Can string cosmology face the challenge of CMB anisotropies?

G. Veneziano/CERN/TH

STRINGS 2002, Cambridge UK, July 2002

- 1. String cosmology: a brief reminder & a small update
- 2. The blue (flat) spectrum of adiabatic (isocurvature) perturbations in S.C.
- Converting IEP into ACP: is the KR axion a good "curvaton"?
- 4. The dilaton as quintessence: is $\Lambda = 0$ in critical superstring theory?
- Conclusions

String cosmology: a brief reminder

(reviews: Lidsey, Wands & Copeland, hep-th/9909061, Gasperini & GV, hep-th/0207130; home page: http://www.ba.infn.it/~gasperin)

- Evolution from APT towards BB "singularity"
 - more time available
 - accelerated (inflationary) evolution
 - grav. collapse in EF <=> Hawking-Penrose thrms.
 - PBB evolves from weak to strong coupling
 - EKP (v.2) does the opposite
- $oldsymbol{\Theta}$ Avoidance of singularity thanks to α' /loop corrections:
 - exit problem in PBB (can use α' & loop corrections)
 - bounce problem in EKP (only through α' corrections?)
- Generation of hot BB (entropy) through quantum particle production (= short wave-length perturbations)
- Generation of large scale structure (= long wave-length perturbations)
 => main subject of this talk

- In order to answer better fine-tuning allegations one would like to go away from exact plane or spherical symmetry and to conside, for instance, the collision of finitefront shock waves.
- Determine whether a CTS is generically formed, estimate the mass/size of the BH, study the geometry close to the BB singularity, etc.
- Until recently, there have been just conjectures (Yurtsever, 1988) about this case. Recently, thanks to a new method by Eardley and Giddings (gr-qc/0201034), Kohlprath and myself (gr-qc/0203093) managed to find criteria for the formation of CTSs in beam-beam collisions at generic D, b, and (axisymmetric) profiles (in impulsive approximation)
- Simple example of central collision of two identical hom. beams

PBB from plane-wave collisions

(FKV-M,hep-th/0002070, BV,hep-th/0007159) (exactly soluble model)

NB: these are wave-fronts, not branes!

BB-like sing. formed behind wave-fronts

- The geometry inside the horizon is known to be cosmological and to possess a clear arrow of time towards the singularity at the centre, a space-like singularity
- The singularity inside one such BH is identified with the BB event that gave birth to our Universe, except that there is no true singularity, of course.
- To generate a big/smooth Universe like ours the BH has to be large enough, R > 1 Fermi.
 Is this fine-tuning (1 Fermi >> λ_s)?
- BDV('99) studied spherical collapse criteria (using analytic results by Christodoulou).

Fine tuning in PBB?

- •If we have no longer a beginning of time, how did it all start? A possibility:
- •Most of the time and almost everywhere the Universe is/was/will be in a chaotic perturbative state, a superposition of waves where not even the arrow of time is well defined.
- •Under some conditions a Closed Trapped Surface (CTS) may form (now or then, here or there), implying, in CGR, the onset of gravitational collapse and the formation of a black hole.

Collapse inevitable if $R_T > 2$ f = (D-2) $(8 \pi G_N \rho_{\Sigma})^{-1}$

From Big Crunch to Big Bang (KOSST)

PBB doc (GV '91, Gasperini & GV '93)

MAIN CONCLUSIONS

- Occurrence of gravitational collapse is generic.
- Collapse criteria involve only ratios of classical scales. e.g.

 R_T/f , b/f

- No reference to λ_s or to l_p, a scale-invariant problem
- A whole distribution of collapse scales is expected, whose "tail" we can use....

NO FINE-TUNING

Perturbation spectra in string cosmology

Gravitational waves: n_T = 3 (insensitive to extra dim.s)

=> Good for detection, irrelevant for CMB, LSS

Adiabatic dilaton/curvature perturbations: n_s = 4? I think so!

=> Hard to detect, irrelevant for CMB, LSS

 Photons: not as blue, but still blue, sensitive to evolution of internal dimensions and to details of U(1)_{em} embedding

=> Seeds of Cosmic Magnetic fields?

• KR-axions: blue, red or flat w/ "fixed" normalization

(H* ~ M_s, ω* ~ M_s a*/a₀ ~ 10¹¹ Hz, σ M_p = can. axion field)

$$|\delta\sigma_k|^2 = (H^*/M_p)^2 (ω/ω^*)^{n_o-1}; 4-2√3 ~ 0.53 < n_o < 2$$

Flat spectrum (n_o = 1) for symmetric 9-d evolution (mod. T-duality)

- \blacksquare KR axion gives isocurvature (entropy) perturbations. Why? Its fluctuations appear <u>quadratically</u> in $S_{\rm eff}$ since the axion bkgnd is trivial
- => no mixing to first order w/ metric pert.s (unlike dilaton)
- Isocurvature perturbations feed back on curvature to 2nd order but give "wrong" structure of acoustic peaks (DGMVV) (Cf. Boomerang, Maxima, ...)
 However:

Converting isocurvature into adiabatic: is the KR axion a good "curvaton"?

- If V_{σ} generated (by PQ-symmetry breaking), and $\langle \sigma \rangle$ is <u>not</u> initially at its minimum, axion pert.s induce <u>calculable</u> metric pert.s. This "curvaton" idea (M,LWC,ES, LW, MT,BP, ...BGGV) needs (if curvaton = axion)
 - phase of axion dominance
 - axion decay before NS (m_a > 10 TeV)
- Conversion efficiency can be computed (see e.g. BGGV, hep-ph/0206131). We find for the Bardeen potential Φ_k :

$$|\Phi_k|^2 = f^2(\sigma_i) |\delta\sigma_k|^2 = f^2(\sigma_i) (H^*/M_p)^2 (\omega/\omega^*)^{n_o-1}$$

 $f(\sigma_i) \sim (0.13 \sigma_i + 0.18/\sigma_i) > 0.3$

Furthermore, temporal phase of curvature perturbations after axion decay is consistent with adiabatic initial conditions (those of standard slow-roll inflation)

$$\Phi_{k}(\eta) \sim -3 \Phi_{k}(\eta_{d}) [\cos x/x^{2} - \sin x/x^{3}]; x = k c_{s} \eta ; c_{s} \sim \sqrt{3}$$

■ COBE normalization:
$$C_2 = (1.9 + /- 0.23)10^{-10}$$
 to be compared with $C_2 = \alpha_n^2 f^2(\sigma_i) (H^*/M_P)^2 (\omega_0/\omega^*)^{n_0-1}$; $\alpha_n^2 \sim (1/54\pi)$; $f^2(\sigma_i) \sim 0.1 (n_\sigma, \sigma_i \sim 1)$

=> acoustic-peaks come out fine provided primordial axion spectrum is nearly flat (n_{σ} ~ 1) and appropriately normalized.

=> PBB parameter space consistent with CMB observations: see fig. (a possible break δ in the tilt n_σ has been inserted above the AP scales

A particularly simple case: $n_o = 1$, $\delta = 0$, $(H^*/M_p) \sim 0.5 \cdot 10^{-3}$

Q: Is standard inflation really doing better than this with its fine-tuning of inflaton potentials and an arbitrary normalization?

Conclusions

- It took many years for the original Guth idea to find a consistent framework and to become a predictive paradigm
- Until two years ago the much younger String Cosmology framework looked like a poor competitor, accused of fine-tuning and of phenomenological drawbacks
- Recent work on collapse criteria has definitely shown that the finetuning allegations are unjustified
- Recent work on conversion of isocurvature perturbations into adiabatic ones has made the phenomenological appeal of SC competitive w.r.t. standard (say chaotic) inflation (while being better motivated theoretically)
- These very encouraging developments should provide further motivation for the string community to address the fundamental questions that SC is still facing (BKL/DH chaos, (in)consistency w/ eternal acceleration, fate of BB and other singularities, etc.)