Emergent Geometry and String Field Theory

Strings 2003
Kyoto, Japan
July 2003
W. Taylor (MIT)

何の木の花とはいず日ひ哉

一芭蕉

How should geometry and topology be described in a fundamental theory?

Early universe:

Planck era: $l < l_p$, geometry and topology undefined Need a background independent (BI) framework fundamental DOF \Longrightarrow geometry + topology

"Emergent geometry"

• String landscape (Stanford group, etc.)

String landscape (Stanford group, etc.)

Need BI framework to describe full landscape, dynamics in terms of one set of DOF.

Background geometry in string theory

Perturbative String Theory

- Fixed space-time background.
- Only perturbative amplitudes between on-shell asymptotic states in fixed backgrounds are computed

M(atrix) Theory & AdS/CFT

- Fixed space-time background.
- Nonperturbative description given by D-brane quantum mechanics/field theory.
- Background DOF encoded in couplings of (nonrenorm.)
 operators in theory; cannot be changed within framework of
 quantum theory.
- Example: Background B field ⇒ NCYM

SFT

- Background choice (currently) needed to formulate theory.
- Theory is background-independent, but not manifestly.
- At solutions of EOM, DOF can reorganize to those of topologically and geometrically distinct vacua.

3

May have emergent geometry but not yet

Emergent brane geometry: examples from brane field theory

Transverse scalars on Dp-brane

Scalars X^a encode transverse fluctuations (simple geometry)

Higher-dimensional branes

Nonabelian X^a can encode $\mathsf{D}(p+2n)$ -brane matrix geometry

Strings between branes (talk by K. Hashimoto)

Combination of fields F_{0i} and nonabelian X^a can produce strings in space between branes.

Holography

Scale-radius duality

Generally, emergent geometry subtly encoded in original DOF.

Emergent geometry in String Field Theory

1. Transverse Geometry

(Sen-Zwiebach/Coletti-Sigalov-WT)

- SFT DOF contains A_{α}, X^a . BUT: differ from fields in perturbative framework by field redefinition. (a la Ghoshal-Sen, David)
- ullet Sen-Zwiebach: zero-mode X^a only good to $l=\mathcal{O}(l_s)$

Field redefinition:

$$X = \hat{X} + g^2(\gamma \hat{X}^3 + \alpha \hat{X}^2 \partial^2 \hat{X} + \cdots) + \cdots$$
$$\gamma \approx -2.15, \ \alpha \approx -2.96$$

- Action ⇒ (nonabelian) Born-Infeld (including derivative corrections)
- ullet $\hat{X}(X)$ only single-valued to $\mathcal{O}(l_s)$
- Appearance of derivatives obscures transverse locality

2. Lower-dimensional D(p-k)-branes

(Sen, Horvey Frans, de Mello Koch-Jericki - Mihailescu = Tator, shake - Sen-Zwich

Multiple D(p-k)-branes as solutions of Witten's OSFT

$$(p+1)$$
-dimensional U(1) SFT \Longrightarrow $(p-k+1)$ -dimensional U(N) SFT

- Original DOF rearrange to form DOF of new theory
- Classical open strings on (p-k)-brane emerge as complex composites of original (classical) DOF, localized around solution.
- Many possible vacua with different geometry and topology within a single framework.

3. The empty vacuum (Sen, ...)

- All open string DOF gone in stable vacuum
- Perturbative DOF: closed strings = quantum states in OSFT
- Bosonic quantum theory probably not well-defined.
 (etc., Ellwood-Shelton-WT)
- No known problems going from classical SUSY OSFT to quantum theory, although covariant SUSY OSFT not fully defined.

Multiple vacua from one set of DOF.

Stable vacuum is well-defined, apparently smooth, but:

Can't compute analytically

Hard to understand quantum DOF

This is probably a generic situation in BI theories, without new tools.

4. RSZ Vacuum String Field Theory

(Rastelli-Sen-Zwiebach)

"Guess" pure ghost BRST operator Q in stable vacuum

Simpler theory ⇒

analytic solutions for multiple D-branes

(Hata-Kawano, Okawa)

Theory has singularities

But they can be tamed-reproduces D-brane tension (Okawa)

Again, multiple vacua from one set of DOF.

Summary of current situation:

Witten OSFT: Smooth solution, only known numerically

RSZ VSFT: Singular solutions, described analytically.

4. Open problem: multiple Dp-branes in Witten OSFT

Can we find two D25-branes in Witten's U(1) OSFT?

- Needed if theory is truly background invariant
- DOF would reorganize to give enhanced U(2) symmetry
- Not yet found despite some effort (Ellwood-WT)

5. Challenge: M-theory in OSFT/CSFT (?)

Is $g=\infty$ at a finite point in field space after field redefinition in CSFT/quantum OSFT?

Summary

- Witten's OSFT has solutions with different topology and geometry
- Geometry encoded in OSFT DOF in various hidden ways
- Need to generalize picture to include closed string backgrounds

Open questions/problems

- Analytic solution for stable vacuum?
- Find new solutions: 2 × D25, M-theory?
- Develop tools to understand classical and quantum field redefinitions (analogous to NCFT)
- Complete definition of covariant super SFT (Berkovits?)
- Find background-independent description of closed string backgrounds

in OSFT?

in CSFT?

better background-independent theories?