Raphael Bousso Stanford University

The Holographic Principle for General Backgrounds

hep-th/9905177 hep-th/9906022

What is N_{dof} in nature?

- ${}^{\bullet}$ QFT + Planck cutoff ightarrow $N_{
 m dof} \sim V$
- thermodynamic entropy cannot exceed number of degrees of freedom: $S \leq N_{\rm dof}$
- ullet therefore $S_{ ext{max}} \sim V?$ No!
- · with gravity, most states collapse to black holes
- Bekenstein (1981): $S \leq A/4$
- 't Hooft (1993): $N_{\text{dof}} \leq A/4$

't Hooft, gr-qc/9310026 Susskind, hep-th/9409089

Holographic Principle: $N_{dof} \leq A/4$

"the world is two-dimensional"

- required by quantum gravity
- should be manifest in the fundamental theory
- implies that space and time are derived concepts?
- strongly supported by AdS/CFT correspondence
 Maldacena; Gubser, Klebanov+Polyakov; Witten;
 Susskind+Witten; ...

The Problem

- if truly fundamental, H.P. should apply to all solutions of Einstein's equations
- but Bekenstein's bound is valid only for "regions of limited self-gravity."
- holographic principle violated in
 - gravitationally collapsing systems
 - large cosmological regions

Fischler+Susskind, hep-th/9806039

a more general formulation is needed

Demand Covariance!

- spacelike hypersurfaces excluded
- try light-like hypersurface

4 choices

- orthogonal light-rays generate 4 null hypersurfaces
- select a region inside the area
- need covariant definition of "inside"

Where is "inside"?

- \bullet cross-sectional area must decrease: $\theta \leq 0$
- trapped: anti-trapped: normal:
- $\theta \le 0 \Rightarrow$ must stop at caustics
- surface need not be closed

Covariant Entropy Bound

- \bullet pick a surface, area A
- find the "allowed" families of light-rays
 (at least 2 out of 4)
- pick an allowed family
- construct light-sheet by following each light-ray until $\theta > 0$

$$S$$
 (light-sheet) $\leq A/4$

Properties of the Bound

- democratic treatment of all 4 null directions
- no reference to inside/outside
- no reference to past/future:
 time reversal invariant

The Holographic Principle for General Spacetimes

 N_{dof} (light-sheet) $\leq A/4$

The Entropy in Spatial Regions

When are spacelike hypersurfaces permitted?

- \bullet causality + second law $\Rightarrow S_V \leq S_L \leq A/4$
- ⇒ recover Bekenstein's bound

Does it work?

- no straightforward proof
- need comprehensive, non-trivial tests, especially for gravitational collapse

R.B., hep-th/9905177

worst case assumptions → saturation

Closed FRW Universe

Anti-de Sitter Space

Minkowski Space

de Sitter Space

Properties of Screens

- can be timelike, null, spacelike, or mixed
- area can be time-dependent
- there may be several disconnected screens
- spacelike projection not normally possible
- AdS very special

What is the Holographic Theory?

- a quantum field theory on the screen,
 as in AdS/CFT?
- generically, this possibility excluded by the screen properties
- unconventional "theory" on screen?
 - has varying $N_{\rm dof}$
 - lives variously in Euclidean/Lorentzian time

Speculations

- screen-theory approach cannot be fundamental (presupposes geometric structure)
- turn holographic principle around?
 - hol. principle: "geometry → entropy"
 - hol. theory: "entropy → geometry"
- · two tasks:
 - construct theory without gravity with varying $N_{
 m dof}$
 - reconstruct space-time from $N_{
 m dof}$