On Field Theory of Open Strings, Tachyon Condensation and Closed Strings #### based on - A. Gerasimov and S. Sh. - JHEP 10(2000)034 - A. Gerasimov and S. Sh. - hep-th/0011009 - 1. Introduction - Background Independent Open String Field Theory - 3. Exact tachyon potential - 4. New vacuum and closed strings STRINGS 2001, Mumbai, January 2001 An open bosonic string in 26 dim., D25, (one can also discuss any other Dp) contains tachyon T ($m^2 = -\frac{1}{2}$ in some units), massless gauge field A, and an infinite tower of massive fields. Tachyon - the theory is unstable. Conjecture 1 (A. Sen, '99): the tachyon potential has the form: $$V(T) = Mf(T)$$ M - mass of D-brane and f(T) - universal function. f(T) has the stationary point, T_c ; $f(T_c) = -1$. Conjecture 2 (A. Sen, '99): there are soliton configurations of tachyon field on unstable Dp-branes – lower-dimensional branes. ### Related work Cubic open string field theory or its extensions: Kostelecky, Samuel, '90; Sen, Zwiebach, '99; In '00 - Taylor; Moeller, Taylor; Harvey, Kraus; de Mello Koch, Jevicki, Mihailescu, Tatar; Moeller, Sen, Zwiebach; de Mello Koch, Rodrigues; Moeller; Sen, Zwiebach; Berkovits; Berkovits, Sen, Zwiebach; De Smet, Raeymakers; Igbal, Nagvi; Sen; Kostelecky, Potting; Hata, Shinohara; Zwiebach; Minahan, Zwiebach; ... p-adic - Ghoshal, Sen, '00 OS sigma model in the '80's: Fradkin, Tseytlin, '85; Abouelsaood, Callan, Nappi, Yost, 87, ... Closed from Open (SFT) - Strominger, '87; S. Sh., '97 (unpublished); Kraus, Harvey, Larsen, Martinec, '00; Yi, '99; Bergman, Hori, Yi '00; Sen '00, Mandal, Wadia, '00; Kleban, Lawrence, Shenker, '00; RG - Harvey, Kutasov, Martinec, '00, ... Background independent open string theory: Kutasov, Marino, Moore, '00; Ghoshal, Sen, '00; Cornalba, '00; Okuyama, '00; Tseytlin, '00 Deform the world-sheet action: $$I_{ws} = I_0 + \int_{C \to \partial D} \mathcal{V}(X, b, c)$$ $$< \dots > = \int [dX][db][dc]e^{-I_{ws}}\dots$$ Consider only the case when ghosts decouple: $$\mathcal{O} = cV(X)$$ The boundary term in the action modifies the boundary condition on the map $X^{\mu}(z,\overline{z})$ from the Neumann boundary condition (this follows from I_0): $$\partial_r X^{\mu}(\sigma) = 0$$ to "arbitrary" non-linear condition: $$\partial_r X^{\mu}(\sigma) = \frac{\partial}{\partial X^{\mu}(\sigma)} \int_{\partial D} V(X)$$ I_{ws} defines the family of boundary 2d quantum field theories on the disk. The action $S(\mathcal{O})$ is defined on this space and is formally independent of the choice of a particular open string background (Witten, '92): $$dS = < d \int_{\partial D} \mathcal{O} \quad \{Q, \quad \int_{\partial D} \mathcal{O}\} >$$ Since $d \int \mathcal{O}$ is arbitrary - all solutions of the equation dS = 0 correspond to the boundary deformations with $\{Q, \int \mathcal{O}\} = 0$; \Rightarrow 2d theory is conformal (scale invariant, $\beta = 0$) \Rightarrow valid string background. What is the space of deformations given by $V(X(\sigma))$? Assumption (restriction?) - V can be expanded into "Taylor series" in the derivatives of $X(\sigma)$: $$V(X) = T(X(\sigma)) + A_{\mu}(X(\sigma))\partial X^{\mu}(\sigma) +$$ $$C_{\mu\nu}(X(\sigma))\partial X^{\mu}(\sigma)\partial X^{\nu}(\sigma) + D_{\mu}(X(\sigma))\partial^{2}X^{\mu}(\sigma) + \dots$$ The action now becomes the functional of coefficients: $$S = S(T(X(\sigma)), A_{\mu}(X(\sigma)), ...)$$ The goal: write S as an integral over the spacetime (constant mode of $X(\sigma)$: $X(\sigma) = X + \phi(\sigma)$, $\int \phi(\sigma) = 0$) of some "local" functional of fields T(X), A(X), ... and their derivatives. ## GRAVITATIONAL SCATTERING S-00, t fixed ## QUANTUM: =) SPACE - TIME NON-COMMUTATIVITY - It seems that the action is only formally background independent since in order to compute it from world-sheet one needs to use some expansion in world-sheet field theory. - The action seems to depend on the choice of coordinates in the space of boundary interactions (choice of contact terms). Ignore contact terms \Rightarrow the action is given by the same formula but only with the linear part in β (S. Sh. I, 1993). Witten, II, 1992 ⇒ zeros of vector field define equations of motion. Problem - linear EOM. ## Exact Tachyon Potential Turn on only tachyon - $V(X(\sigma)) = T(X(\sigma))$. Find the action S(T) exact in T and second order in ∂T . We know (derivative expansion of β and Z): $$\beta^{T}(X) = [2\Delta T + T] + a_0(T) +$$ $$a_1(T)(\partial T) + a_2(T)(\partial^2 T) + a_3(T)(\partial T)^2 + \dots$$ $$Z(T) = \int dX e^{-T} (1 + b(T)(\partial T)^2 + \dots)$$ In this specific case the basic relation becomes: $$S(T) = -\int dX \beta^{T}(X) \frac{\partial}{\partial T(X)} Z(T) + Z(T)$$ The condition - $\beta = 0$ is the equation of motion for S(T) in lowest order in T (around $T = 0 \rightarrow 2\Delta T + T + ... = 0$) fixes the two derivative action (and relevant unknows $a_i(T), b(T)$) (Gerasimov, S. Sh. '2000): $$S(T) = \int dX [e^{-T} (\partial T)^2 + e^{-T} (1+T)]$$ $$\beta^T = 2\Delta T + T - (\partial T)^2$$ $$Z(T) = \int e^{-T}$$ $$\partial_T S = e^{-T} \beta^T = e^{-T} (2\Delta T + T - (\partial T)^2) = 0$$ $$S(T)_{on-shell} = Z(T) = \int e^{-T(X)}$$ World-sheet action written in terms of only boundary data: $$H(\theta, \theta') = \frac{1}{2} \sum_{k \in \mathbb{Z}} e^{ik(\theta - \theta')} |k|$$ $$X(\theta) = X + \phi(\theta); \int \phi(\theta) = 0; [dX(\theta)] = dX[d\phi]$$ $$I_{ws} = \int \int d\theta d\theta' X^{\mu}(\theta) H(\theta, \theta') X_{\mu}(\theta') + \int d\theta T(X(\theta)) =$$ $$T(X) + \int \phi^{\mu}(\theta) [H(\theta - \theta')\delta_{\mu\nu} + \delta(\theta - \theta')\partial_{\mu}\partial_{\nu}T(X)]\phi^{\nu}(\theta') +$$ $$+O(\partial^{3}T(X))$$ In the two derivative approximation: $$Z(T) = \int dX e^{-T(X)} det' [H + \partial^2 T]^{-\frac{1}{2}}$$ This can be computed exactly. For $\partial_{\mu}\partial_{\nu}T=\delta^{\mu\nu}\partial^{2}_{\mu}T$ (Witten '92): $$Z = \int dX e^{-T(X)} \prod_{\mu} \sqrt{\partial_{\mu}^{2} T(X)} e^{\gamma \partial_{\mu}^{2} T(X)} \Gamma(\partial_{\mu}^{2} T(X))$$ In the two-derivative approximation this gives: $$Z(T) = \int dX e^{-T(X)} (1 + b(T)(\partial T)^2)$$ $$b(T) = 0$$ $$\beta^T = 2\Delta T + T$$ Thus the action is: $$S(T) = \int dX [e^{-T} 2(\partial T)^2 + e^{-T} (1+T)]$$ with equations of motion: $$e^{-T}(T + \mathbf{4}\Delta T - \mathbf{2}(\partial T)^2) = 0$$ The metric G in $\partial_i S = G_{ij}\beta^j = 0$: $$G(\delta_1 T, \delta_2 T) = \int dX e^{-T} (\delta_1 T \delta_2 T - 2(\partial_\mu \delta_1 T)(\partial_\mu \delta_2 T))$$ $$e^{-T} (1 + 2\Delta - 2\partial_\mu T \partial_\mu + ...)(2\Delta T + T) = 0$$ The linear form of β for arbitrary T(X) looks strange since we miss a possible higher order in T (but second order in ∂T) terms which shall come from a 3-point function. This metric is rather complicated and is not an obvious expansion of some invertable metric in the space of fields \Rightarrow we need to choose new coordinates (change the regularization). Note: linear part of β is invariant under scaling of the tachyon ($\beta^i \partial_i$ is a vector field), quadratic in ∂T part of the action is not: $$T \to T - \partial^2 T + (\partial T)^2$$ In new coordinates: $$S(T) = \int dX [e^{-T} (\partial T)^2 + e^{-T} (1+T)]$$ $$\partial_T S = e^{-T} \beta^T = e^{-T} (2\Delta T + T - (\partial T)^2) = 0$$ $$S(T)_{on-shell} = Z(T) = \int e^{-T(X)}$$ This potential has unstable extremum at T=0 (tachyon) and stable at $T=\infty$. The difference between the values of this potential is 1 as predicted by A. Sen (Conjecture 1). In a new variable with the canonical kinetic term (p-adic string for $p \to 1$): $\Phi = e^{-\frac{1}{2}}$ $$S(\phi) = \int [4(\partial \Phi)^2 - \Phi^2 log \frac{\Phi^2}{e}]$$ In the unstable vacuum $T=0, \Phi=1; m^2=-\frac{1}{2};$ in new vacuum $T=\infty, \Phi=0$ mass is ∞ . DN boundary conditions (Dp-brane, $p \le 25$): $$\partial_r X^a(\sigma) = 0, \quad a = 1, ..., p$$ $X^i(\sigma) = 0, \quad i = p + 1, ..., 26$ are obviously conformal \Rightarrow critical points (Conjecture 2). Note: $S(t_c) = Z(t_c)$; e. g.: $$T(X) = a + u_{\mu}(X^{\mu})^{2} \Rightarrow \partial_{r}X^{\mu} = u_{\mu}X^{\mu}$$ $$u_{i} \to \infty, \quad u_{a} \to 0$$ Add gauge field A. Construct the action using the same basic relations (Gerasimov, S. Sh., 2000). Introduce the closed string fields G and B (for covariance): $$S(G, B, A, T) = S_{closed}(G, B) + \int d^{26}X \sqrt{G}$$ $$(e^{-T}(1+T) + e^{-T}||dT||^2 + \frac{1}{4}e^{-T}||B - dA||^2 + \cdots)$$ One can choose a different regularization and obtain the action which is an expansion of BI action $$\int V(T)\sqrt{\det(G-B+dA)}$$ up to second order in dA, but it would lead to a complicated metric. In $\Phi = e^{-\frac{T}{2}}$ coordinates: $$S(G, B, A, \Phi) = S_{closed}(G, B) +$$ $$\int d^{26}X \sqrt{G}(\Phi^{2}(1 - 2\log \Phi) + 4||d\Phi||^{2} +$$ $$+ \frac{1}{4}\Phi^{2}||B - dA||^{2} + \cdots)$$ Abelian Higgs model for complex scalar and gauge field in angular coordinates: $\Phi = He^{i\phi}$, A: $$S(H, \phi, A) = \int dX \left(\frac{1}{g^2} F(A)^2 + |dH|^2 + H^2 |A - d\phi|^2 + \lambda (H^2 - H_0^2)^2\right)$$ $$B \to A, \qquad A \to \phi, \qquad \Phi = e^{-\frac{1}{2}T} \to H$$ Exactly like in a symmetric point for an abelian Higgs model where phase ϕ is not a good coordinate - in string theory the gauge field A becomes ill-defined; the same is true for all open string modes (A. Sen; Gerasimov, S. Sh.). Radial variable - T_0 . Angular - all other. What is analog of cartezian coordinates? Wilson loops? String field? $$\Psi(X_*(\sigma)) = \int_{X_*} e^{-\int_0^{\pi} [T(X(\sigma)) + A_{\mu}(X(\sigma)) dX^{\mu} + \dots]}$$ "Open String degrees of freedom", coefficients in expansion of the boundary operator in derivatives of $X(\sigma)$, are bad coordinates in new, "closed string", vacuum. New coordinates must be used - "closed string degrees of freedom". Conjecture 3. New coordinates - U(1) gauge invariant, functionals of closed strings (like $\phi \to \exp(i\phi)$ is invariant with respect to the shift $2\pi\mathbb{Z}$). In the new vacuum we have only closed strings In this sense open string field coordinates are intermediate in this chain of relations. What about cubic OS field theory coordinates? $$S = (\Psi, Q\Psi) + \Psi \star \Psi \star \Psi = -\beta^i \partial_i Z + Z$$ with * defined through conformal map to "1/3 of pizza", thus $\Psi^3 = Z$? If we keep the restricted class of boundary fields $T(X(\sigma)) + A_{\mu}(X(\sigma))dX^{\mu} + ... \Rightarrow$ gauge parameters for closed string gauge symmetry which has been restored in the new vacuum. A new branch opens - closed strings. What is the space of boundary conditions? How does it contain CS degrees of freedom? World-sheet picture: OS theory in the background of the constant OS tachyon mode $T = T_0$. The 2d sigma - not conformal. Boundary term \Rightarrow factor for each boundary: $$Z \sim e^{-RT_0}$$ Let us take some boundary to be of unit length, then we have the overall damping factor of the string amplitudes with the holes. Thus at the new vacuum $T_0 = \infty$ and there should not be any boundary at all. "Hole cutting" operator - at the new string vacuum the coefficient in front of this operator in the 2D action is zero. Thus there are no holes and no open strings in this vacuum.