4.3.7)

In the scale far below m, we get Nf
new = Nf − 1, keeping N fixed.

What happens on the dual side? The superpotential is now

W = qMq̃ +mM
i=Nf

i=Nf
. (4.3.8)

Setting ∂W/∂M i=Nf

i=Nf
= 0, we have

qai=Nf
q̃
i=Nf
a +m = 0. (4.3.9)

This gives a vev to qi=Nf
and q̃i=Nf , breaking SU(N ′) to SU(N ′−1). Seiberg duality is compatible

with this, since N ′new = Nf
new −N = N ′ − 1.

Finally, let us consider re-dualizing the dual theory. The dual theory has the structure

1. SU(N ′) with Nf pairs qi, q̃i.

2. Then add N2
f singlets M i

j and add the coupling δW =M i
jqiq̃

j .

Let us dualize the first part. Then we have

1. SU(N) with Nf pairs Qi, Qi with N2
f singlets Mj

i with the coupling W = M
j
iQ

iQ̃j

2. then add N2
f singlets M i

j and add the coupling δW =M i
jM

j
i .

The total coupling is now
Wtotal = M

j
iQ

iQ̃
j
+M i

jM
j
i . (4.3.10)

Taking the variation with M i
j , we see M

j
i is now massive, and taking the variation with M

j
i , we

have
M i

j = QiQ̃
j

(4.3.11)

and can eliminate M i
j . So we get back the original theory.

4.4 Behavior of SQCD, N < Nf < 3N

Assuming now the validity of Seiberg duality, let’s try to understand the behavior of SQCD. When
N/Nf is close to 1/3, it’s a weakly-coupled superconformal theory. The dual theory has N ′/Nf

slightly above 2/3. Note that the dual is very strongly coupled.
We raise N/Nf gradually, making the original theory more and more strongly coupled. The

dual theory’s N ′/Nf decreases accordingly, making it more and more weakly coupled. When
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N/Nf becomes 2/3, we hit the unitarity bound of M . The dual theory’s N ′/Nf hits 1/3, which is
very weakly coupled.

Now, we can raise N/Nf even further. We can no longer expect superconformal symmetry in
the infrared. But note that the check of Seiberg duality performed above only cared about having
a conserved R-symmetry, not that this conserved R-symmetry is in the superconformal symmetry.
So we can continue: the dual theory has N ′/Nf below 1/3. This means that the dual theory is
infrared free from the start; recall that the one-loop beta function coefficient is 3N ′ − Nf < 0.
There is a logarithmic running of the coupling toward zero in the infrared, and indeed this is not
superconformal.

How far can we go? Of course we can only have N ′ ≥ 0. What happens when N ′ is very low
can be understood by being more careful about the decoupling.

4.5 Behavior of SQCD, Nf = N + 1

Let us start from SU(N) with Nf flavors, and decouple N ′ − k flavors by giving mass

W = mi
jM

j
i (4.5.1)

here the indices go over the last N ′ − k of 1, . . . , Nf . On the dual side, we have SU(N ′) with Nf

flavors, and the superpotential is
W = qMq̃ +mi

jM
j
i . (4.5.2)

As before, this gives vevs to qi and q̃i for the last N ′ − k flavors, breaking SU(N ′) with Nf flavors
to SU(k) with N + k flavors. Assume that the resulting theories are in the infrared free region.
Then everything is weakly coupled in the infrared, and we can perform the instanton computation.

Recall from (3.3.5) that one-instanton effects come with the factor Λ3N ′−Nf

D , which contains
eiθ. Here the subscript D emphasizes that this is the instanton factor in the dual theory. Under the
rotation qi → qie

iϕ fixing other q and q̃, this factor is also of charge 1. An invariant combination
can then be written:

Λ
3N ′−Nf

D

detM(N+k)×(N+k)

detm(N ′−k)×(N ′−k)
. (4.5.3)

This has R-charge
2N ′

Nf

(N + k)− 2N

Nf

(N − k) = 2k. (4.5.4)

Therefore, if and only if k = 1, one-instanton configurations can produce this superpotential.
From the point of view of the SU(1) theory with N + 1 flavors, Λ3N ′−Nf

D / detm is just a
numerical factor. This means that only in this edge case, the superpotential on the dual SU(1) side
is modified to be

W = qMq̃ + detM. (4.5.5)

Note also that in this case qi ∝ bi = εii1...iNB
i1...iN and similarly for the tilded variables.

Therefore we conclude: the infrared theory of SU(N) with Nf = N + 1 flavors are described by
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an almost free theory of the mesons M i
j̃

and baryons Bi, B̃ j̃ with the superpotential

W =
1

Λ3N−(N+1)
(BiM

i
j̃
B j̃ + detM). (4.5.6)

Here the powers of Λ is introduced to match the mass dimension. Those who know supersym-
metric instanton calculus might worry: this looks like a (−1)-instanton effect, while in instanton
computations only a positive-instanton contribution generates the supersymmetry. It is fine, since
the instanton computation is only applicable in the weakly-coupled theories, whereas this is an
extremely strongly coupled situation in the original variables.

The appearance of detM can be also checked by considering the dual of SU(2) with Nf = 3.
In this case, Qi=1,2,3

a and Q̃a
i=1,2,3 both transform in the doublet representation of SU(2), so can be

combined to Qa
I=1,2,3,4,5,6 with SU(6) symmetry. The baryon Bi and B̃i are just quadratic, and can

be combined with M j
i to form

M[IJ ] = Qa
IQ

b
Jεab. (4.5.7)

Then the superpotential (4.5.6) can be written as

W = εIJKLMNMIJMKLMMN . (4.5.8)

Without detM , the superpotential would not be SU(6) invariant as it should have been.

4.6 Behavior of SQCD, Nf = N

The behavior with less flavors can be understood by decoupling the flavors further. Before pro-
ceeding, it is useful to understand how the instanton factors are related. We compare SU(N) with
Nf flavors and SU(N) with N new

f = Nf − 1 flavors. Let us add mQi=Nf Q̃i=Nf
to decouple one

flavor to get the latter from the former.
The one-instanton factors are respectively ηNf

= Λ
3N−Nf

Nf
and ηNf−1 = Λ

3N−(Nf−1)
Nf−1 . To relate

them, we can only write

ηNf−1 = mηNf
, equivalently ΛNf

3N−Nf = mΛNf−1
3N−(Nf−1). (4.6.1)

This is also natural because

ΛNf

3N−Nf = E3N−Nf e2πiτNf
(E), (4.6.2)

ΛNf−1
3N−(Nf−1) = E3N−(Nf−1)e2πiτNf−1(E), (4.6.3)

and τ(E) needs to match around E = m, see figure.
Now, let us add mM i=N+1

i=N+1 to (4.5.8). Taking the variation with respect to M i=N+1
i=N+1 , we get

detMN×N −Bi=N+1B̃
i=N+1 = mΛNf=N+1

3N−N+1. (4.6.4)

Translating to the notation for Nf = N , we get

detM −BB̃ = Λ2N . (4.6.5)
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Figure 4: Running coupling.

This is a constraint rather than a superpotential.
Note that classically, B = detQi

a, B̃ = det Q̃a
i and M i

j = Qi
aQ̃

a
j and therefore detM =

detQ det Q̃ = BB̃. This is deformed by the one-instanton effect. This deformation can be checked
directly by an instanton computation [18].

4.7 Behavior of SQCD, 0 < Nf < N

Let us decouple another flavor. To do this, implement the constraint above by a Lagrange multiplier
X and add mQi=Nf=NQi=Nf=N :

W = X(detM −BB̃ − Λ2N) +mM i=N
i=N . (4.7.1)

Eliminating X and M i=N
i=N , we get

W =
mΛNf=N

2N

detM(N−1)×(N−1)

. (4.7.2)

In the variables appropriate for Nf = N − 1, we have

W =
ΛNf=N−1

3N−(N−1)

detM
. (4.7.3)

This has the one-instanton form, correctly invariant under the rotationQi → Qieiϕ, with the correct
R-charge. It is known that this can be reproduced from an honest instanton computation. A generic
vev to Q and Q̃ breaks SU(N) to SU(1), and therefore it is reliable. This result was originally
obtained by Affleck, Dine and Seiberg [19], and therefore this is called the Affleck-Dine-Seiberg
superpotential.

Note that the potential computed from this potential is nonzero as long as M is nonzero and
finite, and decreases toward infinity. This behavior is called the runaway.

We can equally decouple k flavors from Nf = N . Then we have

W = k

[
ΛNf=N−k

3N−(N−k)

detM

]1/k

(4.7.4)
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instead. This is also called the ADS superpotential. This might be more puzzling: it looks like a
1/k-instanton effect. Again this is fine: when we give a generic vev toM , the gauge group SU(N)

is broken to SU(k) with zero massless flavors, which becomes strongly coupled and standard in-
stanton computation is unreliable.

If we decouple all N flavors, we get

W = N(Λ3N)1/N . (4.7.5)

This reproduces N vacua of the pure SU(N) theory we saw earlier. Indeed, as UV Lagrangian is∫
d2θτUV trWW , we have

〈trWW 〉 = ∂

∂τUV
Weffective ∝ Λ3. (4.7.6)

with N branches.

5 Behavior of Sp(N) with Nf flavors
You think you understood the behavior of SU(N) SQCD? Let’s try to check if you really under-
stand, by considering other groups and other matters. The simplest generalization turns out to be
to consider Sp(N). The analysis was originally done in [20].

5.1 What’s the group Sp(N)?
R and C have the absolute value function that satisfies |a||b| = |ab|. In particular, for C = R2, this
leads to the formula

(a2 + b2)(s2 + t2) = (as− bt)2 + (at+ bs)2. (5.1.1)

It is natural to wonder if we introduce similarly a bilinear product to Rn and have a formula∑
ai

2 +
∑

si
2 =

∑
k

(
∑
i,j

cijk aisj)
2. (5.1.2)

It’s possible only for n = 1, 2, 4, 8. The product

Rn × Rn → Rn (5.1.3)

defined by cijk loses commutativity for n = 4, and associativity for n = 8.
The n = 4 case is known as the quaternion H and the n = 8 case is known as the octonion O.

It is standard to use the basis 1, i, j, k over R for H. The multiplications are

i2 = j2 = k2 = −1, ij = −ij = k (5.1.4)

and cyclic permutations.
A general element is

q = a+ bi+ cj + dk, (5.1.5)
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The conjugate is
q̄ = a− bi− cj − dk (5.1.6)

and we define
|q|2 = qq̄ = a2 + b2 + c2 + d2. (5.1.7)

We can check |qq′| = |q||q′|.
Consider Hn, consisting of column vectors with n elements of H. This is a H-linear space,

where the scalar multiplication is from the right. A H-linear transformation is then the matrix
multiplication from the left

qi 7→ mj
iqj. (5.1.8)

This commutes with the scalar multiplication thanks to the associativity

mj
i (qjc) = (mj

iqj)c. (5.1.9)

This fails over O and that’s why it’s hard to do things over O. Also, already for H, it is difficult to
define the determinant, due to noncommutativity.

Now, Rn, Cn and Hn have a natural norm

|v|2 =
n∑
i=1

|xi|2. (5.1.10)

R-, C-, H- linear transformations which preserve the norm are respectively called O(n), U(n),
Sp(n). Note that

• For the first two, we can demand that the determinant is 1, which determine the subgroups
SO(n) and SU(n).

• When n = 1, they respectively become Z2, U(1), Sp(1) = SU(2).
Another way to represent Sp(n) is as follows. Hn = C2n, so Sp(n) ⊂ U(2n). g ∈ U(2n) is in

Sp(n) when g preserves Jij , i, j = 1, . . . , n given by

J =

(
0 −1

1 0

)
⊕

(
0 −1

1 0

)
⊕ · · · ⊕

(
0 −1

1 0

)
. (5.1.11)

Sp(n) is particularly simple, since the only invariant tensor is this J ; the epsilon symbol can be
constructed from this. The baryons can be rewritten as a polynomial of mesons.

5.2 Sp(N) with Nf flavors
ConsiderN=1 supersymmetric Sp(N) gauge theory with chiral multipletsQa

i , where a = 1, . . . , 2N .
To avoid Witten’s global anomaly, we need to have i = 1, . . . , 2Nf . The one-instanton factor is

η = Λ3(N+1)−Nf . (5.2.1)

Under the anomaly-free R-symmetry, R(Q) = 1− (N +1)/Nf = (N ′+1)/Nf , where (N +1)+

(N ′ + 1) = Nf . The only gauge invariant chiral scalar operators are mesons

Mij = Qa
iQ

b
jJab (5.2.2)

which is automatically antisymmetric under i↔ j.
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When Nf > N + 2: When Nf is close to the upper bound 3(N + 1), it’s in the weakly-coupled
conformal phase. We analyze what happens when we lower Nf by considering the dual, which is
given by Sp(N ′)withNf flavors qi, (i = 1, . . . , 2Nf ) and gauge singletsM[ij] with the superpoten-
tial W = qiqjMij . The operators match rather obviously, with the correct R-charges. The ’t Hooft
anomalies also match. Deforming both sides by mMi=2Nf−1,j=2Nf

, we can check the consistency
under the decoupling.

Exercise. Confirm these statements.

When Nf = N +2: Decoupling Nf − (N +2) flavors, as before, we see that the superpotential
W ∝ PfM can be generated on the dual side by an instanton effect. In terms of the variables in
the original variables, this means that Sp(N) with N + 2 flavors in the infrared becomes almost
free theories of mesons M[ij] with the superpotential

W =
PfM

Λ3(N+1)−(N+2)
, (5.2.3)

which has the correct R-charge and mass dimension.

When Nf = N + 1: Decoupling another, one finds the constraint

PfM = Λ3(N+1)−(N+1). (5.2.4)

When Nf ≤ N : When Nf = N , we find

W =
Λ3(N+1)−N

PfM
(5.2.5)

which is produced by one instanton. Decoupling further, one finds

W = (N + 1−Nf )

[
Λ3(N+1)−Nf

PfM

]1/(N+1−Nf )

(5.2.6)

and in the extreme Nf = 0, one just finds

W = (N + 1)(Λ3(N+1))1/(N+1). (5.2.7)

5.3 SU(2) ' Sp(1) revisited
This has been totally un-surprising so far, but there is a small surprise when one recalls SU(2) '
Sp(1).

The moral of this section will be the following:
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• Seiberg duality tells us that there can be two different Lagrangians can describe the same
theory in the infrared.

• In fact there can be more than two different Lagrangians that describe the same theory in the
infrared.

• This also suggests that there might be no Lagrangian theory that describe a given theory in
the infrared.

5.3.1 Nf = 0, 1, 2, 3

When Nf = 0, it’s just the pure theory. When Nf = 1, there is only one meson M and

W =
Λ6−1

M
. (5.3.1)

When Nf = 2, the gauge invariant variables are B, M i
j and B̃ (having 1+ 22 +1 = 6 in total) can

be combined into M[IJ ] (having 4 · 3/2 = 6 in total) and we have the constraint

detM −BB̃ = PfM = Λ6−2. (5.3.2)

The case Nf = 3 we get

W =
detM −BiM

i
jB̃

j

Λ6−3
=

PfM

Λ6−3
. (5.3.3)

5.3.2 Nf = 4

Now consider the case Nf = 4. Here i, j = 1, . . . , Nf and I, J = 1, . . . , 2Nf .
As SU(2) with 4 flavors, the dual SU(4− 2) = SU(2) theory has the fundamentals qi , q̃i and

the 4× 4 singlets M i
j with the superpotential

W1 = qiq̃
iM i

j . (5.3.4)

As Sp(1) with 4 flavors, the dual theory is again Sp(1), has fundamentals qI and a gauge-singlet
antisymmetric M[IJ ] which has six 8 · 7/2 = 28 components, with the superpotential

W2 = qIqJM[IJ ]. (5.3.5)

They are clearly different. Only SU(4)2 ×U(1)B flavor symmetry is manifest in the former, while
the full SU(8) is manifest in the latter.

The important point here is that there can be multiple duals of a single theory. We can produce
more, in fact. In the SU(2) variables, we can rewrite W2 as

W2 = qiq̃
iM i

j + (qiqj)B
[ij] + (q̃iq̃j)B̃[ij]. (5.3.6)

Now, this theory has the structure
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1. We have the SU(2) with four flavors qi, q̃i.

2. Add M i
j , B[ij], B̃[ij] and add the coupling

δW = qiq̃
iM i

j + (qiqj)B
[ij] + (q̃iq̃j)B̃[ij]. (5.3.7)

Now, let us dualize the first entry as SU(2) with four flavors. We get

1. We have the SU(2) with four flavors Qi, Q̃i, and 4× 4 singlets Mj
i , and the coupling

W = QiQ̃jM
j
i . (5.3.8)

2. Add M i
j , B[ij], B̃[ij] and the coupling

δW = M
j
iM

i
j + εijkl(Q

kQl)B[ij] + εijkl(Q̃kQ̃l)B̃[ij]. (5.3.9)

Adding the superpotential, we can eliminate M i
j and M

j
i , we obtain the third dual [21]: it is again

SU(2) with four flavors Qi, Q̃i, and gauge singlets B[ij], B̃[ij], with the superpotential

W = εijkl(Q
kQl)B[ij] + εijkl(Q̃kQ̃l)B̃[ij]. (5.3.10)

In fact there are many ways to split QI=1,...,8 to (Qi=1,...,4, Q̃i=1,...,4) and there are many more duals
one can consider, the entire web of which is controlled by the Weyl group of E7, as shown in [22].

5.3.3 Nf = 5

The dual as SU(2) is an SU(3) gauge theory with five flavors, whereas the dual as Sp(1) theory is
an Sp(2) ' Spin(5) gauge theory with five flavors. So the duals are clearly different.

6 Supersymmetric index on S3 × S1

Let us perform more detailed checks of Seiberg duality. I don’t have the time to type a handwritten
set of notes I used before, so let me just include it here. Unfortunately it’s in Japanese. The rest of
this page is intentionally left blank...
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6.1 An application of SCI
The SCI can be used to decide the behavior of a confusing supersymmetric gauge theory. Consider
the SU(2) theory with one chiral superfield Q in 4, i.e. the 3-index symmetric traceless tensor, or
equivalently the spin 3/2 representation [23]. The global anomaly is absent, so it is OK to consider
this theory. The one-loop beta function is the same as Nf = 5 flavors of doublets. So this is
asymptotically free. Under the anomaly-free R-symmetry, R(Q) = 3/5.

The basic gauge-invariant chiral superfield is U := Q4 with all indices contracted; there is
unique such thing. One can entertain two possibilities for the IR behavior of the theory at this
point:

1. It is given just by U as a chiral scalar, rather as in the ‘deformed moduli’ case.

2. It is a nontrivial superconformal theory.

We now know the answer is the second. But historically, this conclusion was reached in a compli-
cated process [24, 25, 26].

As a support for the first possibility, the authors of [23] computed the ’t Hooft anomaly for the
anomaly-free U(1)R symmetry, and compared the values in the IR and in the UV. They magically
agreed. That did not prove the description 1, but at least was a support.

Gradually, it was noticed that the description 2 is more plausible [24, 25]. The definitive ar-
gument in favor of the latter came after the SCI was introduced. In [26] the author computed the
SCI in the UV gauge description and that in the proposed IR free description. They were clearly
different, therefore the choice 1 was ruled out.

7 SO SQCD
Let us now consider SO(N) SQCD withNf flavorsQi, i = 1, . . . , Nf in the vector representation.
There are a lot of surprises in this case.

7.1 SO(3) with one flavor
The simplest nontrivial example is SO(3) with Nf = 1 flavor Q. Giving a vev, SO(3) breaks to
SO(2). Therefore, generically, the low energy theory contains a massless Abelian gauge field Wα.
It also has a massive W-bosons and the ’t Hooft-Polyakov monopoles.

Its coupling depends on the vev. The gauge-independent combination of the vev is u := Q ·Q.
The low-energy Lagrangian would have the form

∝
∫
d2θτ(u)WαW

α + cc. (7.1.1)

We have to determine τ(u) as a locally holomorphic function of u.
When |u| is large, the coupling is weak, and the running can be computed, and we have

τ(u) = − 1

2πi
log

u

Λ2
+ · · · (7.1.2)
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where Λ4 is the one-instanton factor.
The anomaly-free R-symmetry is easily computed: R(Q) = 0. This is not very useful. The

more useful is the anomalousU(1) symmetry rotatingQ→ eiϕQ. This shifts θ by 4ϕ. Equivalently
Λ4 is charge 4. Then theZ4 subgroup remains a conserved symmetry. There is also a corresponding
anomalous conservation law. In components it is

∂µJ
µ
Q ∝ trFF̃ (7.1.3)

and in terms of the superfield we have

D̄2Q†Q = 4
1

16π2
trWW. (7.1.4)

An important clue to solve this system is to relate it to pure SU(2) by addingmQ2/2. Then we
should just have two vacua, as we already saw. In this case, the anomalous transformation law is

D̄2Q†Q = 4
1

16π2
trWW +mQ2 (7.1.5)

and therefore
〈 1

16π2
trλλ〉 = 〈1

4
mQ2.〉 (7.1.6)

Exercise. Confirm this logarithmic running, under the normalization specified below.

When |u| is small enough, the leading term would have negative imaginary part, making the
system unstable. Something needs to happen there. We are going to invoke the Abelian duality.

7.2 Physical and mathematical digression
The Abelian theory has the SL(2,Z) duality, generated by the exchange of (e,m):

S : (e,m) 7→ (−m, e) (7.2.1)

and the shift of the theta angle by 1, which acts on the charges by the Witten effect

T : (e,m) 7→ (e+m,m). (7.2.2)

In general, a duality action is given by a matrix

M =

(
a b

c d

)
∈ SL(2,Z) (7.2.3)

acting on (e,m) on the right and on τ as

τ 7→ τM =
dτ + b

cτ + a
. (7.2.4)
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Now, the normalization of the Abelian gauge field we use is as follows. We declare that the
W-bosons to have the electric charge e = 2 and that the ’t Hooft-Polyakov monopoles to have the
magnetic charge m = 2, so that the Dirac quantization condition is given by em ∈ 2Z.

This somewhat unconventional choice8 is to allow an external electric source from SU(2)’s
fundamental representation, and an external static magnetic source whose charge is half that of
a ’t Hooft-Polyakov monopole, which is compatible with the dynamical fields in the Lagrangian.
They count as electric charge 1 or magnetic charge 1, respectively. One cannot introduce a static
electric source of charge 1 and a static magnetic source of charge 1 in a simple manner, since the
pair violates the Dirac quantization condition.

Our infrared Abelian theory is embedded in a bigger SO(3) theory. In our normalization, odd
charges can only come from external sources. Therefore we can restrict the duality transformation
of the Abelian theory from the full SL(2,Z) to the subgroup Γ(2) specified by the condition(

a b

c d

)
≡

(
1 0

0 1

)
(mod 2). (7.2.5)

The coupling τ modulo the action of Γ(2) has a nice geometrical representation. Take a torus
Eτ obtained by identifying z ∼ z + 1 ∼ z + τ of the complex plane. The group SL(2,Z) is the
group of the change of the basis of the torus. The subgroup Γ(2) is the group that fixes the four
points P , Q, R and S on the torus invariant under z 7→ −z. Now, take the quotient of the torus
Eτ by z 7→ −z. This makes the torus a double cover of a sphere, whose coordinate we call x,
together with four branch points P ,Q, R and S. Without loss of generality we can put P at x = 0,
Q at x = 1, R at x = ∞. Then the position x = λ of S is the only remaining freedom. From
the construction it corresponds 1:1 to the coupling τ up to the action of Γ(2). The original torus
is given by the double cover

y2 = x(x− 1)(x− λ). (7.2.6)

When the coupling is very weak, an explicit computation shows that

λ ∼ e2πiτ . (7.2.7)

When λ is very small, one can redefine the coordinate on the sphere as x′ = 1/x. Then the
torus becomes

y′2 = x′(x′ − 1)(x′ − 1/λ). (7.2.8)

Note that this change of variables is not in Γ(2) and in fact corresponds to the S transformation.
Correspondingly, we have

λ ∼ e−2πiτS . (7.2.9)

Similarly, when λ → 1, we can change the coordinate system, and we have another dual coupling
τST .

8This choice leads to the form of the Seiberg-Witten curve which I wrote to be ‘not very well motivated’ in [27].
But as we will see below it is well motivated and useful.
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7.3 SO(3) with one flavor, continued
After this digression, we see that our aim is to fix λ(u) as a meromorphic function. The leading
behavior is

λ(u) ∼ e2πiτ(u) ∼ c
u

Λ2
(7.3.1)

which is just a funny way of expressing the one-loop running. The full solution would be given by
adding correction terms.

Suppose the full solution is found. As long as λ(u) is neither 0, 1 nor ∞, we just have an
Abelian gauge multiplet and that is it. Let us add the mass term mQQ to the original chiral Q.
This is a term mu in the infrared description. This is linear in u, and therefore, these points do not
survive as supersymmetric vacua.

Let us say λ(u) = 0 at u = u∗. Write λ(u) = c(u− u∗) + · · · . From (7.2.9), we see that

τS(u) = +
1

2πi
log c(u− u∗). (7.3.2)

This is an infrared free logarithmic running of the Abelian coupling, which can be reproduced
assuming that there is a charged particle of mass proportional to |u − u∗|. Since this is the dual
coupling, this particle is a monopole. The charge can be fixed by carefully following the conven-
tions; we find that this is due to a charge-2 monopole. Let us denote by q± these monopole chiral
multiplets. Then we have the superpotential

W ∼ (u− u∗)q+q−. (7.3.3)

Let us add mQQ = mu again. The total superpotential is

W ∼ mu+ (u− u∗)q+q−. (7.3.4)

Taking the variations, one find that q± gets a vev and u = u∗. Since the magnetic particles con-
dense, this is a dual Higgs mechanism and the original electric charge is confined. From the Konishi
equation (7.1.6) we see

〈λλ〉 ' mu∗. (7.3.5)

The same analysis can be carried out when λ(u) = 1 or λ(u) = ∞ at u = u∗. In each case, we
find that a dyon of charge 2 or a electric particle of charge 2 has a mass proportional to |u − u∗|.
AddingmQ2 to the superpotential, there is either the oblique confinement or the Higgs mechanism,
and the relation (7.3.5) holds.

Now, we know from the analysis of pure SU(2) that there are only two vacua. Therefore, when
u is finite, there are exactly two points where λ(u) = 0, 1,∞. We also know that 〈λλ〉 ∝ ±Λ3

pure,
and we have the matching Λ3

pure = mΛ2.
This is sufficient to fix λ(u) uniquely to be

λ(u) =
u

2Λ2
+

1

2
(7.3.6)
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with the torus given by
y2 = x(x− 1)(x− u

2Λ2
− 1

2
). (7.3.7)

By a slight change of the variables we can also write

y2 = (x2 − Λ4)(x− u). (7.3.8)

7.4 SO(N) with Nf flavors, Nf sufficiently large
Let us consider SO(N) theory with Nf chiral fields Qi in the vector representation. The flavor
symmetry is SU(Nf ). The one-instanton factor is

η = Λ3(N−2)−Nf . (7.4.1)

Under the anomaly-free R-symmetry, R(Q) = 1− (N − 2)/Nf = (N ′ − 2)/Nf where we define
(N − 2) + (N ′ − 2) = Nf .

Close to the maximum Nf ∼ 3(N − 2), the theory is in the weakly-coupled conformal phase.
As always, we consider loweringNf gradually. Again as always, there is the Seiberg dual descrip-
tion, where the gauge group is SO(N ′), with Nf flavors qi and a gauge singlet M ij in Nf × Nf

symmetric, with the superpotential
W = qiqjM

ij. (7.4.2)

We see thatR(q) = (N−2)/Nf . It is straightforward to check the agreement of ’t Hooft anomalies.

Exercise. Carry this out.

The mapping of the chiral operators has some surprise:

original dual
M ij := QiQj ↔ M ij

εNf
εNQ

N ↔ εN ′WαW
αqN

′−4

εNf
εNWαW

αQN−4 ↔ εN ′qN
′

(7.4.3)

where epsilon symbols are used to contract indices for the second line and for the third line. Only
with the insertion of WαW

α, the R-charge and the flavor symmetry structure match.

7.5 Digression: generalized Konishi anomaly
But this begs the question: why didn’t we have to consider such chiral scalar operators involving
WαW

α in SU(N) and Sp(N) SQCD? After all, we should have listed every gauge-invariant scalar
chiral operator, without asking whether they are composed of scalar chiral operators.9 For example,
what happens to εN(WαW

αQ)QN−1 in the SU(N) SQCD?
9The content of this section is based on an unpublished discussion with Futoshi Yagi in 2007, following the joint

paper [28] with Ookouchi, Kawano and the lecturer.
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The simplest case to consider is trWαW
α itself. For this, we already know the answer. The

Konishi anomaly, the anomalous transformation law under Q→ eiϕQ, says

D̄2Q†Q = Q
∂W

∂Q
+ 2C(R)

1

16π2
trWαW

α. (7.5.1)

Therefore, trWαW
α is essentially Q∂W

∂Q
, and doesn’t have to be treated independently.

This relation can be generalized even further [29], by considering the infinitesimal variation
δQ = εf(Q), to which the corresponding equation is

D̄2Q†f(Q) = f(Q)
∂W

∂Q
+

1

16π2
trRWαW

α∂f(Q)

∂Q
. (7.5.2)

This allows us to kill εN(WαW
αQ)QN−1 in SU(N) SQCD by considering the variation for Q̃

given by
δQ̃ = εNQ

N−1. (7.5.3)

Note that the transformation on Q̃ is used to kill an operator withQ andWα. Similarly, we can
kill the operator εNWαW

αQN−4 in an SO(N) theory with Q in the vector representation, if there
is a chiral field Ψ in the chiral spinor representation. For example, for Spin(10) theory with one Ψ
and a number of Q’s, we can consider the variation

δΨ = Q
/

6Ψ, (7.5.4)

whose generalized Konishi implies

D̄2Ψ†Ψ ∼ trchiral spinor Q
/

6ΓijWα
ijΓ

klWklα ∼ εNWαW
αQN−4. (7.5.5)

7.6 SO(N) with Nf flavors, Nf ≥ N = 1

Let us come back to the original discussion. Lowering Nf , eventually we go out of the confor-
mal window, and the dual description becomes infrared free. Nothing of note happens up to and
including Nf = N , for which the dual is SO(N ′ = 4), with the superpotential

W = qiqjM
ij (7.6.1)

as always.
Decoupling one flavor, we get to Nf = N − 1, N ′ = 3. It is straightforward to see that a new

term can be generated by the one-instanton configuration in the broken gauge group, and we get

W = qiqjM
ij + Λ̃6−2(N−1) detM. (7.6.2)
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7.7 SO(N) with Nf flavors, Nf = N − 2

We now add the term δW = mMN−1,N−1. Close to the origin of M , we see that it gives a vev
to qN−1, breaking SO(3) to SO(2). The remaining superpotential is W = qiqjM

(N−2)×(N−2).
Note that qi here are in the two-dimensional representation of SO(2), in addition to being in the
fundamental of SU(N − 2). As field charged under U(1), it can be written as

W = q+i q
−
j M

ij. (7.7.1)

(There can be a complicated instanton correction f(detM/Λ2(N−2)) multiplying the whole ex-
pression, with f(0) 6= 0. We drop these coefficients below.)

There is another region where something happens. To see this, we imitate our analysis of SO(3)

with one flavor, which was already given. Note that for the rest of the analysis of Nf = N − 2, we
directly work in the original description.

The one-instanton factor is

η = Λ3(N−2)−(N−2) = Λ2(N−2); (7.7.2)

note that this is valid only for N ≥ 4. The field Q is neutral under the anomaly-free R-charge, and
there is an unbroken symmetry Z2(N−2) on Q.

Giving generic vevs, we get low energy SO(2) gauge field. We need to determine its coupling
as a function of Mij := detQi · Qj . This Mij is in a representation of SU(N − 2)F . The flavor
symmetry says that the coupling can only depend on U = detM , on which the unbroken Z2(N−2)

acts trivially.
Since we have a dynamical field in the vector representation, we can consider static electric

sources in the spinor representation and also static magnetic sources which is half the charge of
the dynamical ’t Hooft-Polyakov monopole. Accordingly, the dynamical duality group is Γ(2)

again, and the coupling can be usefully represented in terms of λ(U), or equivalently in terms of
the equation of the torus.

We can give a big vev to Q2,...,N−1 and think of the Higgsed theory as SO(3). From this
consideration we see

λ(U) ∼ U

Λ2(N−2)
(7.7.3)

in the large U region. We already know from the decoupling argument from Nf = N − 1 that at
U = 0 we have N − 2 pairs of fields q±i of charge ±1, making the coupling at U = 0 to go to zero
there.

This forces the equation above to be in fact essentially exact, and the curve is given by

y2 = x(x− Λ2(N−2))(x− U). (7.7.4)

We already discussed the physics whenU → ∞ andU → 0. There is another singular locus where
U = Λ2(N−2). Note that this is not a point but a complex codimension-1 subspace in the space of
M ij . The fact that λ→ 1 there means that there is a light dyon E±, with the superpotential term

W ∼ (detM − Λ2(N−2))E+E−. (7.7.5)

43



7.8 SO(N) with Nf flavors, Nf = N − 3

Now we add δW = mQN−2QN−2 = mMN−2,N−2 and decouple one flavor. This term forces the
vacua to be either on detM = 0 or detM = Λ2(N−2). In the former branch, q±N−2 condenses,
q1,...,N−3 and M (N-3)×(N-3) remain massless, with the superpotential

W ∼ qiqjM
ij (7.8.1)

where the indices are now i, j = 1, . . . , N − 3. This qi is naturally identified with

qi = εNf=N−3εNWαW
αQN−4. (7.8.2)

In the latter branch, E± condenses. We find that we have the Affleck-Dine-Seiberg superpotential

W ∼ Λ3(N−2)−(N−3)

detM
. (7.8.3)

7.9 SO(N) with Nf flavors, Nf = N − 4

Let us add δW = mQN−3QN−3 = mMN−3,N−3 and decouple another flavor. From the former
branch, we just condense qN−3 = ±

√
m, eliminating M i,N−3 and the rest of qi. We obtain two

branches of vacua, parameterized by M (N−4)×(N−4), with zero superpotential.
From the latter branch, we get a behavior familiar from the analysis of SU(N) and Sp(N): we

just get the ADS superpotential

W = ±
[
Λ3(N−2)−(N−4)

detM

]1/2
. (7.9.1)

In the end we found four branches. They can also be understood as follows: giving a generic
vev to Q, SO(N) is broken to pure SO(4) ' SU(2)1 × SU(2)2, and the one-instanton factor of
either is Λ′6 = Λ3(N−2)−(N−4)/detM . Each of SU(2) can have W = ε1,2Λ

′3 where ε1,2 = ±1,
with the total superpotential

W = (ε1 + ε2)Λ
′3 = (ε1 + ε2)

[
Λ3(N−2)−(N−4)

detM

]1/2
. (7.9.2)

7.10 SO(N) with Nf flavors, Nf < N − 4

Let us add δW = mQN−4QN−4 = mMN−4,N−4 and decouple another field. The branch with
W = 0 is eliminated, while from the branch with W 6= 0 we get the standard ADS superpotential

W =

[
Λ3(N−2)−(N−5)

detM

]1/3
. (7.10.1)

From this point on, things regularize, and we just have the ADS superpotential

W =

[
Λ3(N−2)−Nf

detM

]1/(N−Nf−2)

(7.10.2)

up to and including Nf = 1. When Nf = 0 we have the pure SO(N) Yang-Mills.
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7.11 Spin(N), SO(N)+ and SO(N)−

So far in this section we didn’t distinguish the three possible choices, Spin(N), SO(N)+ and
SO(N)−. In this last section we see how they are mapped under the Seiberg duality [5]. For this,
it is useful to start by considering pure SO(4) theory with the common coupling Λ6

1 = Λ6
2 =: Λ6.

The superpotential is
W = (ε1 + ε2)Λ

3. (7.11.1)

In the vacua where W 6= 0, the ’t Hooft line has the perimeter law but the dyonic line is confined.
Meanwhile, in the vacua where W = 0, the ’t Hooft line has the area law while the dyonic line is
unconfined. The SO(4)+ theory has the ’t Hooft line and the SO(4)− theory has the dyonic line.

Now, consider SO(N) with Nf flavors Q, whose dual is SO(N ′) with Nf flavors q where
N ′ = Nf − N − 4, together with mesons M . Give a large vev to M . On the original side, we
have completely Higgsed vacua, in which the spinor Wilson line has perimeter law, and both the
’t Hooft line and the dyonic line have area law.

On the dual side, the vev to M gives masses to N out of Nf of q, breaking SO(N ′) to SO(4).
The branch with ε1 + ε2 6= 0 has a runaway superpotential, and the supersymmetric vacua come
from the branch with ε1 − ε2 = 0. Therefore, the spinor Wilson line has the area law, ’t Hooft line
has the area law, and the dyonic line has the perimeter law.

Comparing the two descriptions, this means that we have Spin(N) ↔ SO(N ′)−, and by ex-
haustion we have SO(N)+ ↔ SO(N ′)+.

7.12 Summary: SU, Sp, SO Seiberg dualities
Let us now summarize the behaviors we saw in three tables.
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