Brane Resolution on Ricci Flat Spaces

- Motivation: resolution via transgression
- Examples:
 - Illustration: Resolved self-dual string
 - Summary of resolved D3 and M2-branes & other examples
- Mathematical aspects: explicit harmonic forms on Ricci flat spaces
- Summary, open avenues
- w/ H. Lü and C. Pope, hep-th/0011023
- w/ G. Gibbons, H. Lü and C. Pope, hep-th/0012011
- (w/ K. Behrndt, hep-th/0101007)
- & work in progress

I. Motivation

 AdS_{D+1}/CFT_D correspondence: new insights into strongly coupled superconformal gauge theories in D-dim.

Prototype: D=4; D3-brane Type IIB SG:

$$\begin{split} ds_{10}^2 &= H^{-1/2} \, dx \cdot dx + H^{1/2} \, (dr^2 + r^2 \, d\Omega_5^2) \,, \\ F_{(5)} &= d^4 x \wedge dH^{-1} + \hat{*} (d^4 x \wedge dH^{-1}) \,, \\ \Box H &= 0 \, \Rightarrow H = 1 + \frac{R^4}{r^4} \,\,. \end{split}$$

Decoupling:

$$\begin{split} H &= 1 + \frac{R^4}{r^4} \xrightarrow{\text{decoupling}} \frac{R^4}{r^4} : \\ AdS_5 &\times S^5 : \quad ds_{10}^2 \to \frac{r^2}{R^2} \, dx \cdot dx + R^2 \, \frac{dr^2}{r^2} + R^2 \, d\Omega_5^2 \, . \\ \text{string th. on } AdS_5 \times S^5 \Leftrightarrow D = 4, N = 4 \text{ SYM} \end{split}$$

Goal: Elucidate QCD, or at least N=1 D=4 SYM

⇒
viable (non-singular) supergravity duals w/ less SUSY

Comment

Progress within D=5 N=2 gauged supergravity:

 Gauging of vector-multiplets: generically singular solutions.

w/ Behrndt, Kallosh/Linde, Ceresole/Dall'Agata · · ·

- Gauging of hyper-multiplets; novel gravity solutions:
 w/ Behrndt hep-th/0101007
 - smooth conformal solutions in IR and UV;
 - solutions that are flat/supersymmetric in IR;
 - (c-theorem violating solution/potential to trap gravity)

Thus, examples of viable gravity duals of N=1 D=4 FTs

⇒

Higher-dimensional embedding and interpretation

Supergravity solutions with less supersymmetry

Flat transverse 6-dim. space $ds_6^2 = dr^2 + r^2 d\Omega_5^2$ replaced by (non-compact) Ricci-flat space w/ fewer Killing spinors. Still:

$$\Box H = 0$$
.

- + Two birds with one stone: solution with reduced supersymmetry & broken conformal invariance.
- − H singular ⇒ solution singular!

Resolution of Singularity

Turning on additional fluxes ("fractional" branes)
In the D3-brane context:

Chern-Simons Term \Rightarrow Modified eqs.:

$$dF_{(5)} = d*F_{(5)} = F_{(3)}^{NS} \wedge F_{(3)}^{RR} = \frac{1}{2i}F_{(3)} \wedge \bar{F}_{(3)}$$

$$F_{(3)} \equiv F_{(3)}^{RR} + i F_{(3)}^{NS} = mL_{(3)}.$$

 $L_{(3)}$ - harmonic self-dual three-forms on 6-dim. Ricciflat space. \Rightarrow A possibility for a smooth solution.

Employed by Klebanov/Strassler [hep-th/0007191]

[also Klebanov/Tseytlin [hep-th/0002159], Pandos-Zayas/Tseytlin [hep-th/0010088]]

Related/Follow up work: Graña/Polchinski, Maldacena/Nuñez, Gubser, Becker/Becker, Herzog/Klebanov, · · ·

Earlier work: Klebanov/Witten, Klebanov/Nekrasov, Klebanov/Tseytlin

General Context: Resolution via Transgression!

w/Lü and Pope [hep-th/0012011]

Chern-Simons type modifications-"transgressions" ⇒ modify Bianchi identities or eqs. of motion when additional fluxes turned on.

p-brane configurations w/ (n+1)-transverse dim. ("magnetic" flux $F_{(n)}$) and additional fluxes $F_{(p,q)}$. Transgression implies:

$$dF_{(n)} = F_{(p)} \wedge F_{(q)}; \quad (p+q=n+1).$$

If the (n + 1)-dim transverse Ricci-flat space admits harmonic p-form $L_{(p)}$:

$$F_{(p)} \sim m L_{(p)}$$
, $F_{(q)} \sim \mu * L_{(p)}$.

Depending on L^2 normalizability properties of $L_{(p)}$ \Rightarrow resolved (non-singular) solution

Illustration first for a somewhat simpler example than D3-brane.

II. Examples

Ha.Self-dual string

The self-dual string in D = 6, (1, 0) supergravity theory:

$$\mathcal{L} = \sqrt{g}(R - \frac{1}{12}F_{(3)}^2), \quad F_{(3)} = *F_{(3)}.$$

Flat transverse space solution:

$$\begin{split} ds_6^2 &= H^{-1} \left(-dt^2 + dx^2 \right) + H \left(dr^2 + r^2 d\Omega_3^2 \right). \\ F_{(3)} &= dt \wedge dx \wedge dH^{-1} + \text{dual}. \\ \Box H &= 0 \implies H = 1 + \frac{R^2}{r^2}. \end{split}$$

Decoupling:

$$H = 1 + \frac{R^2}{r^2} \xrightarrow{\text{decoupling}} \frac{R^2}{r^2} : AdS_3 \times S^3$$

Self-dual string with less supersymmetry:

Replace the 4-dim. flat space with Eguchi-Hanson:

$$ds_4^2 = W^{-1} \, dr^2 + \tfrac{1}{4} r^2 \, W \, (d\psi + \cos\theta \, d\phi)^2 + \tfrac{1}{4} r^2 \, (d\theta^2 + \sin^2\theta \, d\phi^2) \, ,$$

$$W = 1 - \frac{a^4}{r^4}, r = \{a, \infty\}.$$

[Vielbeine:

$$\begin{split} e^0 &= W^{-1/2} \, dt \,, \qquad e^3 = \tfrac{1}{2} r \, W^{1/2} \, (d\psi + \cos\theta \, d\phi) \,, \\ e^1 &= \tfrac{1}{2} r \, d\theta \,, \qquad e^2 = \tfrac{1}{2} r \, \sin\theta \, d\phi \,. \end{split}$$

Solution:

$$\Box H = 0 \Rightarrow$$

$$(r^3WH')' = 0 \Rightarrow$$

$$H = 1 + c_1 \log \left(\frac{r^2 + a^2}{r^2 - a^2}\right).$$

As $r \to \infty$, $H \sim 1/r^2$, however it is singular as $r \to a$.

Resolved self-dual string

Modification of Bianchi identity via transgression [D=6 (1,0) SG as K3 reduction of heterotic string]:

$$dF_{(3)} = d*F_{(3)} = F_{(2)}^i \wedge F_{(2)}^i$$
.

 $(F_2^i \ (i = 1, \cdots 16))$ are gauge-field strengths in Cartan subalgebra of $E_8 \times E_8$ or Spin(32).)

Modified Ansatz (single U(1)-gauge field):

$$\begin{split} ds_6^2 &= H^{-1} \left(-dt^2 + dx^2 \right) + H \, ds_4^2 \,, \\ F_{(3)} &= dt \wedge dx \wedge dH^{-1} + \text{dual} \,, \\ F_{(2)} &= m L_{(2)} \,, \\ \Box H &= -\frac{1}{2} L_{(2)}^2 \,. \end{split}$$

 $L_{(2)}$ -harmonic, self-dual 2-form:

$$L_{(2)} = \frac{1}{r^4} \left(e^0 \wedge e^3 + e^0 \wedge e^2 \right).$$

(e'-Vielbeine of Eguchi-Hanson metric, $L_{(2)}$ - L^2 -normalizable)

A solution:

$$H = 1 + \frac{m^2 + a^4 b}{4a^6} \log(\frac{r^2 - a^2}{r^2 + a^2}) + \frac{m^2}{2a^4 r^2},$$

w/ integration constant choice: $b = -m^2/a^4$:

$$H = 1 + \frac{m^2}{2a^4 r^2} \,.$$

Supersymmetric, **completely regular** solution [due to L^2 normalizability of $L_{(2)}$].

In the proper distance coordinate ρ ($W^{-1/2} dr = d\rho$), $\rho \to \infty$:

$$H \sim 1 + \frac{Q}{\rho^2} - \frac{c_1}{\rho^6} + \cdots$$

Field Theory implications

Reduction on ψ , θ and ϕ coordinates of Eguchi-Hanson & the decoupling limit $(H \to R^2/r^2)$; D = 3 domain wall solution:

$$ds_3^2 = \frac{r^2}{R^2} \, W \, (-dt^2 + dx^2) + \frac{R^2 \, dr^2}{r^2} \, . \label{eq:ds3}$$

Non-singular, asymptotically AdS₃ (conformal)gravity dual of 2-dim. CFT theory with 1/2 of maximal SUSY.

Implications: e.g., bound-state spectra in IR (small r) regime ⇒ discrete spectrum, indicating confinement

IIb. Summary of Resolved D3 and M2-branes

D3-branes

Bianchi identity modification:

$$dF_{(5)} = d*F_{(5)} = F_{(3)} \wedge F_{(3)},$$

Modified D3-brane Ansatz (w/ additional fluxes):

$$\begin{split} d\hat{s}_{10}^2 &= H^{-1/2} \, dx^\mu \, dx^\nu \, \eta_{\mu\nu} + H^{1/2} \, ds_6^2 \,, \\ F_{(5)} &= d^4 x \wedge dH^{-1} + \hat{*}dH \,, \\ F_{(3)} &= F_{(3)}^{\rm RR} + \mathrm{i} \, F_{(3)}^{\rm NS} = m \, L_{(3)} \,, \end{split}$$

 $L_{(3)}$ complex, harmonic self-dual three-form of 6-dim. Ricci-flat space &

$$\Box H = -\frac{1}{12}m^2 |L_{(3)}|^2.$$

[C.f., Klebanov/Strassler [hep-th/0007191] and Pandos-Zayas/Tseytlin [hep-th/0010088] two-different Ricci-flat resolutions of the 6-dim. conifold.]

M2-brane

Modified Bianchi identity:

$$d*F_{(4)} = \frac{1}{2}F_{(4)} \wedge F_{(4)} ,$$

Modified M2-brane Ansatz:

$$\begin{split} d\hat{s}_{11}^2 \; &= \; H^{-2/3} \, dx^\mu \, dx^\nu \, \eta_{\mu\nu} + H^{1/3} \, ds_8^2 \, , \\ F_{(4)} \; &= \; d^3x \wedge dH^{-1} + m \, L_{(4)} \, , \end{split}$$

 $L_{(4)}$ - harmonic, self-dual 4-form of 8-dim. Ricci-flat transverse space &

$${\rm d} H = -\tfrac{1}{48} m^2 \, L_{(4)}^2 \, .$$

[Related work Hawking/Taylor-Robinson [hep-th/9711042], Duff et al. [hep-th/9706124].]

IIIc. Other Examples

Bianchi identity:

$$dF_{(n)} = F_{(p)} \wedge F_{(q)}, \quad p+q=n+1.$$

Branes with additional with (n + 1)-transverse dimensions:

- D0-brane: $d*F_{(2)} = *F_{(4)} \wedge F_{(3)}$
- D1-brane: $d*F^{RR}_{(3)} = F_{(5)} \wedge F^{NS}_{(3)}$
- D2-brane: $d*F_{(4)} = F_{(4)} \wedge F_{(3)}$
 - D3-brane: $dF_{(5)} = F_{(3)} \wedge \bar{F}_{(3)}$
 - D4-brane: $dF_{(4)} = F_{(3)} \wedge F_{(2)}$
- IIA string: $d*F_{(3)} = F_{(4)} \wedge F_{(4)}$
 - IIB string: $d*F^{NS}_{(3)} = F_{(5)} \wedge F^{RR}_{(3)}$
- Het 5-brane: $dF_{(3)} = F_{(2)}^i \wedge F_{(2)}^i$

Construction of explicit harmonic forms on non-compact Ricci-flat spaces.

 \Rightarrow

Explicit solutions of resolved p-brane solutions.

III. Mathematical developments

w/Gibbons, Lü and Pope [hep-th/0012011]

- Explicit construction of (p, q)-forms in the middle dimension (p + q = n + 1) for 2(n + 1)-dim. Stenzel metric.
- Explicit construction of a class of Kähler metrics on C^k bundles and their middle-dimension harmonic forms in 2(n + 1)-dim.
- Construction of harmonic forms on 7-dim. Ricci-flat spaces with G₂ holonomy, as well as 8-dim. spaces with Spin(7) holonomy.

IIIa. Stenzel metric

- Ricci-flat metric in 2(n+1) dim. w/ asymptotically (r → ∞) conical space.
- Level surfaces (at fixed r) are SO(n+2)/SO(n) coset space.
- As $r \to 0$:

$$ds^2 \sim dr^2 + r^2 \tilde{\sigma}_i^2 + \sigma_i^2 + \nu^2$$

Topology: $\mathbb{R}^{n+1} \times \mathbb{S}^{n+1}$ (\mathbb{S}^{n+1} -"bolt").

- Examples:
 - -n = 1: Eguchi-Hanson metric
 - -n = 2: deformed conifold [Candelas/de la Ossa]
 - n = 3: new example of eight-dimensional Ricciflat space
 - -n > 3: dimension ≥ 10 .

Metric construction

 L_{AB} -left-invariant one-forms on SO(n+2) group manifold w/ split: $A = \{1, 2, i\}, i = 1, \dots, n$. One-forms on SO(n+2)/SO(n) coset:

$$\sigma_i \equiv L_{1i}$$
, $\tilde{\sigma}_i \equiv L_{2i}$, $\nu \equiv L_{12}$.

Metric:

$$ds^2 = h^2 dr^2 + a^2 \sigma_i^2 + b^2 \, \tilde{\sigma}_i^2 + c^2 \, \nu^2$$

 $\{h, a, b, c\}$ - functions of r, only and their explicit form obtained by solving the first order diff. eqs. \Rightarrow Ricci-flat space.

[Vielbeine:

$$e^0 = h dr$$
, $e^i = a \sigma_i$, $e^{\tilde{i}} = b \tilde{\sigma}_i$, $e^{\tilde{0}} = c \nu$.

A holomorphic basis of complex one-forms:

$$\epsilon^0 \equiv -e^0 + i e^{\hat{0}}, \qquad \epsilon^i = e^i + i e^{\hat{i}}.$$

Kähler form:

$$J = \frac{\mathrm{i}}{2} \, \epsilon^{\alpha} \wedge \bar{\epsilon}^{\bar{\alpha}} \,.$$

Harmonic middle dimension (p, q) forms

The Ansatz:

$$L_{(p,q)} = f_1 \, \epsilon_{i_1 \cdots i_{q-1} j_1 \cdots j_p} \, \bar{\epsilon}^0 \wedge \bar{\epsilon}^{i_1} \wedge \cdots \wedge \bar{\epsilon}^{i_{q-1}} \wedge \bar{\epsilon}^{j_1} \wedge \cdots \wedge \bar{\epsilon}^{j_p} + f_2 \, \epsilon_{i_1 \cdots i_{p-1} j_1 \cdots j_q} \, \bar{\epsilon}^0 \wedge \bar{\epsilon}^{i_1} \wedge \cdots \wedge \bar{\epsilon}^{i_{p-1}} \wedge \bar{\epsilon}^{j_1} \wedge \cdots \wedge \bar{\epsilon}^{j_q} \,,$$

 w/f_1 , f_2 functions of r, only.

Harmonicity condition:

$$dL_{(p,q)} = 0$$

(since $*L_{(p,q)} = i^{p-q} L_{(p,q)}$).

 f_1 , f_2 -solutions of coupled first-order, homogeneous differential equations.

Solution (finite as $r \to 0$):

$$f_1 = q_2 F_1 \left[\frac{1}{2} p, \frac{1}{2} (q+1), \frac{1}{2} (p+q) + 1; -(\sinh 2r)^2 \right]$$

$$f_2 = -p_2 F_1 \left[\frac{1}{2} q, \frac{1}{2} (p+1), \frac{1}{2} (p+q) + 1; -(\sinh 2r)^2 \right]$$

Specific (p, q): elementary functions of r!

Special cases:

• (p, p)-forms in 4p-dim: $f_1 = -f_2 = \frac{p}{(\cosh r)^{2p}}$;

$$|L_{(p,p)}|^2 = \frac{const.}{(\cosh r)^{4p}}$$

 $r \to 0$, finite; $r \to \infty$ falls-off fast enough. \Rightarrow The only L^2 normalizable form!

• (N+1, N)-forms in (4N+2)-dim. As $r \to \infty$:

$$|L_{(N+1,N)}|^2 \sim \frac{1}{[\sinh{(2r)}]^{2N}}$$

Marginally L^2 -non-normalizable.

• degree of non-normalizability grows with |p-q|.

Applications

- 2(n + 1) = 6: L_(2,1)-form; resolution of D3-brane Klebanov/Strassler
 L_(2,1)- marginally non-normalizable as r → ∞, but pure (2, 1)-type. ⇒ supersymmetric! Gubser
- 2(n+1) = 8: $L_{(2,2)}$ -form: new resolved M2-brane. Since $|L_{(2,2)}|^2 = \frac{const.}{\cosh r^8}$ normalizable! Decoupling: M2- asymptotically AdS_4 : Field theory: Herzog/Klebanov hep-th/0101020 3-dim. CFT perturbed by relevant operators.

IIIb. Ricci-flat Kähler metrics on C^k bundles:

 level surfaces-U(1) bundles over a product of N-Einstein-Kähler base spaces M. Focus on

$$\mathcal{M} = \prod_{i=1}^{N} CP^{m_i}.$$

- As r → 0, a particular base space factor CP^m singled out.
- Metric construction:
 - One factor: CP^m [m-odd, m = 1-Eguchi Hanson].
 - Two factors: CP^{m₁} × CP^{m₂} [m₁ = m₂ = 1-conifold resolution of Candelas/de la Ossa; m₁ = 1, m₂ = 2-novel 8-dim. dimensional space].
 - examples of multi-factor base spaces and/or dim. ≥ 10.
- Construction of middle dimension forms.

Applications

- 6-dim: resolved conifold & fractional D3-branes supported by $L_{(3)}$: Pandos-Zayas/Tseytlin
 - Not L^2 normaliz., neither at $r \to \infty$ nor $r \to 0$.
 - Mixture of (1, 2) and (2, 1) form ⇒ non-supersymmetric!
- A number of new examples of resolved M2-branes: supersymmetric, non-singular.

IIIc. Forms on G_2 -holonomy and Spin(7) spaces

Techniques to construct harmonic forms developed Gibbons, Page& Pope ('90)

- Explicit harmonic three-forms on G₂ holonomy spaces
 ⇒ resolved D2-branes: non-singular, supersymmetric examples?
- Explicit harmonic four-forms on Spin(7) holonomy spaces ⇒ another resolved M2-brane: non-singular, supersymmetric (c.f., also M. Becker).

IV. Summary of solution properties

- Supersymmetry depends on the structure of the harmonic form employed.
- Singularity structure depends on normalizability of forms:
 - Finiteness at small distance ensures no singularity there.
 - At large distance:

$$\rho \rightarrow \infty$$
: $H = 1 + \frac{Q}{\rho^{\bar{d}}} \left(1 - \frac{c_1}{\rho^{\gamma}} + \cdots \right)$.

For L^2 normalizable forms: $\gamma > 0$: decoupling limit to AdS (conformal) space.

For L^2 non-normalizable, $\gamma < 0$, no decoupling limit to AdS :no conformal symmetry

 Field theory of resolved branes: related to Higgs branch (to be contrasted with distributed branes-Coulomb branch)

 $\gamma > 0$ -CFT pert. by relevant operators; $\gamma < 0$ ("fractional" branes).

Herzog/Klebanov (c.f., I. Klebanov's talk)

Summary of explicit examples

- D3-branes (3-form of 6-dim.space, not L^2 normalizable): $H = 1 + (Q + c_1 \log(\rho))/\rho^4$, fractional D3-brane.
 - deformed conifold (KS) non-singular as r → 0; supersymmetric.
 - resolved conifold (PT) singular as $r \to 0$; non-supersymmetric.
- M2-branes ((2, 2)-forms of 8-dim. space):

 γ = 4/3, 8/3, 4, 8; supersymmetric, 3-dim. CFT perturbed by relevant opers.

& $\gamma = -4/3$; non-supersymmetric, "fractional" brane .

- D2-branes(3-forms of G₂ holonomy space):

 γ ≤ 0; musingular, supersymmetric to the space of the supersymmetric to the
- Heterotic NS-NS 5-brane (2-forms of 4-dim. space);
 Large non-singular, supersymmetric.
- 6-dim. Dyonic string (2-forms of 4-dim. space): non-singular, including "tensionless" string ⇒ complementary mechanism to that of Johnson, Polchinski & Peet, resolving "repulson"-type singularity (c.f., Behrndt).

Conclusions

- Brane Resolution: General mechanism to find regular p-brane solutions with less supersymmetry: Introduction of non-compact Ricci-flat transverse space and additional fluxes, supported by harmonic-forms that modify the original p-brane solution via Chern-Simons (transgression) terms.
- Mathematical Developments: Explicit middle-dimension harmonic forms for Stenzel metrics in 2N-dimensions and for a class Kähler metrics on C^k bundles. [Only (^N/₂, ^N/₂)-forms L² normalizable.]

Open Avenues

- Possible dualities among various solutions; unifying treatment; dual field theory
- Construction of harmonic forms for other Ricci-flat spaces, such as hyper-Kähler, and those in other than middle dimensions.