Solving the Gluing Identity

o Gluing Identity =

e Theorem: We have the identity of cohomology
classes on X:

b(V)'JDhD271'*b(VD) i JD1,OW*b(VD1) 'JO,DQW*b(VD;

e For general X, complete classification of solutions
not available.

e Definition: A 7T-manifold X is called a balloon
manifold if

i. X7 is finite

ii. (GKM) T-weights on TpX at fixed point p are
pairwise linearly independent.

iii. The moment map is injective on X T

e Examples: projective toric manifolds, flag mani-
folds.
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Problem

~ o Let LT, x(d, X) be the virtual fundamental cy-
cle of My (d,X). This is a homology cycle in
Ax(Mg i (d, X)) of dimension

(c1(X), d) + (1 — g)dim(X) + k — 3.

e This cycle plays the role of the fundamental cycle
of a compact manifold.

e General Problem: Fix a vector bundle F
on My x(d, X), and a characteristic class

 b(E) € A*(My 1(d, X)). Fix cohomology classes
w1, ..,wr on X. Study the integrals

Kp = JiT, 4(d,X) €191 - - € B(E).

e For simplicity, will restrict to w; = -+ = w =
1. All results here have been generalized to the
case - when w; are arbitrary. The class b will be
Euler class, Chern polynomial, or more generally

any multiplicative class. 5



Recent Progresses

in Mirror Principle

Mirror Principle:

Compute characteristic numbers on rhoduli spaces
of stable maps < Hypergeometric type series.

Counting curves: Euler numbers.

Hirzebruch multiplicative classes, total Chern
classes.

Marked points and general GW invariants.



Plan of the Lecture:

1. Review of Mirror Principle.(Lian, K. Liu,
Yau)

2. Examples. Candelas formula, toric mirror
formula.

3. Recent works: Discussions on:

(a). Proof of the Hori-Vafa formula. (Lian,
C.H. Liu, K. Liu, Yau)

(b). Proof of the Marino-Vafa formula. (C.-C.
Liu, K. Liu, J. Zhou)

We hope to develop a "black-box" method
which makes easy the computations of the char-
acteristic numbers and the GW-invariants on
the moduli space of stable maps:

Starting data = Mirror Principle = Closed
Formulas for the invariants.



General set-up: X: Projective manifold.

Mg r(d, X): moduli space of stable maps of
genus g and degree d with &k marked points
into X, modulo the obvious equivalence.

Points in M, x(d, X) are triples: (f;C; z1, -+ ,zg):
f:C — X: degree d holomorphic map:

z1, -+ ,T. k distinct smooth points on the
genus g curve C.

f+([C]) = d € H>(X,Z): identified as inte-
gral index (di,---,dn) by choosing a basis of
H>(X,,Z) (dual to the Kahler classes).

Virtual fundamental cycle of Li-Tian, (Behrend-
Fantechi): M, ;(d,X)", a homology class of
the expected dimension on M, ;(d, X).



Consider the case k = 0 first.

V: concavex bundle on X, direct sum of a
positive and a negative bundle on X.

V induces sequence of vector bundles Vi on
Mgyo(d, X): HO(C, f*V) @ HI(C, f*V).

b: a multiplicative characteristic class.
Problem: Compute Kj = [ (4 x)»b(V]).
Mirror Principle: Compute

F(T,\) =34 ,K5)9 2T

in terms of hypergeometric type series.

Here A\, T'= (T1,---,,Tn) formal variables.



Key ingredients for the proof of the Mirror
Principle:

(1). Linear and non-linear moduli spaces;

(2). Euler data and Hypergeometric Euler data
(HG Euler data).

Non-linear moduli: MJ(X) = stable map mod-
uli of degree (1,d) and genus g into P! x Xx.

={(f,C): f:C — P! x X} with C a genus g
(nodal) curve.

Linearized moduli: W, for toric X. (Witten,
Aspinwall-Morrison):

Example: P", [zq,- -, z,]

Wy: [fd(wo, w1),- -+, fa(wg, wq)]
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fj(wo,w1): homogeneous polynomials of de-
gree d.

Simplest compactification.

Lemma:(LLY+Li) There exists an explicit equiv-
ariant collapsing map

@Y - Mg(Pn) — Wd-

M (X) is very "singular" and complicated. But
W, smooth and simple, we push-forward every-
thing to W,!

Starting data: V — X a concavex(!) bundle.
It induces vector bundles VJ on M, x(d,X) by
taking H°(C, f*V) o , f*V), or by their

sum. Tk TM. V%
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Remark: Physicists compute by approximat-
ing on linear moduli. Mathematicians compute
on nonlinear moduli.

Balloon manifold X: Projective manifold with
torus action and isolated fixed points.

H=(H11”' :Hk)

a basis of equivariant Kahler classes.
(1). H(p) # H(q) for any two fixed points.

(2). TpX has linearly independent weights for
any fixed point p.

Theorem: Mirror principle holds for balloon
manifolds for any concavex bundles.

Remar_ks: All homogeneous and toric man-
ifolds are balloon manifolds. For g = 0 we



can identify HG series explicitly. Higher genus
needs more work.

1. For toric manifolds and g = 0 == all mirror
conjectural formulas from physics.

2. Grassmannian: Hori-Vafa formula.

2. Direct sum of positive line bundles on P”"
(including the Candelas formula): Two inde-
pendent approaches: Givental, Lian-Liu-Yau.
One of the simple but key techniques:
Functorial localization formula:

f: X — Y equivariant map. F C Y a fixed

component, E C f~1(F) fixed components in
X. Let fo = f|g, then



For w € H7.(X), we have identity on F:

VW | = i (faw)
er(E/X)" ep(F/Y)

fﬁ*[

There are many applications of this formula.
Several later works follow this line.

Apply such formula to ¢, the collapsing map
and the pull-back class w = w*b(V7):

This formula connects the computations of math-
ematicians and physicists.

Push all computations on the nonlinear moduli
to the linear moduli.

Mirror symmetry formula = Comparison of of
computations nonlinear and linearized moduli!?



Introduce the notion of Euler Data, which
naturally appears on the right hand side of the
functorial localization formula:

Qa = o1 (r*b(VY))

which is a sequence of polynomials in equiv-

ariant cohomology rings of the linear moduli

spaces (or restricted to X) with simple quadratic
relations.

From functorial localization formula we prove
that:

Knowing Euler data Q; = knowing the K3.

There is another much simpler Euler data, the
HG Euler data FP; which coincides with @, on
the "generic” part of the nonlinear moduli.



The Gluing Identity

e Enlarge M, 1.(d, X) to
| Mp = M, x((1,d), P! x X).
The projection P1.x X — X induces a map
Mp 5 Mg,k(d, X).

Pulling back b(Vp) via 7, we get a cohomology class
7*b(Vp) on Mp.

e CX acts on P! by the standard rotation. This
“induces an C* action on Mp. Will do localization
on Mp relative to this action.

e Fach fixed point in Mp comes from gluing pairs

in Mg, g,+1(d1, X) X Mg, r,+1(d2, X) at a marked

point z. Here D = D+ Dy where D; = (g;, k;; d;).



Comparison theorem

~ e There is a version for stable map moduli:
i Ep,.p,— Mp
plays the role of i : F' — A. Evaluation map
e: F D1,Dy —> X

evaluating at gluing point plays the role of g : F' —
E. |

e Fix a projective embedding X C P". Each map
stable (f,C,z1,..,2%) is a degree (d,1) map into
X Pl_C P" x Pl

e Corresponding to this are n+1 polynomials f;(wg,w;)
each vanishing of order dg at [a;, b;] € Pl



e Call this component Fp, p,, and i : Fp, p, —
Mp inclusion. There are two natural projection
- maps

Po - FD1,D2 Mgl,kl-i-l(dln X)

Poo - FDl,‘Dg S Mgl,kl-i-l(dl: X)
Pulling back b(VDl) via pp, and b(VD ) Via Poo, We
get cohomology classes piib(Vp,) and pmb(sz) on
Fp,,Dy-
e Theorem(Gluing Identity): On Fp, p, we have

identity of cohomology classes:
*7*b(Vp) = pib(VD,) Pacd(VD,).

e Elementary idea: f: A — B, a G-equlv map of
GG manifolds;

el S B A

gely el f
pikee:
For w € H{(A), we have identity on E:
IBfw) ip(w)

ec(E/B) ~ Meq(FJA)

8



e Theorem(LLY+J. Li): The corrrespondence

(f! C‘} :I:].J "?xk) = [fO? e fﬂ]

“defines an equivariant morphism ¢ : Mp — Ny
where Ny is the projective space of (n + 1)-tuple of
polynomials of degree d.

e The fixed points in N, are copies of P™. There
is a similar theorem if we have an embedding X C
P™ x...xP™n Then N, is replaced by a product
Wy of Ng's. Label the fixed points by Yy, 4,, and

‘inclusion
X Ydl,dg — Wjy.

e Putting together a commutative square:

Fp,p, = Mp
el o lop
X L Lame

10



e Theorem: (Comparison Theorem) For any equiv-
ariant class w on Mp, we have an identity on X:

j*‘P*(w N LTD) i *w N [FD1,D2]
e(X/Wy) e(Fp,,p,/Mp)

Denote the RHS by Jp, p,w.

e Theorem: Consider the integral

Kp = It 1(d,x) (VD).
Suppose the integrand has the right degree. Then
x e o pmb(Vp) = (-1)(2 -2 ~d-t)Kp.

e Thus the goal is to compute the numbers K p by
first computing the classes Jp, p,7*b(Vp) on X.
Let’s restrict to g = 0 and k£ = 0 for simplicity.
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The quadratic relations 4+ coincidence deter-
mine the Euler data uniquely up to certain de-
gree.

Qg always have the right degree for g=0.

Mirror transformation used to reduce the de-
grees of the HG Euler data P;.

Example: CY quintic in P4,

Py = Hid=o(5ﬁ — ma)

with o weight from S! action on P! and x
generator of equivariant cohomology ring of

W,

Starting data: V = O(5) on X = P4 and the
hypergeometric series (a = —1) is:

Htvoo Io%o(5H+m) 44
[B](t) e Z —_m l(H_I_m)SE 7




H: hyperplane class on P#; t: parameter.
Introduce

F(T) = 2T3 + Tgs0 K9 €4T.

Algorithm: Take expansion in H: -
HG[B](t) = H{fo(t)+f1(¢)H+f2(t) H?+ f3(t) H3}.

Candelas Formula: With T = f;/fo,

F(Ty = 21172 _ /3y

2 fofo Jfo

Remark: Both the denominator and the nu-
merator in the HG series are equivariant Euler
classes. Especially the denominator is exactly
from the localization formula. Easily seen from
the functorial localization formula.



Example: X, toric manifold: g=0.

D, ..,Dy: T-invariant divisors

V=L, ci1(L;) >0 and ¢;(X) = ¢, (V).
B(V) = e(V)

P(T) =L K9 4T,

HG Euler series: generating series of the HG
Euler data.

(e1(L;),d)
B(t) = e*H*ZH IT (ea(Ly) — k)
1 k=0
H(Da, d)<0 Hk (Da,d} l(Da + k) Ed‘t

cha,dmnwmd’ (Dy — k)



Mirror Principle == There are explicitly com-
putable functions f(t),g(t), such that

fX (efB(tj — E—H'TE(V)) =20 — Z ﬂg;;

1

where T = t + g(t).
Easily solved for &.

Note the (virtual) equivariant Euler classes in
the HG series.

S S e R N S
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In general we want to compute:

it
K9 zf T
| j_
where w; € H*(X).
Form a generating series
PN 1) = 2 d,g,k Kg kethngk_

Ultimate Mirror Principle: Compute this se-
ries in terms of explicit HG series!

The classes induce Euler data: Euler data en-
code the geometric structure of the stable map
moduli.

Example Consider open toric CY, say O(-3) —
P2, V=0(-3). Let



Qd = Y g>0p1(m*er(Vi) X%9.

The corresponding HG Euler data is given ex-
plicitly by

Py J(k, a, /\)j(ra —da, —a, \).

Where F, is exactly the genus 0 HG Euler data
and J is generating series of Hodge integrals
(sum over all genus): degree 0 Euler data.
Euler data includes computations of all Gromov-
Witten invariants and more general. Some
closed formulas can be obtained....

Mirror principle holds!:

Need to handle the degrees of the Euler data.



Recent Results:

(1) Refined linearized moduli for higher genus
constructed: A-twisted moduli space AY, which
is induced from the linear sigma model of Wit-
ten. New and simpler compactification of the
moduli space of maps. (C.-H. Liu-Liu-Yau).

(2) Open mirror principle: Open string the-
ory: counting holomorphic discs with boundary
inside a Lagrangian submanifold; more gener-
ally counting number of open Riemann sur-
faces with boundary in Lagrangian submani-
fold. Linearized moduli space being constructed
which gives a new compactification of the mod-
uli. (C.-H. Liu-Liu-Yau).

(3) Mirror principle for Calabi-Yau in Grass-
mannian. No known linear moduli. We use
the quot scheme to play the role of the lin-
ear moduli. The method gives a proof of the



Hori-Vafa formula. Details to be explained.
(Lian-C.-H. Liu-Liu-Yau, 2001, Bertram et al
2003.)

(4) Marino-Vafa formula: Hodge integrals
needed to compute the HG Euler data.

Marino-Vafa formula: Generating series of all
triple Hodge integrals on moduli spaces of curves
given by close formulas of finite expression in
terms of representations of symmetric groups:

Conjectured from large N duality between Chern-
Simons and string theory. Proof by combining
combinatorics and functorial localization for-
mula, and differential equation by C.-C. Liu,
K. Liu and J. Zhou. Detail to be explained .



\1\'I. kﬁ\
Mirror Principle for Grassmannian: Hori-

Vafa formula. Bins. GQ,,E W&A&,

The existence of linear moduli made easy the
computations for toric manifolds. Let

ev: Mpi1(d, X) - X

be evaluation map, and ¢ the first Chern class
of the tangent line at the marked point. One
of the key ingredients for mirror formula is to
compute:

2 |
a(a — c)]’

or more precisely the generating series

evs|

HG[1]%(t) = e tH/ Y25 ev*[aal—_ﬂj] edt,

Remark: Assume the linearized moduli exists.
Then functorial localization formula applied to



the collpasing map: ¢ : M; — Ny imme-
diately gives the expression as hypergeometric
denominator.

Example: X = P", then we have p«(1) = 1,
functorial localization:

E‘U*[ 1 ] = 1

=) = [ (a-ma)+1
where the denominators of both sides are equiv-
ariant Euler classes of normal bundles of fixed
points. Here z denotes the hyperplane class.

For X = Gr(k,n), no explicit linearized moduli
known. Hori-Vafa conjectured a formula for
HG[1]%(t) by which we can compute this series
in terms of those of projective spaces:



Hori-VVafa Formula:

HG[1]C7(kn) (1) = e(k—1)7v~T0/a 1

i<i(Zi—%j)
0 e, P
Hi{j(ﬂﬁ;—ﬂaz—j) lt,=t+(k—1)my/=THG[1]" (t1,- - , &)

where P = P*"1 x ... x P*1 s product of k -
copies of the projective spaces. Here o is the
generator of the divisor classes on Gr(k,n) and
z; the hyperplane class of the i-th copy P*»—1:

HG[1IP(ty, -, ) = [T, HG[1]P" ' (z,).

Main idea of proof: We use another smooth
moduli, the Grothendieck quot-scheme Q, to
play the role of the linearized moduli, and ap-
ply the functorial localization formula, and a
general set-up.

Step 1: Plicker embedding: 7 : Gr(k,n) —
P¥ induces embedding of the nonlinear moduli



My of Gr(k,n) into that of PVY. Composite
with the collapsing map gives us a map

p: Mg— Wy
into the linearized moduli space W, of PV,

On the other hand the Pliicker embedding also
induces a map:

Y. Q4 — Wj.

Lemma: The above two maps have the same
image in Wy Imy = Im .

And all the maps are equivariant with respect
to the induced circle action from P1L.

Step 2: Analyze the fixed points of the cir-
cle action induced from Pl. In particular we
need the distinguished fixed point set to get



the equivariant Euler class of its normal bun-
dle.

The distinguished fixed point set in M, is:
Mo,1(d, Gr(k,n))

with equivariant Euler class of its-normal bun- -
dle: a(a—c), and ¢ restricted to ew.

Lemma: The distinguished fixed point set in
Q4 IS a union: UsEp,, where each Eps is a fiber
bundle over Gr(k,n) with fiber given by flag
manifold.

It is a complicated work to determine the fixed
point sets Ep, and the weights of the circle
action on their normal bundles.

Step 3: Let p denote the projection from FEos
onto Gr(k,n). Functorial localization formula
gives us



Lemma: We have equality:

EVx [aal—_cj] =2 p*[eT(E;szd)]

where ep(Eps/Qy4) is the equivariant Euler class
of the normal bundle of Eg, in Qg,

Step 4: Compute p*[ET(Euls/Qd)]'

Method 1: Homogeneous bundle and represen-
tations: LLLY 2001.

Method 2: Tautological Euler sequences and
filtrations: Bertram et al 2003.

Standard push-forward formula on flag mani-
folds for p« gives the final formula.



Proof of the Marino-Vafa formula (C.-C.
Liu, K. Liu and J. Zhou). The formula was
conjectured based on several physical theories:

Witten 92: The open topological string the-
ory on the N D-branes on S3 of T*S3 is equiv-
alent to U(N) Chern-Simons gauge thoery on
33. .

Gopakumar-vafa 98, Ooguri-Vafa 00: The
open topological string theory on the N D-
branes on S3 of the deformed conifold is equiv-
alent to the closed topological string theory on
the resolved conifold.

Marino-Vafa formula 01: From large N du-
ality and framing dependence, they predicted:

(Z(U,V)) = exp(—F(\t,V))

U: holonomy of the U(NN) Chern-Simons gauge
field around the unknot K; V: U(M) matrix



(Z(U,V)): knot invariants of k.

F(A,t,V): Generating series of the open Gromov-

Witten invariants of (X, L), where L 2 51 x R2
iIs a Lagrangian submanifold of the resolved
conifold X ‘“canonically associated to” to the
unknot K.

(Canonical identifications of parameters similar
to mirror formula).

Compare with computations of Katz-Liu, they
derived a striking formula about triple Hodge
integrals on moduli space of curves.

Let n3,---ny be a partition of d and p an arbi-
trary integer. Write, for g=10,

Coiny,....ny (P)

A 11+ ngp)
= 1 h—1 J=1 »
= (-1)"(p(p+1)) 2_1__?[1 (n; — 1)!

1h—
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and

Cg;nl,...,ﬂh(p)
. kR TG+ np)
= (1P (p(p+1)" 1(11 =D )

i=1
JL Ay (DA (P)AJ(—p— 1)
Myp  IMfeq(1 - nap;)
for g > 0. Here

Ay (@) = w9 + c1 (EV)ud ™t + ... 4 ¢o(EY)

is the total Chern class of the dual Hodge bun-
dle induced by H1(C,0).



Marino-Vafa conjecture:

o0
Y Coiny,...np (P)NZ9~2FR
g=0

G S G0
/—1h+l I—.[*;—l n; nzl n 2=§a=k

Z H XRO-(C(kU))EV’__]_pﬁRO.'\fz
:=1 |Ra.|=f o=] zka'
1 sin((ly — 7+ 3 —1%)A/2)
ciden,  SG=DAD)
CR, Hi:_—;+ eV —1v)/2

.;-=1 Hi?:l 2sin((v —i+cp,)A/2)

Remark: Just note that the right hand side is
a closed formula, a finite expression in terms
of representations of symmetric groups.



Cut-Join: The combinatorics and geometry:

Combinatorics: Denote by [sy,---,s;] a k-
cycle in the permutation group:

Cut: a k-cycle is cut into an i-cycle and a j-
cycle: '

[S:t] : [51 e s JSi:t!tQ:"'tj]
— ['5:52: 15i][t:t2:' tj]

Join: an i-cycle and a j-cycle are joined to an
(i + j)-cycle:

[3! t] > [5132: paz:Y 1Si][tr 2, tj]

= [3,32,'-' ,Si,t,tz,-“tj].



Geometry:

Cut: One curve split into two lower degree or
lower genus curves.

Join: Two curves joined togethér to give a
higher genus or higher degree curve.

The combinatorics and geometry of cut-join
are reflected in the following two differential
equations, like heat equation:

proved either by direct computations in com-
binatorics or by localizations on moduli spaces
of relative stable maps:



Proof of Marifio-Vafa formula: (Chiu-Chu Melissa
Liu, Kefeng Liju, Jian Zhou)

Let Cy;n,,...n,(p) be defined by the combinato-
rial side of the Marifio-Vafa formula. Consider
generating functions

H(\,p,z) = Z Z A29—2+h

g=0h=1
o0 - _
Z Vv o L Cg:nl,--uﬂh(?’)%l VTt Zny
nl,...,nh=1

and let us write

o0 oo
H\p,z)= ) 3 A29-2+h
9g=0 h=1
L h
Z A !_1n1+"'+nh_ Cg;nl,...,ﬂh(p)znl "t Zng,
nl,...,nh'—-l

The proof is based on the Cut-Join equation:
a beautiful match of Combinatorics and Ge-
ometry.

4 w'-Y\ HWH-—-\/‘%R X ol
Tl



Combinatorics: Computation:

Theorem 1:
OH 1 g0 OH
— 2 e X ( 1+ 7)z;2;
9p < e:.jz=1 S 102y

s 0HOH 0%H
THSy (3zi 0z; “ Bzéﬁz_f))

Geometry: Localization:

Theorem 2:
OH 1 Lo OH
—_— = —\/—_1)\ (‘i—|—'2'3'
op ) | i’jz=1 ( 1)z Jazi-i—j
" OHOH  82H
% (azi 0z; L 331-33_}.-))

Initial Value: Ooguri-VVafa formula

o0
H()\,0,2) = 4 = F()0.2).
2:0:2) d; 2d sin (%) (0,2)




T he solution is unique!

Remark: Cut-join equation is more fundamen-
tal: encodes both geometry and combinatorics:
Vafa: Virasoro operators come out of the cut-
join.

Applications: Computing GW invariants on
Toric Calabi-Yau:

Physical approaches: Aganagic-Marifio-Vafa (2002):
BPS numbers for toric Calabi-Yau by using
large N dulaity and Chern-Simons invariants.

Vafa et al (2003): Topological vertex. Com-
plete formula for computations of GW invari-
ants and BPS numbers: Chern-Simons.

Igbal’s. instanton counting in terms of Chern-
Simons.



Mathematical approach by Zhou: Marifio-Vafa
formula can be used to compute BPS numbers
and GW invariants for toric Calabi-Yau:

Re-organize contributions of fixed points as
combinations of Marifio-Vafa formula.

Recovered the formula of Igbal (based on a
slight generalization of the MV formula).

Working in progress to understand the topo-
logical vertex of Vafa et al in terms of the MV
formula.

The physical and mathematical approaches should
be equivalent:

Bridge: The Marifio-Vafa formula. gj\
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