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D-branes on Calabi-Yau Manifolds

The study of duality has shown that
many (most? all?) problems of string/M
theory compactification can be solved in
terms of geometric models.

For d =4, N = 2, the broadest class of
models is type II compactification on

Calabi-Yau threefolds.

The IIb prepotential and BPS central
charges are given by classical

a

geometrical quantities: Z = | 5, §

Mirror symmetry allows summing lla

world-sheet instantons.

Heterotic-type II duality sums
space-time instantons.

Local theory «— QFT; branches.

(slobal theory <« space of all N = 2
theories. Is it “finite” 7
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What is an analogous good source of
d =4, N = 1 models, exhibiting
calculable non-trivial superpotentials and

moduli spaces of vacua 7

The traditional (large volume) answer:
Kaluza-Klein compactification on CY4 of
Fg x Eg or S0O(32) gauge theory derived
from heterotic string theory.

Compared to type II, the extra structure
1s a choice of vector bundle. This choice
1s not well understood — no complete
systematic constructions were known,
and the possibilities are not classified,

even qualitatively.

Furthermore, the results get stringy
corrections from world-sheet and

space-time instantons.
—




D-branes on Calabi-Yau Manifolds

More recent candidate answers:

e Type I and orientifold
compactifications on CY4. Find
configurations of space-filling branes
in type II on CY3, then project.

e | theory on elliptically fibered
fourfolds. Also requires adding
space-filling branes.

Both start off looking different from
heterotic/vector bundle constructions,
but under deeper study turn out to be
closely related (weak-weak dualities).

The central problem in combining these

pictures into a unified picture of N = 1
compactification is to translate between
brane constructions and the geometric
language of vector bundles.
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Over the last year, we have developed a
unified description of a large class of type
[I N = 1 supersymmetric D-brane
configurations on CY, as bound states of
a finite generating set of BPS branes, and
we have to a large extent understood how
to translate this description to and from
the algebraic geometry of vector bundles.

In this language, one can get a
description of the set of BPS branes on
string-scale CY’s much like the
solution of N = 2 compactification
provided by mirror symmetry and
duality, purely in terms of large volume
results:

A B-type BPS brane on the CY M is a
[I-stable object in the derived category of

coherent sheaves on M.
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This rather abstract phrase summarizes a
great deal of physical and mathematical
information about the branes, as well as
concrete and relatively simple techniques
for deriving and working with their

world-volume theories.
The physical starting point:

Non-renormalization theorems, which
constrain the dependence of D-brane
world-volume theory on Calabi-Yau
moduli: for B branes, holomorphic
structure and superpotential is
independent of Kahler moduli, while
D-flatness conditions and associated lines
of marginal stability are independent of

complex structure moduli.
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Thus, brane configurations which solve
world-volume F-flatness conditions can
be defined in topological open string

theory. as “topological D-branes.”

There 15 an important subtlety which
enters at this point however: the notion
of "brane” and “antibrane” depends on
haliler moduli. To decide whether a pair
of branes A and B are both branes, brane

and antibrane, or something else, we

must look at their BPS central charges. 1f

these are aligned (as complex numbers).
N = | supersymmetry is preserved and
the pair can both be considered branes.
If they are not aligned, supersvmmetry is
broken, while if they are antialigned, we

have brane and antibrane.
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However, BPS central charges vary
drastically with Kahler moduli,
preventing us from consistently
maintaining the distinction between
brane and antibrane.

This is particularly clear in the special
Lagrangian picture:
LY d

//.];4'=1II°
szﬂw/dzlﬁdzzthE.

To get a description which is truly

independent of Kahler moduli, one must
include all brane-antibrane bound states.
Thus, B branes are more general than
bundles or coherent sheaves.
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Topological D-branes can be naturally

identified with objects in the derived
category, as foreseen by Kontsevich.
This construction starts from a category
of “objects” and much like K theory
allows combining them with their
anti-objects (by forming “complexes” ).
The new element is that it also keeps
track of all massless fermions between
any pair of branes, not just the index

Tr (—1)}".

The derived category keeps much more
structure than K theory: for example,
every point is a distinct object. Distinct
CY manifolds can have the same derived
category of coherent sheaves, but only if
they are very closely related (e.g. one is
the flop of the other).

oo
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All topological branes can be formed as
bound states starting from a finite
generating set. By starting with rigid
branes (with no moduli), all moduli
appear explicitly in the bound state

construction.

The same category of topological branes
will arise no matter what point in Kahler
moduli space one studies. In particular,
orbifolds and Landau-Ginzburg orbifold
theories can be related to their large
volume limits by using the generalized
McKay correspondence. Their quiver
gauge theories provide a more concrete
construction of the same derived category

of topological D-branes.
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10

B-type D-branes in very general orbifold
theories can be understood as “fractional
branes.” Their geometric interpretation
1s implicit in the quiver gauge theory
framework; they correspond to particular
cycles and bundles in the exceptional
divisor. Their K theory classes are
Poincaré dual to a natural basis of
“tautological bundles” on the total space
of the resolved orbifold; in examples this
determines their geometric interpretation

uniquely.

One can test this by comparing the
spectrum of massless fermions between
each pair of branes at orbitold and large

volume limits, finding precise agreement.
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While topological open string theory
describes massless fermions, the masses of
their bosonic partners are controlled by
Kahler moduli.

A BPS D-brane should be thought of as
Dirichlet (or Neumann) in the bosonized
U(1) of the world-sheet (2, 2)
superconformal algebra; its position is
the phase ¢ of its BPS central charge.

1
2(B) = —Im log Z(B)

T
Varyving Kahler moduli varies these
positions, the winding number (U(1)
charge) of stretched strings, and thus
their mass. Fermions remain massless,
and there is a simple formula for the

masses of partner bosons.

11
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The mass of a boson in a chiral multiplet
of strings A — B is related to U(1)
charge (), or equivalently the degree g of
an element of H3(M, A* ® B), as

1
mi_p = 5 (Qa—B—1).

Under variations of Kahler moduli, the
charge @ and thus the mass m® will flow
with the gradings (phases) ¢ of BPS
central charges as

AQa—B = Aps — App.

—_—iTNe
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When an A — B boson goes tachyonic, a
bound state of A and B becomes stable.

A T4 aH) |
J— B —-0—A—1)
(TH A4 Aa

Conjecture: All lines of marginal
stability have this origin.
Since

e Massless fermions are topological:

e The masses of partner bosons are
determined by BPS central charges,
computable using mirror symmetry;

this conjecture implies that the spectrum
of BPS branes at any point in Kahler
moduli space and all lines of marginal
stability can be determined purely using

large volume results.
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Making this precise requires one more
mathematical ingredient: a generalized
notion of exact sequence which can
describe arbitrary bound states of branes
and antibranes. As we discussed, the
derived category is already set up to do
this; the necessary construction is called
the “distinguished triangle” and can
describe the process of forming a bound
state C of objects A and B, treating all

three objects on an eaual footing.

C

B B - A

14
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Making this precise requires one more
mathematical ingredient: a generalized
notion of exact sequence which can
describe arbitrary bound states of branes
and antibranes. As we discussed, the
derived category is already set up to do
this; the necessary construction is called
the “distinguished triangle” and can
describe the process of forming a bound
state C' of objects A and B, treating all

three objects on an equal footing.

o I
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Let us discuss the example of the quintic
from this point of view, and see how the
rational boundary states of Recknagel
and Schomerus can be understood in this
language. A similar discussion can be
made for any C? orbifold or Gepner
model.

The quiver theory:

— . 1 e {ﬂ--,'ﬂ-—i—z}
L Z & X'i””ﬂ“i'xf,n'fl,n}}f[ijl

S
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The McKay correspondence on C? /Z
tells us that the n’th fractional brane is
related to a bundle whose sections are

degree zero 5 — n-forms on P4,

(1)
T =
i iz

o T —

A= 2, =10

These are rigid on the quintic.

The cohomology groups tell us the

massless fermion spectrum at large

volume and the masses of partner bosons.

For example.,
By — Bs

are the maps

.1 3) < TN )
Prl= 65,4;‘.3%

which are elements of H “{Mr , By & Bs).

17
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Finally, the McKay correspondence also
tells us that the fractional branes Bap .
. 4 , . . .

are “branes” at large volume (Qs > 0),

while By are “antibranes” (Qg < 0).
Thus the elements of H°(M, B ® B,,+1)
we just discussed are massless fermions
whose bosonic partners are tachyons of
m? = —1/2. Each pair of branes

B, & By, for 1 <n < 4 can thus form a
bound state at large volume, while

Bs @& B (which are both branes) cannot.

These bound states are simply described
by tachyon condensation: in N = 1
effective theory, tachyon masses can only
come from D terms, and always come
from a bounded below potential. (At
large volume, consider vortex equations:
see Oz, Pantev and Waldram.)
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Let us compare this with the spectrum of

rational boundary states at the Gepner

point. The bound states B, & B, .1 exist
with the expected properties (moduli
space dimension 4), consistent with the
fact that these bosons are still tachyonic
(they now have () = 3/5 and can be

regarded as elements of “H%/5"),

However the Gepner point has a Zis
symmetry which is reflected in the
spectrum: the bound state X = B; & B,
also exists with properties identical to the
others. This bound state is not a

coherent sheaf.

What 1s 1t7

B2
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The chiral multiplets B; — B; must also
correspond to large volume cohomology:
in fact they are in H*(M, B ® B;).
Their bosonic partners have string scale

masses at large volume.

As one approaches the Gepner point, the

gradings and bosonic masses flow:

20
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Using Am®* = %{&9‘4 Appg). we now
know the mass of each boson, everywhere

along the flow. The B,, — B, 13

. LP, F
tachyons go up from m= = —1,/2 Lo
m* = —1/5, while the Bs — B, bosons
i 3
go down from m? = 1 to m? = —1/5.

On the line in moduli space where the

= — B bosons go tachyonic, the
bound state X becomes stable. Thus we
have identified it as a specific object in

the derived category,
B;|—3| — B — X

which only becomes stable in the stringy

regume.
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Many new phenomena are accessible

using these techniques:

e Objects have computable moduli

spaces with branches of different
dimension, as is generic in N =1

supersymmetry.

e Flops and the “phase” structure of
Kahler moduli space can be defined
precisely in terms of preferred lines of

marginal stability.

e The spectrum of stable BPS branes
can change drastically as a function
of Kahler moduli, but appears never

to reduce to a finite set.




D-branes on Calabi-Yau Manifolds

Conclusions

e We have a precise definition of BPS

D-branes in weakly coupled type 11

strings on a general CY manifold.

[t 15 modeled after the formal
structure of N = 1 supersymmetry.
with F- and D-flatness conditions.
F-flatness conditions are exact at

large volume: solutions are objects in

the derived category of coherent

sheaves, or of quiver analogs.

D-Hatness conditions are replaced by

[I-stability (generalizing DUY).

Practical computations can be made.,

by combining techniques from
algebraic geometry, quiver gauge

theory and mirror symmetry.
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Important directions for future work

e Add orientifolding and anomaly
constraints, and apply to N =1

duality.

e Find exact superpotentials for N = 1
string compactifications. Very likely,
this is possible within classical
frameworks (obstruction theory; RR

field strengths).

e The entire set of string
configurations (of a certain type) can
admit a simple general
characterization. Can we describe all
N =2 or N = 1 compactifications in

such a way 7




