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¢ The idea to describe the Wilson loop of QCD in
terms of a string partition function dates back to
the early eighty’s. For instance Luscher, Symanzic
and Weisz found that the potential d'quark anti-
MmaudnadMeLacquiresaE
term (c is a universal constant) due to quantum
fluctuations.

¢ Recently there has been a Renaissance to this idea
in the framework of Maldacena’'s correspondence
between large N gauge theories and string theory.

¢ | he aim of this this talk is to address some of the
guestions from the old days in the context of the
modern approach.

Outline

1. Classical Wilson loops - general results
2. Applications to various models

3. Quantum Fluctuations

4 On the exact determination of Wilson
loops
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~Goo(s)dt? + Gﬁg“m”(s}Mﬁ
+  Gus(8)ds® + Gapay(s)dar
(1)

where x|- p space coordinates on a D, brane
s and zp are the transverse coordinates
*r,s
< Pe

Xi

The corresponding Nambu-Goto action is

Sng = / dad’r\/ det|0px*0pz" G )]

Upon using 7 =t and 0 = x, where z is one of the
x|, coordinates, the action for a static configuration

reduces to
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and 7 is the time interval.
The equation of motion (geodesic line)

ds _ f(s) /f2(s) — f3(s0)

dr ~ ~ g(s) f(s0)

For a static string configuration connecting

“Quarks” separated by a distance

e /dm_z/: f’iz) ) VF2(5) 0) 2(50)

sl— L ~>¢

S e ,_ & /

the NG action and corresponding energy £ =

are divergent.



So that the renormalized quark anti-quark
potential is
| E = f(s0) L

+ 2 [PEA(/F(s) - F2(s0) — f(s))ds —

| 2’;" g(s)ds . il

The behavior of the potential is determined by
the following theorem




above, with functions f(s), g(s) such that:

1. f(s) is analytic for 0 < s < 0. At s =0, ( we
take here that the minimum of f is at s =0 ) its
expansion is:

f(8) = f(0) + ars" + O(s"*")
with k > 0, ap > 0.

2. g(8) is smooth for 0 < s < co. At s =0, its
expansion IS:

g(s) = b;s’ + O(s™)
with j > —1, b; > 0.
3. f(8),9(s) >0 for0< s < 0.

4. f'(s) >0 for0< s < .

5 [% g(s)/f*(s)ds < oo.



Then for (large enough) L there will be an even
geodesic line asymptoting from both sides to s =
m x = +L/2. The associated potential is

1. if f(0) > 0, then
(a) ifk=2(+1),

(b) ifk >2(5+1),

k+2(j+1)

| E=f(0)-L—2k—d-L * 2(3+1)+0(L"')

k42054
where v = k+28—-3 k/é—j and 3 and k, a

d and C, ,, are positive constants determined by
the string configuration.

In particular, there is




2. if f(0) =0, then if k> j +1,

= S = = — —d
——— o — -_— . =

r

+O(L") | E=-d - L F| ¢

= +1 2k—j—1
where ~' = —-k—{j_l (%_j)(-?k—ﬁ and d'

is a coefficient determined by the classical
configuration.

In particular,

there is no confinement




As a consequence of this theorem
A sufficient condition for confinement is
/ia
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Figure 1: Wilson loops in various scenarios
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¢ What is type 0 string

Y
sheet but not in space-time due to a non-chiral
GSO projection. The type 04 and type Op differ
from the type 114 and type IIp

(1) No space-time fermions
(i) Doubling of the RR fields
(i) Tachyons
¢ A type 0 model can be made consistent only
provided
(i) The Tachyon m? , can be shifted to m?, , >

(i) No dilaton ( and possible other massless fields)
tadpoles

(ii1) The low energy effective theory is reliable if

st << 1 R << 1 where R i1s the scalar
curvature in the string frame.




¢ The Wilson loops were discussed both in the
critical string and in Polyakov's non-critical string

model. A‘-Nm Fdoﬂs I<
¢ The equations of motion of the low energy
effective theory guarantee that
8 f(s) > 0|

¢ The interpretation of an IR and UV domains may
be in terms of the structure of the Wilson line is
as follows

so that the large wu<regime corresponds to the
gauge theory UV regime and the small u regime

to the IR.

* the IR the generic solution has

B

with f(smm) z 0



So that generically the solution in the IR admits a

gcreenmgnatunafthe 't Hooft loop.

¢ In the UV a fixed point in the form of AdS5 x S°
was observed. Moreover around the fixed point
f ~ logL so that it was argued by Minaham that

Klebanov and Tseytlin found the higher order
correction produces a Willson line

# e ——————

1
AVy ~ -

(logke — clog log52) L

which resembles the 2 loop correction in the gauge
theory picture. Note however that in the UV
gener cally the curvature in the string trame s not
negligible and thus the assertions have to be made
with 4 grain of salt.




at(o,7) = zl(o,7) + & (0, T)

The guantum corrections to the Wilson line is

(to M&, dor )
(W) = e~EaL)T /H d€, exp (_ / 2o Zgaoaga)

where £% are the fluctuations left after gauge
The corresponding correction to the free energy
is

1
Fg=—log 25 = — Zilogdet O,
a




¢ 7 =u— & = 0- No fluctuations from the metric
oo=x—=&=0

¢ “normal coordinate gauge”
J ___ uﬂl .rrr /

and the fluctuation c

n x,u plane
is in the coordinate normal to u;

The normal gauge is safer to use than the other
two gauges (that suffer from singularities).



In the o0 = u gauge ( after a change of variables)
the free energy is given by

[;uji
Il

-%log det O, — (P ; D log det O

TII

where O = f(io)(f) the boundary conditions are

E(—L/2,t) =&(LJ2,t) =0
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and the free energy is given by

‘=D2_2FB =1ogl'[Em_T—Zn+O(L

Regulating this result using Riemann ( function
we find that the quantum correction to the linear
guark anti-quark potential is

which is the so-called Luscher term.




O[A, B] = A%F,(v)0? + B8, (F,(v)d,)

The correction to the potential V|[A, B] due to
fluctuations determined by such an operator is

For the operators that describe the fluctuations
associated with metrics such that

flu) = au® (5)
glu) = b (6)

(For instance the D, brane solution in the near
horizon limit) Then

2
2 2 @& 2k—j-2 0 g

Therefore, the potential is proportional to




mml is of Luscher type for models of D
brhnaes with 16 supersymmetries, in particular alm

the Ang, X S5 model.




¢ The NSR action of the type |l superstring with a
RR fields like on AdSs x S° is not known.

e On the other hand the manifestly space-time
supersymmetric Green Schwarz action was written
down for the AdS; x S° case.

¢ |o demonstrate the use of the GS action we start
with the

fermionic determinant in flat space-time

¢ The target space is the coset

super-Poincarégroup /SO(9,1) .

o The fermioic part of the x gauged fixed GS-action
IS

where 1 is a Weyl-Majorana spinor, I'* are the
SO(1,9) gamma matrices, ¢,j = 1,2 and we
explicitly considered a flat classical string.



Thus the fermionic operator is
Op = Dy =T"9, (7)
and squaring it we get
(Or)P=A=08;-0;

The total free energy is

1
F=8x (—ElogdetA + logdet Dp

since for D=10, we have 8 transverse coordinates
and 8 components of the unfixed Weyl-Majorana
spinor.

¢ In flat space-time the energy associated with
supersymmetric string is not corrected by quantt
fluctuations. (RPS)




¢ Mdsaev and Tseytlin wrote a
x fixed GS action by ‘

the target space as the coset

SU(2,2|4)/(SO(1,4) x SO(5))

Their action incorporates the coupling to the RR

¢ The square of the operator associated with the
fermionic fluctuations is

8 X O¢=62+62——

3 x O, = & +8°-—

o T

o X O = 33,'!'33




where {20, 2, u,0} = {7,6&:,~,&} and 0 is the
coordinate on the S°

¢ According to a theorem of McKean and Singer the

divergences of Laplacian type operator
1
A=V2+X=—-——D,(¢**/aDy) + X
- (9*°\/9Ds)

vanish if there is a match between the fermionic
and bosonic coefficients of

QA%

-3 8 x(B)— 8 x(F} = 0 — No Quadratic
divercence

(i) the "mass term” X

3% 2fp—-8%3 /4fr)= 0 — No Logrithmic divergence

it is thus clear that the d'ment parts of the dei
samimant Wm(&k
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K alosh ﬂm simplified the s fixed GS
action

Sos = / o] /59° (1 [0at® — 2ITPO,][05a” —
+ % ayta,syt) 4P 3ayt1,51"t35¢]

where 1 i1s a Majorana-Weyl spinor and the
Adss x S° metric is written in terms of the 4 + 6
coordinates

1

o olat
[
wLd g

ds* = y*dz? ,dz%; +

The bosonic operators in the normal gauge now

read
4
u
2 X Oy = 3::2:_'_43::2
o
4 6
u u
5x  Op = 05——0]+2—



B !&4 %4
1 % Ofwr’ﬁwl 5 T =4_"t - 5’&2 — 3=2
%o o

(10)

The fermionic part of the action for the classical
solution leads to the operator

2 4
OI,D 21'1 3:n+( Uep FO_|__CI \/uclz U’UF2) 31!

R 2 R2 R4 ug

where we use I" matrices of SO(1,4) - the AdS5
tangent space. Squaring this operator, we find

Thus the transverse fluctuations O,,, are
cancelled by the ferr fermlonlc fluctuations. We are
left with | 6 fermlomc degree of freedom and the
normal bosonic fluctuations + 5 x Oy

A

Using our general result we know that the
quamtum correction of the potential is of a
Luscher type. The universal coefficient and in
particular its sign has not yet been determined

C"Lbsla.ﬂ,, Fn’lf{'g q.-nl.ﬂ!ﬁéa(h fwv-& ﬁiﬂj a

dfforent pamionic sackion tht He fimel resolt
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= Let us consider first the the setup which is dual
to the pure YM thoery in 3d. For that case Gtenscte

olaCen
flu) = u®/R® (11)
gw) = 1-(5)H12 (12)

In the large L limit

- We see that the operators for transverse
fluctuations, (5", @X,: turn out to be simply
the Laplacian in flat spacetime, multiplied by
overall factors, which are irrelévant.

—~ Therefore, the transverse fluctuations yield the
standard Luscher term proportional to 1/L.

T




— The longitudinal normal fluctuations give rise

to an operator (), corresponding to a scalar
MMM%T/RQ—@ Such a field

to the potential.

= The square of the fermionic oFeaaim

-"h

2
U
0¢, e —g- [63 + 33]":..2&;:

= In the general setup that corresponds to
confinement, namely,

f(Smin) F 0 or f(8div) &0

—~ One can prove that most of the string is flat
along ug. In the large L limit the non-flat part
behaves like L™ (a > 0) for the first type and
as log(L) for the second type. wpe




% Since #8 most of the string is along U, again
like the “pure YM case’ there are 7 Luscher
— Greensibe Ol sen

# Had the fermionic modes been those of flat
space-time then the total coefficient infront
of the Luscher term would have been + g —7

— a repulsive Culomb like potential. This
contradicts gauge dynamics. Rachac

¥ However the point is that due to the RR flux
the corresponding GS action cannot be that of
a flat space-time. Moreover, (some of ) the
fermionic fluctuations also become massive.

#-—l-——-l——_r

# Thus it is plausible that total inteaction is
attractive after all.

A Tl\is ¢y < accondamce Uc.'f"\-d*h-vd_ S(Afem('



= Consider the bosonic string in flat space-time Ay
with the boundary conditions

X(oc=0)=0 Xlo=r)=L" with L'L; =
The solution of the equations of motion are

Lt o

X'(or) = = + nzz:l -E-sm(na)e
0 / - - a'roz —IinT
X%or) = 2ma ET+1 ; —n——cos(na)e
(16)
= The energy
E = dod,. X" (o)
2ma’ 0
for the lowest tachyonic state is given by
- A (D-2)1
2 __ DD # e fa s Y2 __ N
8" = P (27ra) 24 o

so that




which can be expanded

D-21, 1
24 L T.L? "

~ TstL |

where the string tension T,; = 27a’. Thus
this expansion yields the Luscher quadratic
fluctuation term.

__-_—-——ﬂ

= (Recall also that in the limit L — oo the
2
Virasoro anomaly m%ﬁ — 0)

~ Moreover for a bosonic string in Flat space-time
it was shown that in the large D limit o, Aﬂmqa

T D

D — oo — finate

— 0
24T, L2 24T ., L2

-~ Recall also that for a static classical
configurations

Epoiy = SNnG



e A naive conjecture is that for the Adss x S° the

" \/g2N
result is ~ ‘i :l—m Bd'ﬁ Ul-.'i “ ¢
?if-'* de PM.{U 1 oL ACs Mf —~- ,‘-A

¢ Exact results are known for group manifolds and
coset spaces.

¢ The sigma model associated with such target
spaces is equipped with a WZ term The bosonic

action is therefore

Sp = Sng + / d*5e*P8,X"03X" B,

For the case that the only non-trivial component
of B,, is By; = B one finds that for B # f

Sne wz=/ 13 f* — B(fo + B — By)
. fx/_z—(fo-l-B By)?

and
Sng+wz =0 forB=f



In the string models
= The SL(2, R) group manifold

= The 228 « R ( The F and K models of
Lseytlin and Horowitz
The B term match the f, namely f = B so

that the Wilson line is a straight line and the
energy & = 0.

E(l’.:'o s E ~n=oi

= are there models with non-trivial Wilson
line that can be determined exactly? To be
explored.



= The Luscher term may serve as a ‘precision”

tool to compare between string models
belonging to the confining universality class
and real life QCD dynamics.

= Several obstacles in this program have been
overcome, however there is still a long way to

go.



§ = (fo""'Bg L+2/ dﬂ‘gv —(fo+ B - 30)2

For sting theories where fy + By does not vanish
the Willson loop admits an area law behavior with
a string tension equal to fo + By.




