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We will discuss 3 ways in which string theory and M-theory
lead to K-theory.

1. K-theory theta functions from M-theory partition functions
(with E. Diaconescu and E. Witten)

2. Sewing constraints and topological field theory (with G. Segal)

3. Noncommutative tachyons (with J. Harvey)



Part I: Partition Functions, from M to K

Consider the partition function Z;;, of IIA theory on a smooth
10-manifold X to the partition function Z,, of M-theory on
Y=X x S1.

Goal is to show that Z;;, = Z,,
Limit: g, =tg,%, t-+400, gyp 0
Both partition functions reduce to
Z = (simple factors) x X 5 g, €5©

But formulating przcisely the sum over classical G-fluxes is
subtle.
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IIA Sum on G-flux

G=Gy+G, + .... + Gy, Two basic inputs:
Selfduality G=* G & Quantization: xeK%(X)

[G] = ch(x+ ¥20) (A(TX))2 (@ is a quantum shift)

After a long story...

O = I eKEQ gi®

Sum over all Gy, G,, G, consistent with K-theoretic quantization x
KE=2t [IGyll? + 6 [IG,1I? +t ||G,ll?, standard sugra

Phase: Extremely subtle! Requires " quantization of the K-
theory torus’’ (Witten 99)



Description of the phase

e® =Q(x)exp[2mif(- G,5/15+ GG /6 +...) ]

Terms in green are new topological phases in sugra

Q(x) = =1 based on a mod two index,
= (-1)N®
N(x) = # R FZM’s on 1IB brane of charge x
NB! There is no local formula for the mod 2 index!



M-Theory Partition Function

Now we define precisely the M-theory partition function on an 11-
manifold Y.

As with the RR partition function — there is a subtle
quantization condition and phase — both were analyzed in
(Witten 1996).

Quantization: Choose a cohomology class a € HYY, Z), then
[G(a)] =a—-%2 A, where A =Y2p,

Phase: Roughly Q,,(C)=exp[2mi [y (CGG +CIy)] , but if
a # 0 then C is not globally well-defined.

One approach: choose bounding manifold Z = Y and set £2,(C) =

exp[2 i f 7G” + G lg]. But (a.) still not manifestly well-defined, and
(b.) it is difficult to work with.



M-Theory Phase

Best formulation in terms of Eg gauge theory!(Witten 1996)

Mathematically, C (Y, R/Z)isa ““Cheeger-Simons
differential character.”” Eg; gauge theory allows an alternative,
but equivalent definition:

An “"M-Theory C-field’’ is a quadruple (V,A,G,c)

*V an E; bundle with connection A

Ge H(Y,R) & ce Q¥ Y,RY Q*,

*G =0 Tr(F?) + B Tr(R?) + dc

*Equivalence: ¢c,-c, + CS(A,A,) =0

This definition warfcs because Eg bundles V& a € HY(Y, Z),



M-Theory Phase -11

In terms of this data the phase is:

Qup(C) = exp

.B:{p.

-2rri(ﬂ{m”“” 1‘ h{Dv (a)) + 7(Dgs) -é— h{Dgs) )]

S
i ﬂ (%GE + [h—‘mml)c]

.

¢ Dps is the Rarite-Schwinger contribution

e h{D) = number of zeromodes of the operator D on Y.

o (D) is the APS eta invariant:

n(Dy= ) ﬁ

eigenvalues =20
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Equality of partition functions

Y=X x S!, susy spin structure & ‘“C-field’’ pulled back from X

Compare sums at order ¢*. DMW: Both sums reduce to

O=Y e la-r22 (-1)f@

Sum over torsion in ©,, projects to a such that Sq*(a)=0, &
this is precisely the condition for ch(x) =a + ... for some
K-theory class x!

2. f(a) = a certain mod-two index

3. Computation extends to nontrivial circle bundles Y —» X

0y



Directions for Further Work

1. One-loop determinants

Extension to Type I

Inclusion of topologically nontrivial B-field
. S-duality and 1IB theory

»woR W N

. “‘Instanton amplitudes’’

But the question for the remainder of this talk is: Can we
understand how this subtle topology arises from a more
microscopic view, i.e. via CFT or SFT = K-Theory of
algebras. (Vancea, Seiberg & Witten,Witten, Leigh et. al., Periwal...)




Part II: Sewing Constraints & D-Branes
(work in progress with Graeme Segal)
* Given a closed string background, what are the possible D-branes?
* Given aclosed CFT €, what are the possible boundary states?

* Too hard! But replacing € by 2D TFT leads to a solvable, yet not
entirely trivial problem

Recall Ancient Folktheorem:

2D TFT's are in 1-1 correspondence with commutative Frobenius
algebras:

Infout circles = infout Hilbert spaces & Surfaces = linear maps

Lis



Closed 2D TFT

Basic infout circle = vector space C
Special surfaces provide the key algebraic data:

Multiplication: =CRC oC

Axioms of commutative Frobenius algebra <
consistency of sewing



Closed & Open TFT-T

Now allow both open and closed strings = surfaces have

two new boundaries in/out intervals and ‘‘free boundaries:

Free boundaries have boundary condition labels a,b,...

(E



2D Open & Closed TFT -

In/out invervals [0,1] lead to vector spaces

a
[ = 04

b

*Given C what are the possible O’s ?
*What algebraic conditions encode open & closed sewing?

«First focus on a single boundary condition: O= 0,



Open & Closed Sewing Constraints
Theorem: To give an open & closed TFT is to give
* A commutative Frobenius algebra (C, 0; , 1)
* A (non)commutative Frobenius algebra (O, 6, , 1)
* A homomorphism t.: € 2Z(0) such that
a. W(lg)=1le b. t=11
where 1* is adjoint to 1, : 85 (W 1,(9))= 0 (V' (V)$)

The operator ris defined by the double-twist diagram



Sewing Constraints - I1

= m:0-0

Ty - Ly, oy , : basis for O,

/
:i"h

=1, 1* is sometimes called the ‘‘Cardy condition’’

Claim: The above axioms form the complete list of sewing
constraints. (Lewellen 1992). Also 3 ““Morse theory proof™’




Classification of O’s

If the *“fusion rules’’ of C are diagonalizable,
(i.e. C is ““semisimple’’) then we can classify the O’s:

Theorem Moore & Sega). If C 1s semisimple then O = Endz(M)
with M = finitely generated projective C-module

Explicitly: Semisimple = g, =X, S¢' (S7)* ¢, satisfy

g€ = d, & “basic idempotents” C=&,Cg,
¢ F 8 Fe bR

g, correspond to spacetime points: X(¢)=0c(€; §) SFEQEE "

Theorem = O =®. End(W,) = *‘Vector bundle over spacetime’’



Boundary State

*The ““boundary state,”’” which inserts holes:

Q_O

is given by B=1"(1)= &, dim(W,) &/V0,

where 0,= 0p(g)

*Squareroot = in families the sign is ambiguous =

=27

€ — Exg) But! VO, — £ VO,

= We must allow +ve and —ve dimensions for W,



Multiple Boundary Conditions

O, is a bimodule for O, x O

The Cardy condition generalizes in an obvious way:

b

=0,, = Hom(W_,W,) = No new data from mixed
boundary conditions. Together with the previous result

we reach the

Conclusion: The boundary conditions labels a are in

1-1 correspondence with KQ( ).



Examples

1. Any CFT has a semisimple Verlinde algebra €

2. Landau-Ginzburg models: e.g. C =C[x}/dW(x)

semisimple < critical points of W are Morse,
(=» Classification of D-branes for strings in <] dimensions)

(Related remarks: Igbal Hori, Vafa).

3. ¢ =H*(X, C), X compact, orientable. Note C ®Maty(C)
does not satisfy Cardy condition. But,

a. If € =H* (X, C), X Fano, then Cis semisimple

b. X of dimension 4k, Y - X is of ¥2 dimension and nonzero
selfintersection then we can take O = H¥(Y, C) ® Maty(C)



Orbifolds .o

« Suppose G acts on €. X= Spec(C) = {basic idempotents}

» The orbifold spacetime X/G has a B-field with h
H3:(X,Z).

* One can formulate open & closed G-equivariant TFT.

Conjecture: Boundary labels are classified by a € K? ; ,(X)...

‘ “aMﬂ proved’’



Part III: Noncommutative Tachyons and K-Theory

3 Nice recent progress in understanding Sen’s conjecture
using noncommutative geometry (GMS,HKLM,DMR,Witten):

D25 ﬁ“ﬂ Kl“ X RZB
Tachyon field= NC soliton on R?; = D23 brane on X,, !

We’ll assume this generalizes to topologically nontrivial X_
B0 =T:X,,—» B;GMS = T=AP,P2=P

P = rank n projection operator, can vary along X,,
T varies slowly = T € Map[X,,, BU(n)] =

Homotopy classes of rank n tachyons = Vect (X,,) !




IIB Branes
Transverse space: R?Pg with {z,Z;} = 0, §;
T=f(r) T x: Hyy ® S = IG5, ®S*  has Index(T)=1
Hoarg = y(z',...,zP )} i.e. coherent state quantization.
? How can we restrict the tachyon field to the sphere:
SfZp =R?

An answer: Consider the Hardy subspace Hy,4,C L*(S*)
of boundary values of holomorphic wavefunctions.

Commutative algebra of multiplication operators by functions

f becomes the noncommutative algebra of Toeplitz operators:

T; =P M; , where P is the projector L%(S?-') »H,, 4,



Analytic K-homology

The Tachyon field 1s a matrix-valued Toeplitz operator,

The algebra of Toeplitz operators defines a

nontrivial extension of C(S%P-!) by compact operators:

Such extensions define ‘‘analytic K-homology®’ K, ,(S%1)
(Brown-Douglas-Filmore) => A B-field naturally defines an
element of K-homology.

Moreover:

Index(T) = Winding #(ABS) = Winding#(Sen-Witten tachyon)

is a nontrivial mathematical fact known as the index theorem of Boutet
de Monvel



Conclusion

We’ve seen how the perspectives of
1. 11-dimensional M-theory
2. Worldsheet sewing and boundary TFT
3. SFT and noncommutative spacetime

All lead naturally to connections between
D-branes and K-theory.

[ think there is probably a lot more to say...



