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D-branes are made of tachyons !

(Except possibly for top dimensional D-branes)

String Field Theory is a
nonperturbative formulation of string

theory

OSFT, at least. CSFT is also likely to be nonperturbative,

We now know the open string

tachyon potentials !

(Classical results in a field basis where only the tachyon needs to
condense. Simple models confirmed by B-SET. )

Do we have the SFT around the

vacuum of the tachyon ?



This talk will have two main topics:

e Simple field theory models for tachyon dynamics
in bosonic strings and in superstring theory.
Coupling to gauge fields.

o Motivation and discussion of a proposal for an
SFT describing the physics around the vacuum of
the tachyon.

The first topic is interesting in that such models,
derived by special limits of solvable models, turned out
to give the exact (classical) tachyon potentials, as
confirmed by B-SFT calculations.

The second topic is interesting in that such SFT could
be expected to be more powerful and to possess more
symmetries than the usual formulation of cubic string
field theory.

Work on tachyon models is in collaboration with
Joseph Minahan.

Work on SFT around the tachyon vacuum is in
collaboration with Leonardo Rastelli and Ashoke
Sen.



A good guestiﬂn concerning scalar field
theurg:

Can you find a scalar potential V(¢) such that
e At the maximum it has a tachyon of M2 = -1
e At a3 minimum the tachyon acquires infinite mass.

e The field theory has a codimension one lump
solution. On the lump world volume there is a
tachyon, a massless scalar and a scalar for each
mass level M2 =1,2,:--,00.

The surprise is that the answer to this question (and
an analogous one for superstrings) gives a simple
potential that happens to be the exact tachyon
potential for the bosonic string (and for the
superstring).



Given a scalar field theory
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controlled by a Schroedinger potential
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The continuum part of the Schroedinger spectrum
tells us about the vacuum!



-M' itinﬂ class of Schroedinger Eatentials:
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H; = —i— + U(z), Ui(z) =€ —2(£+ 1)sech?u
X

Energy spectrum: Brre

E) =2 —(t—-n}, n=0:1-8-1

E. () =0,20-1,+ =1,
Continuum spectrum sets in at n = ¢

Solved recursively, with Hg the free particle hamiltonian using
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For V(¢) = 3¢ — 3¢? + ¢ the Schroedinger potential is
Us(z/2) up tn an addltwe constant.
z=Az' then U'(z') = A’U(Az"), E = A%E,
Choose 4 = 1/27
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Bosonic model
e T

&(z) = L(z?) Lump profile
¢ =L(T), T==z° new field variable
g / dmm(;:’(fj)z(%(aﬂu 2T)  Action
Li(z?) ~sech®(z), LL(T)~exp(-T/4)
S = — [dtdm e—Tr’?(%(aTJE + ET)
In the original field variables: i
= Lovina: L.gi sio
S(9) = [ de (3007 - 2671062
This model (Minahan + BZ, 0008231) was found to
describe the exact potential in B-SFT (Gerasimov,

Shatashvili 0009103, Kutasov, Marino, Moore
0009148).

The original model has a tachyon of M? = —1 and the
lump has a spectrum M2 = -1,0,1,2, - - 00. At the
tachyon vacuum the tachyon acquires infinite mass (it
is strongly coupled —Kleban, Lawrence, Shenker,
0012081).



SUEerstrinE Mcu:lel

#(z) = K(z) kink profile
I0x) = Kx)
|

1= i
Eitﬁ’{r}ﬁ = V(g(z))
Let ¢ = K(T), T = z new field variable

V(@) = 3(K'(2)) = %(W‘/EE)))E = ST
S=— f dtdm{ﬂ'{T)}z({ﬂT}z 3 1) Action

Ke(z) = VTsech!(z), K. (T)= VT exp(-T?/a)

Seo = — f dtdx E-T"ff((aT}E + 1)

This model (Minahan + BZ, 0009246) was argued to
describe the exact potential in B-SFT (Kutasov,
Marino, Moore, 0010108).



Tachvon fluctuations

Squad = — / riid"ydm{{ﬂpf')z + T(— o - }C;’I{I))T}
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In this latter case M2 = -1/2 and M2=0,1,2. .
This is good!



Ccu_glling to Eauge fields

Motivated by: V(T),/— det(nu + F,..) (Sen, 9909062)

B-SFT analysis of Cornalba (0010021) Okuyama (0010028),
Gerasimov Shatashvili (0011009), Tseytlin (0011033).

We propose (Minahan, BZ, 0011226)

g f e+ (1 (1))? ((OT)? +1 +%FM,F““) Action

Note that at the tachyon vacuum T = o the gauge
Kinetic term prefactor X}(o00) — O (for any #£).

What lives on the lump ? z* = (z#,z)
A. =0, Gauge condition
8:(9;A") =0, Subsidiary condition
Go to the lump T = z and then redefine

B; =K'(z)A;, F=dB

1 5 1 a-z K:.u.f ~
Bl — [ dtyds{3(F) + 2By (-2 + }C,((:r)}) 5}

Schroedinger potential is the same as the tachyon's |

We get a massless gauge field, and massive gauge
fields, with a continuum if ¢ is finite.



For finite ¢ despite the vanishing of the
prefactor of F2 we see evidence of
conventional massive gauge field states on
the tachyon vacuum. Those states would
become infinitely heavy as ¢ — .

This, in turn is evidence that in the ¢ =

model there are no conventional gauge field
excitations on the tachyon vacuum.
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Additional couplings/models
ey

e Can couple fermions that will localize correctly at
the lump

§=_ f d*Pz(K'(T))? E‘Er“ E#Tﬁ-‘ — E,E{;? %_I’J‘ﬂi’] :

e The generalized Born-Infeld forms (Garousi
0003122, Bergshoeff,Roo, deWit, Eyras. Panda
0003221)

S = - /dp"'?.r exp(—T2/2)\/~ det(nu + Fu, + 20,78,T)

Get T = ux, with u — co. The spacing of the
gauge field fluctuations is half the expected one.

e There are two possible couplings of gauge fields in
the bosconic model

F / " H25(L(T))? (%(@T)?+2T+{ET}§FWF‘“)?

While top model is more BI type, and is solvable
for finite £ the gauge field spacing is twice the
expected one. The lower model is not solvable for
finite £ but the gauge field spacing is correct.

There are very recent works on super-connections
(combine the gauge field and tachyon).
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Consider the p-adic string model (Freund, Olson,
Witten 1987, ....) revisited by Ghoshal and Sen
(0003278) for a study of tachyon condensation

'Ef"m¢+

S:

= ¢,;p+1)

g°p—1
G. M. Hardy and E. M. Wright An Introduction to the theory of

numbers : " A number p is said to be prime if (i) p > 1, (ii) p has
no positive divisors except 1 and p. S

Let p=1+4¢, and ¢ — 0 (Gerasimov, Shatashvili)

22l d et 2 . 2
S= fd 4¢a$2¢+ m{ l-E-Inm})

This is the £ = 0 model

Consider now p = 2 giving
4 1 ~din22 1 3
_— —r= 2 e o,
gzjddzr( ch-le ¢+3¢)

1.3

- Vig)= %‘ﬁz = Efﬁ'
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ph
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The p = 2 p-adic string tachyon potential
Redefine the tachyon ¢ — e:'"232 ¢ and get
4 1 1 52
S= —Efddm(--rﬁ:;b + = (ea"2iz q_’:}s)
g 2 3
Note the Kinetic term is now regular and the

interactions have a momentum dependence quite
similar to that of cubic open string field theory.
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String Field Thec::rz around the vacuum of

the Tachyon
“
Rastelli, Sen and Zwiebach (0012251)

There are two aims for this study

e Confirm the complete dissappearance of
perturbative open string excitations on the
tachyon vacuum — This is the second aspect of
Sen's tachyon conjectures.

e Find a more flexible formulation of open string
field theory,

It is natural to begin this analysis in cubic open string
field theory
1

S(®) = - [5(®, Qs®) +5(@, @2 ®)], (D)

As opposed to B-SFT:

e we have here all open string fields, and thus we
can ask what is their fate (inclusion of massive
fields in B-SFT is not yet under control).

e there is no evidence of singularities of the field
variables at the tachyon vacuum,
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This action is consistent on account of;

Qs =0,
Qp(A*B) =(QpA)* B+ (—1)"A=(QpB),
(@sA,B) = —(-)*(A,QsB),

(A, B) = (-)*3(B, A)
(A,B+xC)= (A= B, C)
Ax(B*C)=(A*B)xC.

Gauge Tr: P =QpA+DP*xA-A=D,

Let ¢y describe the tachyon vacuum:
Re®Po + Pg*+Dg = 0.

Expand around the tachyon vacuum: ® = &y + &, and
up to a constant (representing the brane mass) get

So(®) = —:?12, [%{&3* Qd) +%{&51 P « B .

where
QP=QpP+Dy*P+ P+ Dp.

— () satisfies the same properties as Qp.
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A closed form expression for g is unknown and a field
redefinition may be necessary to simplify the kinetic
term. For example:

= ey,
with

K(A*B)=(KA)*B+ A« (KB),
(KA,B)= -(A,KB).

would preserve the cubic term and have
Q— Q= efQeX

This suggests that if a simple form exists for the SFT
action around the tachyon vacuum it might be easier

to guess it than to derive jt. —

16



Thus, propose:
1

_ 1
S(u:}=—ﬁ[§

where @ will be required to satisfy:

o Gauge invariance conditions

Q? =0,
Q(A+ B) = (QA) + B+ (—1)*A« (QB),
(QA,B) = —(-)*(4,0B).

e & must have vanishing cohomology.
e Q) must be universal.

The simplest possibility would be to set @ = 0 giving
purely cubic SFT (Horowitz, et.al 1986). Very
prablematic!

Next simplest choice is @ = ¢g, the zero mode of the
ghost field e(z).

It has ghost number zero, it is BPZ odd, it squares to
zero, and it has no cohomology since {eg, b} = 1:
co|®) =0 — |P) = cobp|P®) = Q(bo|P))

Also, eg is universal,
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C P, B B P, A A P,
Cubic vertex as the gluing of 3 half—disks.

z1zp = —1, for |21/ =1, Rz <0
Zazz3 = -1, for|zz| =1, Rz22<0
Z3z1 = -1, for |z3| =1, Rz <0

The common interaction point P, z, =i (for i = 1,2, 3)
is the mid—point of each open string |zi| =1, Sz > 0.

There is a globally defined (Jenkins-Strebel) quadratic
differential:

1
o= ¢(z)dzl = ——dzf, i=1,23

w has second order poles at the punctures z, = 0.

The lines along which ¢ is real and positive (horizontal
trajectories) cover the surface and represent the open strings.

¥ has a first order zero at the interaction point P (z; = 1).

The metric ds® = |¢(z)||dz|? turns the three half disks into three
semi-infinite strips of width =.
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Conservation law (¢ primary of dimension =1 and ¢
dimension +2).

(Vs i f dz; ¢\ (z)9(z) = 0.
c.

=1

With ¢(z) = coz+ -+ and with ¢() ~ —1/22
(Val (§? + e + V) =0.
— co(A* B) = (coA) * B+ (=)?4 « (coB)

Thus Q = ¢ satisfies all requisite properties !
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We conclude that:
I =1
S(“J}E—Q—E[E(W,cuw} {w W ok w;j
0

= —

Is a good S5FT, with gauge invariance, and correct
spectrum !

In fact, the operators
Cr+Eﬂn+{—}nC_.n1 ?1=D1112]---

are also possible choices for Q.

General choice:

49— Z a,Cn. apconstant

=0

Field redefinitions relate most. With
Kn=Ln—(=)"L_n

[Kn,Cm] = —=(2n 4+ m)Cipan + (=1)" (20 — m)Cpn
A subclass of the above kinetic operators were
considered by Horowitz et.al. as solutions that emerge

from purely cubic SFT. They noted the absence of
excitations.
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Identity string field I satisfies A« T =TI+A= A

1 1 7
|T) = exp(L_3 — sL-4+5L-6— 5L-s+-)I0).

12
Qr' - P,
| .
LA
!L_ (2

The quadratic differential ¢ = —dz2/z? actually has a
pole at z =i and therefore

(| f( o(2)/22dz %0, colT) # 0

Surprising since derivations should annihilate the
identity. On the other hand

(cu + %(cz + c—z}) IZ) =0

So expect ¢g and cg + 2(c2 + c-2) not to be related by
(regular) field redefinitions.
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Some observations/questions

e Must find a way to normalize the kinetic term. Is
the kinetic operator uniquely determined ?

e With purely ghost kinetic operator, one can find a
simple enough propagator and the matter
dependence of n-tachyon Green's functions is
calculable exactly. This calculation is essentially
iImpossible in standard cubic OSFT.

e Can study the existence of lump solutions, and
their tensions. This is a nontrivial analysis based
on the above n-tachyon Green's functions and
some analyticity assumptions. It gives strong
evidence for the type of action, as will be
explained by Ashoke Sen
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A 1 Conclusions/Summary [ /.
® O ot
e Tachyon models are two-derivative models —— —

obtained as special limits of field theories with
potentials having solitons with solvable spectrum.
They anticipated the exact tachyon potentials of
B-SFT, and may provide a framework to study
how the gauge field acquires a mass (infinite 7)
on the tachyon vacuum.

e Upon lump localization, the degeneracies of
massive fields arising from the tachyon and gauge
fields in the models are consistent with the
spectrum of D-branes.

e Tachyon models give a natural explanation for the
apparent finite range of marginal parameters in
SFT (CFT marg. — SFT marg. is two to one).

e We have proposed a very simple class of SFT
actions that may describe the physics of the
tachyon vacuum,

e The actions, reminiscent of p-adic string models,
implement manifestly the lack of conventional
open string excitations and gauge invariance.

e The simplicity of the n-tachyon Green's functions
in this theory allows a nontrivial test via the
computation of ratios of brane tensions.
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