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A tiny bit of philosophy :

auge theory studies the gauge fields A in the G-
bundles P over the space-time manifold X.

Sigma models deals with the maps ¢ : X = V of the
space-time into the target space V.

There is a similarity between two subjects, noted by
topologists a long time ago.

Example : if over the target space V one has a G-
bundle P with a fixed connection Ay, then to every
map ¢ : X = V one associates the induced connection

A= QD*AU

on the induced G-bundle ¢*P. Moreover, by taking
topologically non-trivial maps ¢ (“instantons”) one
induces topologically non-trivial gauge configurations.

In our today’s discussion we will study more specific
examples of the interplay between the sigma models
and the gauge theories.






Our original motivation is the desire to understand the
exact (instanton corrected) mapping between the

observables in the ultraviolet non-abelian N' = 2

supersymmetric SU(N) gauge theory and the

observables of its Jow-energy effective abelian theory.

o is the complex adjoint scalar in the SU(N) vector
multiplet.

Find the polynomials Pg, labelled by the irreps R of
SU(N) such that:

IV » TTRJ=>PR(UI,,..,UN_1;A) <— IR
with u;,...,uny_1 — coordinates on the moduli space
of vacua:

A2N
A =.’13N—U1£BN_2—...'U,N_1
2

U = TI‘Ak+1CNO'
and A counts instanton corrections.

We found it useful to translate the problem into
the language of more familiar two dimensional sigma

models.

On the way we found several interesting results which X
themselves are worth talking about. ”
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1. N = 2 supersymmetric 2d (4d) sigma models
(gauge theories).

2. Donaldson theory as gauged linear sigma model.
2. CP"~! model vs. gauged linear sigma model.

3. Instantons in gauged linear sigma model, 4d gauge
theory and non-linear sigma model. 2 — 4,6, 8

4. N = 2 sigma models with disconnected target
space arising as eftective field theories. Solitons.

5. Conclusions.
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N = 2 susy gauged linear sigma model :

Matter chiral multiplets ®* take values in the complex
vector space W, with Kahler form w.

d' = ('i’ia wi:: 'l;;:)

Vector multiplets V' take values in the Lie algebra
of the group G which acts in W preserving Kahler
structure.

V = (Apno':- o A:t': ;:I:)

The superfield ¥ containing the field strength is the
twisted chiral superfield with the quantized component
F' (for abelian G)

The bosonic part of the Lagrangian is (in the absence
of superpotential):

. 1 32
[ D6 + 552 + Sl + o211

o u~TrP'¢®’ — the moment map for the G action in



ontains U (1) factors = deform the model by &ddlﬂg
onstant per each U(1) to u, (Fayet-Illiopoulos

For each U(1) factor = 0 term: 6, fFl-

@ Altogether: a complex parameter t; = ir; + 2%’; per
U(1).

¢ Correlation functions of chiral observables are
helomorphic in ¢, — important constraint.

¢ ¢ is the gauge coupling (for several U(1) factors one
may have different couplings e?).

¢ In the infrared e? — oo and the gauged linear model
flows to the non-linear sigma model with the target

W/|G=u""(0)/G
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2. Donaldson theory ~
N =2 susy Yang— Mills theory

can also be formulated in terms of the gauged linear
(affine) sigma model!

Take W = the space Ay of the gauge fields on a two
dimensional Riemann surface X

[ will skip the details concerning 't Hooft fluxes

Take as @ the infinite dimensional group of two
dimensional gauge transformations.

Then the gauged linear sigma model with matter in
W and the gauge group G is precisely the (partially
twisted) N = 2 susy gauge theory formulated on the
space-time

Y x RYY

One may hope to use the knowledge of the 2d
sigma models for deducing properties of the 4d

gauge theories




Let us see how far can we get
<< Lexicon Cosri >>
Attempt of the Dictionary:

Both (2d and 4d) models have non-local observables of
special kind. There are local observables Op = 1rgo
associated to every irreducible representation R of the
gauge group G.

There are their descendants O} = {G,{G,...,Or}}
which are i-forms on the space-time.

2d (4d) theory can be deformed by adding the two-
(four-) observable to the action.

The space of deformations preserving (twisted) N = 2
susy has a special structure (special coordinates) which
enter the story of mirror symmetry.

These coordinates are known for a large class of 2d
sigma models and are not known in 4d case.

But! 4d case = 2d gauged linear sigma model.
The corresponding low-energy effective target space
W//G is nothing but the moduli space My of flat
(G-connections on X. (Considerations involving ws can
even make it smooth). This is manifold with ¢; > 0 for
which it was shown (Kontsevich-Manin) that WDVV
equations allow to fix the special coordinates uniquely.
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Q: Do 'we have a solution?

A: NO

Q: But what about KM and WDVV?

A: One has to be careful comparing linear sigma model
and its effective description: instantons are different.
Let us look at the familiar example: CIP" ! model.

3. CIP"~! model vs. linear sigma model
This is the model with W = C¥, G = U{l)
BPS field configurations:

D;¢' =0,F4 = —€” (?‘ - Z |¢'£|2)

do = 0, od* =0
In the instanton sector with

1

F=d
o

the action of the BPS configuration is 2witd — it is the
minimum in the given topological class.



The moduli space M, of BPS configurations i
the space for the solutions to these equa,tms nodulo
gauge transformations. For definiteness let us assume

that the worldsheet is the sphere S2

Let 8 = e*rAreag:.

B > 2xnd : My is compact and ~ CIPV4+N-1

(0(3:1) (mNd-i—N 1 )) p—2mitd

B < 27d : the moduli space M, is empty.

(0(21)...0(TNa4N-1)) =0

Q: We get a contradiction with the holomorphicity of
the correlators of chiral observables: the dependence
on 3 clashes with the holomorphicity in t 2!

A: This phenomenon is well-known in the context of
the 4d gauge theory — Donaldson jumps which occur
on manifolds with b; = 1 — an example of the failure
of the argument which states that the Q-exact terms
in the action decouple. Here: 2d analogue of the
Donaldson jumps. Correlation functions are piece-wise
holomorphic functions. But they jump at certain walls
in the Kahler moduli space.

® not seen in the deep infrared (8 = )



!

of the instantons in the CIP" ~! model?
A: In the limit e* — oo for any fixed d the space M,
can be decomposed as follows:

My= M;UMy;_y xP .. IIM,;_, xIP*11. .. My x IP®

where M,; is the moduli space of the degree d
holomorphic maps CIP'! — CP"~! and P* is the
space of charge k Nielsen-Olesen-like vortices
which show up as the point-like instantons of some
kind.

If S |t? # 0 everywhere = BPS
configuration corresponds to the actual holomorphic
map CIP! —» CP"' 1. |
Otherwise the zeroes of ). |¢*|*’s are the centers of
the vortices.

¢ The unexpectedly non-trivial CIP’ model is the
analogue of the U(1) “instantons”

on non-commutative spaces in 4d (NS). In both cases
the moduli space is the symmetric product of the
space-time manifold (with the blowup in 4d).
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compactification of the space My ¢

d j
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‘ Q: What is the relation of My to the Kontsevich

A: It is different (coarser) compactification, not
 suitable for WDV'V formalism

Q: Then what is good about it?




_&2’:.‘.!2.1.'_1.: It is the compactification
which is suitable for the 4d story

Indeed, let us have a look at the BPS field
configurations in the gauge theory.

Using the complex structure on ¥ x CIP! we write BPS
eqs. as:

OF;-; = (), ;,3 = 1,2 — the analogue of
D 36" = 0 of the CIP" ~! model.
oFy = —BFs, B=5==2 & Fu=—-ep

¢ The analogue of the condition 3" |¢°|? # 0 is
Ay (z) # Aym, for any z € S?

where Ay is the non-flat Yang-Mills gauge field on
3, i.e. the solution to the YM equation:

D;FA = )

with F4 # 0. In the holomorphic language: the
first BPS equation tells that the instanton defines a
holomorphic bundle £ on ¥ x IP!, the second is the
semistability condition.



If the restriction of £ on every fiber ¥ is semi-stable as
th@ bﬂﬂdle over a curve X then £ defines a holomo

e 1 P! 5 My

But, just as in the CIP" ~! case we have the analogues
of the Nielsen-Olesen vortices, which occur whenever
one gets the unstable bundle over a fiber, or, in the
physical terms, whenever the fiber gauge field is the
Yang-Mills connection.

¢ Even after inclusion of the Nielsen-Olesen vortices
the moduli space of the instanton gauge fields is not
compact, due to 4d point-like instantons.

® Analogously one can formulate 6 and 8 dimensional
theories.
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Answer 2: It is sufficient for studies of the correlator:
ol zero-observables - quantum cohomology ring

In the case of CIP"~! this is shown above by
computing (o ...0)
if one works in appropriate chamber r >> 0.

For My, the story is more difficult.

¢ chambers. One has to take the limit # — oo &
Areays << Areag2.

¢ explicit knowledge of the space of BPS configurations
is lacking. Got to use Seiberg-Witten solution, taking
care of the contact terms and other issues.
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The modular invariant part of the cohomology ring of
My for the group G = SO(3),ws # 0 is generated by
three generators a, b, c of degree 2,4, 6:

(2 0
o= [ Of.  b=0p.

b= Z / 0’%‘1?2 O'(I}rzn'z
A.

Bz

Quantum cohomology ring ( = relations on a,b,c) —
conjectured by BJSV in 1995.

MW + LNS + MM + LNS = explicit formula:

(eela+£2b+£3c) X

. 1 d“dz 6252u+(61u+£3(u _1)) (61 -+ Z)
(u?

=gz o(€1)o3(2)
where o3 is the Weierstraf} elliptic function
03(z) =1+ £2° + ..., associated to the SW curve:

y2=4$3_£ u_z_l ! _2_1L_3._E
4\ 3 4 48 \ 9 4

¢ Qualitatively the ring defined by this formula looks
like the quantum ring of BJSV, but the precise
mapping between the generators is different




M*: it has effective description
as the theory on the o-plane with superpotential

Back to CIPY~! model. Integrate out the matter
fields. We are left with the vector multiplet V', but
only its gauge invariant part X enters the Lagrangian.
It is known (BT) that one can replace the gauge
field and the gauge fixing ghosts by the field strength
without changing the functional measure, with only
one subtlety:

e The F,, component of the twisted chiral superfield
L is quantized: | F € 27Z.

This subtlety leads to non-trivial consequences. The
matter induces the effective twisted superpotential:

s | N
W(X) = itX — %Elogﬁ

which only makes sense (due to the logarithm) when £
is the superfield with quantized F'. Now let us perform
a series of the manipulations: fix a point » € S?
and view the field logo as the univalent function by
restricting:

0 < argo(x) < 27w

and defining logo(z) = logo(x) + [, do/o.



1o .
I | ] 1}
: T
et 3 Ll

Rewrite the functional integral over £ as follc
—ngf=§i;fNFargﬂ+... —

ﬁ) < argo(x) < 2m €
F' quantized

:m F4 == — | NFargo+...
E f 0 < argo(*) < 27 © Jreds 2
MEZ" F  unconstrained
N — 1 and shift

now write m = Nl+ k, kK = 0,...,
argo (x):

N-1
*z.k F+435= | NFar
Z Z /:Zvrl < argo(x) < 27(l+ 1) Jrese] -

k=0 l€Z F  unconstrained

Z / e=Se11.1
argo(x),F free

where S.;s. is susy Lagrangian derived from the

| II

twisted suPérpotential
— N
Wk — Z(k‘ + t)O'
27
which is now defined on the universal cover of C*
where logarithm is well-defined. So, we observe the

ologo

mutation of the Coulomb branch
N copies

C"->CI...IIC
with W having an isolated vacuum on each component

The story is completely general:






4. Sigma models with disconnected target spaces
Two dimensional sigma models with the twisted chﬁ‘al
multiplets with quantized F’s can be “dualized” i
a way similar to the above into the sigma model
with the unconstrained fields. The target space of
the dual model is typically disconnected. We won'’t
need the general description but rather concentrate on
examples:

N = 2 super-Yang-Mills theory

on £ x R! for & ~ P’.
If one makes a (partial) twist so as to preserve N = 2
susy in 2d one arrives at the theory with twisted chiral
multiplets « 4d abelian vector multiplets. The target
space of effective sigma model is the space of pairs:

(Cu,7), where C,, is one of the curves:

AZN
s T - =3:N—u1:z:N"2 - e oo UN -1

while v € H,(C,,Z). The target space contains the
component Mg where v = 0 which is 4d moduli space
of vacua. It also has components with v # 0 which are
(partial) covers of M.






The model also has a twisted superpotential W':

~=¢dm/\ﬂz-
’ Z

which vanishes on M. The model can be deformed
by adding a “mass” term to the superpotential W —
W + e;u. Then one gets a critical point on every
component.

For G = SU(2) one gets one copy of the u-plane of
SW and an infinite number of
strips —2 < Rer < 2, Im7 > 0 which show up in the
“unfolding” method of computing the u-plane integrals
of Rankm-Selberg-Borcherds—Moore—Wltten et al.
Wy = N ¢ 29 is the superpotential on the N’th
component
As an example of the computation of the correlation
function using this presentation of the theory consider
Donaldson theory on IP' x IP' (the notations a,b as
before):

du 2 2&9,11.
E;ﬂ.-l—fgb
Z f Nda + eldu
f (dU)2 2€2U
da tanh (61 d&)

where as usual a = fox-f



Q : If the target space of the effective sigma model for
CPP" ! is disconnected while the vacua sit on different
omponents, then what about the solitons?
A: This is an extremely interesting question. If the
sigma model on the o-plane was the fundamental
theory then we would conclude that the solitons are
absent. But, the o-theory is an effective one, it
can break down at short distances, in particular, the
trajectories in the o-space may jump. Where they
jump and how this happens will be analyzed elsewhere.
At the moment it seems that they can break at the
“attractor” points. The useful examples of the models
where this breaking occurs are:
e Type ITA string compactified on CY,; with the G
-flux. Then the solitons are represented by the D4-
branes wrapping 4-cycles
¢ N'=24d SU(N) on IP' with the twist — the solitons
are the monopoles and dyons.
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5. Conclusions

1. There is a deep and fruitful interplay between the
2d sigma models and 4d (and higher?) gauge
theories, especially in the context of susy.

2. We found precise relationship between the 4d and
2d instantons.

3. By comparing the quantum rings we see the non-
trivial renormalization which relates
4d observables to the 2d observables

4. We found a non-trivial topological transmutation
experienced by the Coulomb branch of the linear
sigma model and the universal description of the
superpotential.

Q: Is that all?
A: Of course not. For example, we left aside several
interesting points:

1. applications to the compactifications of string
theory,

2. further discussion of solitons in the sigma models,
related questions concerning domain walls in susy
QCD

3. higher dimensional gauge/tensor theories,
theories on D-branes and the corresponding sigma

models

4. four dimensional mirror symmetry



