Tachyon Dynamics in Open String
Theory

Goal:

Construction of time dependent solution in open
string theory describing rolling of a generic tachyon
away from its maximum.
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tachyon ¢

Consider an unstable D-brane system with a ‘

"
— potential V(¢) has a maximum at ¢ = 0. 7\7 %)

For ordinary scalar field ¢ with standard 2-
derivative action

— a two parameter family of classical solutions
describing rolling of the tachyon away from the
maximum.

—s labelled by ¢(z% = 0) and 9g¢(z® = 0).

Use time translation invariance to set either ¢
or dp¢ to 0 at z° = 0.

— a one parameter family of inequivalent so-
lutions.
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Q. Can we find a similar one parameter family
of time dependent solutions describing rolling
of an open string tachyon?

Our analysis will be at the level of classical
open string theory (gs — 0) '

@eneral strategy:

1. Begin with a static solution that depends
on some spatial coordinate z.

2. Replace z by-iz® where z0 is the time co-
ordinate.

3. The new configuration will be a solution
of the equations of motion, but we need
to make sure that the solution is real,



@

has
Suppose the tachyon a mass? = —m?.
F.9

Linearized equations of motion:

( (a§§m7ﬁ‘3¢=01

1) ¢ = A, g0 = 0 at 2% = 0 gives /XA
[-t;(mu) = A CDSh(mmﬁ) e cevie)

2) ¢ =0, dp¢ = m at z0 = 0 gives

[*?f’(iﬂu) = Asinh(mz%) } E>e® V(o)

We shall concentrate on solutions of type 1)
for definiteness, but the results generalize to
type 2) initial conditions.

Wick rotation: z0 — iz

(1;6(9:) = Acﬂs(mm)}
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E@ = the vertex operator for zero momentum
tachyon,

—+ switching on ®(z) = Acos(mz) corresponds |
to a deformation of the CFT by

|
A boundary @ EDS(mf_(t))qu_EE) i
L |
> |
Special case; dimensien 1

cos(mX(t))Vy(t) is an exactly marginal opera-
tor

In this case the above perturbation describes
a boundary CFT for finite ).

— one parameter family of euclidean boundary
CFT (BCFT)

W3 =tX® = RolLLING TACHYON SoluTion

oF FuttL STRING €qQS. ©F
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Generic case;

The operator cos(mX (t))Vy(t) is not exactly
marginal (still has dimension 1)

— (3 receives higher order corrections.

Consider now a different perturbation:

[ fdt cns(u}f(t))v‘ﬁ(t)l

rﬁﬁ(w P gl N i

g(w,A): higher order contribution to 3,

Now for every A we ag!ust w such that
[(uz —m2)A+ g{w{k) =0 s
Naeat)

%f=m+ﬂQ%

This describes a BCFT for every A

- =1T¥" + RoUINEG TAcCHYomn Seln
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r'h.h::-te 1: For this procedure to work, OPE of

cus{u}{)vd, with itself should not generate any

~ {ﬁu“n oy Ng
| other operator of dimension ~ 1 ™1™ ="' ' &

by MX=p-X Syr}

\ Note 2: X dependence of w has an analogy in
particle mechanics -

amplitude

}Perind of r:_:-gcillatinn in general depends on the

- ——

e

Boundary state of this BCFT

— energy momentum tensor (and other con-
served currents associated with sources of other

massless fields)
CLOSED STRING

Inverse Wick rotation Cx-> -1 x*)

— time evolution of energy momentum tensor
associated with the rolling tachyon solution.




More explicit details for construction of the
energy-momentum tensor:

|B): boundary state associated with a bound-

EFyCFT - A CLoSDes STRING STATE oF
G.HeotT ro. 3

General form of contribution from level (1,1)
B) (in bosonic st h
states to | } (i ic string t enry} D i fak shu

[ 4k A (K)ot B e T mg] |
(co+To)erBrlk) + e |

——

Ap(). B(z)

= Fourier transforms of A,.(k), B(k)

Then

&ppim) — K(Au(z) + nﬁuB(m)ﬂ

A: A normalization constant

RIBY>:0 » 3%T,=0
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For a boundary CFT obtained by perturbation
[;\ fdt cos(wX (t))Vg(t) ]

1., takes the form:

@p(m,:ﬁ' — § T;EE}(E:') cos(nwz) 'J

n=0

g S

&: 25 spatial coordinates of the original theory
x: Wick rotated time coordinate

Inverse Wick rotation: - - 13¢"

e
f Too(2%,2) = — Y T(&) cosh(nwzP)
n=0

\ DO
TD,;(:ED,E) = 1 E T(n}(f) CGSI‘I(HL:J:ED) ,

U =
T; = 3. T () cosh(nwzP)

1
g n=0 !




This gives the energy-momentum tensor asso-
ciated with rolling tachyon solution.

This construction can be easily generalized to
an LﬂStabe D-brane system in superstring the-

ory.

Exact computation of TE(!E) in the euclidean
BCFT requires the BCFT to be solvable.

— typically true if cns(m}{)v‘ﬁ is exactly marginal

We shall now quote the results for several ex-
amples

dnde A
(Valid to all orders in &/, but in gs — 0 limit)

M
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Example 1: Spatially homogeneous rolling tachyon
on a single D-p-brane in bosonic string theory

Tachyon has mass? = —1 (in o’ = 1 unit)

Tachyon potential has a local minimum at T' =
1y on one side, but is unbounded from below
on the other side.

{VETD) + = Uw

Tp: Tension of the D-p-brane

—— oy

Initial condition T =), 8T =0at z° =0

— T ~ Acosh(z9) to linear order (E < Tp)
— A

ToTAL ENERGY
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Evolution of the energy momentum tensor:

ey e et

Too = %(1 + cos(27A)) §CX.)

¥ 0 : t B 1
= : ~—1
C(I ) 1 + e=¥ sin(Arr) + 1+ e~="sin(Ar) }

il
S

Note: for A >0, f(z9) =+ 0as z? 5

¢T3;)
— Pressure, vanishes

™ g™

For A < 0, f(z%) hits a singularity at

2% = In . -
| sin(Ax)|

This corresponds to pushing the tachyon to the

e S

wrong side where the putggj:ial is unbounded
from below.

Evell daaw RBEFT  araly sor:
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Special case: A\ = %

‘T}_{,y=0 !

Interpretation: \ = 351 corresponds to placing

the tachyEn at the minimum of the potential.

In this case

A=2+4xis equivalent to A = % ——

e

— we cannot place the tachyon beyond its vac-
uum value

(consistent with the boundary string field the-
ory result that the vacuum is at T' = o)
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Example 2: Spatially homogeneous rolling tachyon
on a non-BPS D-p-brane (or brane-antibrane
system) in superstring theory

The tachyon has mass2 = h%

Tachyon potential:
V A

Ep: Total energy density of the original system.

(Tension for non-BPS D-brane; 2xtension for
brane-antibrane pair)




O

The tachyon begins rolling at T = A, dgT = O:

Thus to leading order T = Xcosh(z?/+/2)

Evolution of the energy-momentum tensor:

( Tog = %(1 + cos(2mA)) E(ﬂ} g

| Ty
Ti0 =0, T;; = —Epf(x”)8;; 204)
(%) = T . D |
1 + ev22%5in2(Ar)
1
- 7 —1
< 1 4+ e—v22%gin2(\r)

As z0 — oo, f(z%) — 0O for either sign of A

The system evolves to a gas of zero pressure.

Again \ = 21 corresponds to placing the tachyon
at the minimum of the potential.




Example 3: Rnllihg of a spatially homogeneous
tachyon on a D-p-brane with electric field e
along the z! direction.

P. M ktho pedhyoy & AS., +
ppesh

(Consider bosonic string theory for definite-
ness, but the results easily generalize to non-
BPS D-branes in superstring theory)

— can compute T}, and the source Sy, for the
antisymmetric tensor field By,

FesuM=\When pushed in the right direction (A > 0),
T, evolves to:

i
i

T, induced by fundamental strings + a gas of
zero pressure and non-zero energy density.

—I—'_'_--'-'--_,— —_

Interpretation: Production of fundamental strings
from the decay of a D-brane with electric field.

€ she Rive AUl thaeg Ovahy s1S
G bbaors, Meey, V¢
alae Ethg‘rﬁnn, "h"l"'"-'l Y
Hﬁ'r-yg_y‘ oS, Lordem
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Results for non-zero components of Ty, Suu:
¢ Etfl} Oy le.cl)

e

——————

Tog = [% e2(1—e?) 127, (1 + ccs(zwA))] —>

HE (- 2)1/27 (1 4 cos@mA)) .

Ty1 = —[% e (1-e) V21, (1 + cns(z-,-m))]
-{(1—ez)lfz'}';f('\g‘l—ﬂzmn}}, { |

\
T; = —{Q-e)?Rf(V1—e?2%d;}, 2 <4,5 <b

J -5 Y

|

i So1 = -S89 = —[e (1-e2)"YV27,(1+ cns(QwA)}]Ji
[: Fundamental string, {}: rolling tachyon

|
£(z9): same function as before |

- — ) ‘

0y — 1 1 1
f(=") 1+ ez’ sin(\r) T 1 4 e sin(\r)




Example 4. Inhomogeneous rolling of the tachyon
field

Consider a bosonic D-p-brane with one direc-
tion y compactified on a circle of radius /2.

First momentum mode T3 of the tachyon:

— described by the vertex operator Vg = cos(Y/v2)
has dimension 1/2

— describes a tachyonic mode of mass? = _%

We want to consider rolling of this tachyon
away from its maximum. (e =rp )
e ]

Solution of linearized equations:

&cﬁvﬁ (m“i -—-';.::ush 3_3

In terms of the original tachyon:

o~ o y
[T(::: ) 2.?'ut:i.'::5h\/i B \
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Answer for the energy-momentum tensor;

— e _
Tog = %(ms(zm} +1) |
[£((z° + iy)/V2) + F((=° — iy)/V2)],

ma— i

Toy = %{CGE(QAW} + 1)
[f((2° —iy)/v2) — f((z° + iy)/V2)]
\Tyy = —%(cus(z,w) +1)

[£((z° + iy)/V2) + F((«° — iy)/V2)], \

@ = —%5ijf(($ﬂ+iy)f’\/§) F((2° —iy) /V2) % j

where o -
Sl 1 "
0
= 5 ] -1
éf( ) 14+ esin(An) 14 e2%sin(\n)
ST o —» Con be < hecked
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Top hits a delta-function singularity at

——

S TOR. Y
s In = :

‘ e = isln(ijz}l _Ei‘f*__

g = {'\/_'EIT Jor A>0, 1

0, for A <O. |

-

et

As zQ crosses this critical time, the system

‘loses’ a net amount of energy equal to its total
energy at y = 0. e (31T

If we continue the evolution beyond z?2, even-
tually the energy density goes to zero every-
where,

l_:‘nssib!e interpretation: Creation of a codimen-
sion 1 D-brane at y = 0 or V2.

(N-::- analogous results for superstring yet)

e a—
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A contour plot of Tpp:

Darker region — Larger Tj

—

£
A>0: DIACRAM SHIFTED EBY (3+r
ALeNG Y
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GENERALIZATION: RolLiING OF
MUL TIPLE TACH YoNS SIMULTAMNEQUSLY

VERTEX OP. WY oF Dimension K
<1

& 2 ;
(_f‘ﬂﬂS.S’] e h;-1 = -m™m, 1€ A €EN

BouNDARY PERTURBATION N THE

Wick ROTATED THEORY:

: , o W)
(o [T 3 cas(u™xto & @ ") h’rm]
~ g
2n PARAMETERS LABFLLNG NEED To

2n INIT/AL ConNDITIONS BE ADIWE?

To ™MAwE Q-Fm = J.

S W - ™.+ 6 2a)
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CAUTION: OPE OF Cos(w ks™Ivy
WITH EAcCH QOTHER MUST NOT
G ENERATE OTHER OPE RATORS

OF DIMENSION = 1 ¢+ G ()

DANGEROUS OPERATORS :

—

sin (W™ x+™) i 3 aﬂ

THESE ARE ~NOT GENERATED

&F | F W™ ARE INCOMEN SURATE

[SAME CIiNDITION THAT APPEARS

IN @ PERTURBATIoN THEORY (N

MAMILTONIAN SYySTEMS)

= PoOINTS WHERE PERTURRATION

THEORY FAILS ARE ©DENSE IN THFE

PARAMETER SPACE.



Summary

Wick rotation of euclidean BCFT's can be used
to generate classical solutions in open string
(field) theory, describing rolling of a tachyon
away from its maximum.

If the euclidean BCFT is solvable then one
can explicitly compute time evolution of the
energy-momentum tensor and other conserved
Eurrents assocCiated with the rolling tachyon so-
lution.

If the euclidean BCFT is not solvable, one may
still be able to use perturbative techniques to
compute time evolution of T),,, and other con-
served currents. o

— NFEDS To BE ExPLORE D




