E_{11} and M-theory

Fabio Riccioni

King's College London
based on work with Peter West
hep-th/0612001
arXiv:0705.0752

An introduction to E_{11}

Massless maximal supergravities all arise from dimensional reduction of 11-dimensional and IIB supergravities.

An introduction to E_{11}

Massless maximal supergravities all arise from dimensional reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global symmetry G.

An introduction to E_{11}

Massless maximal supergravities all arise from dimensional reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global symmetry G.

The scalars parametrise the manifold G / H, where H is the maximal compact subgroup of G.

An introduction to E_{11}

Massless maximal supergravities all arise from dimensional reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global symmetry G.

The scalars parametrise the manifold G / H, where H is the maximal compact subgroup of G.

That is, the symmetry G is non-linearly realised in the scalar sector.

An introduction to E_{11}

Massless maximal supergravities all arise from dimensional reduction of 11-dimensional and IIB supergravities.

In any dimension, the theory is unique, and has a global symmetry G.

The scalars parametrise the manifold G / H, where H is the maximal compact subgroup of G.

That is, the symmetry G is non-linearly realised in the scalar sector.

In $D=5$ and below, G is an exceptional group
Cremmer, Julia, Marcus, Schwarz

An introduction to E_{11}

D	G
10 A	\mathbb{R}^{+}
10 B	$S L(2, \mathbb{R})$
9	$S L(2, \mathbb{R}) \times \mathbb{R}^{+}$
8	$S L(3, \mathbb{R}) \times S L(2, \mathbb{R})$
7	$S L(5, \mathbb{R})$
6	$S O(5,5)$
5	$E_{6(+6)}$
4	$E_{7(+7)}$
3	$E_{8(+8)}$

An introduction to E_{11}

Gravity as a non-linear realisation Borisov, Ogievetsky, 1974

$$
g=\exp \left(x^{a} P_{a}\right) \exp \left(h_{a}{ }^{b} K^{a}{ }_{b}\right)
$$

where the K 's are the generators of $S L(D)$

$$
\left[K^{a}{ }_{b}, K^{c}{ }_{d}\right]=\delta_{b}^{c} K^{a}{ }_{d}-\delta_{d}^{a} K^{c}{ }_{b} \quad\left[K^{a}{ }_{b}, P_{c}\right]=\delta_{c}^{a} P_{b}
$$

Gravity is formulated as the non-linear realisation of the closure of this group with the conformal group

An introduction to E_{11}

Gravity as a non-linear realisation Borisov, Ogievetsky, 1974

$$
g=\exp \left(x^{a} P_{a}\right) \exp \left(h_{a}{ }^{b} K^{a}{ }_{b}\right)
$$

where the K 's are the generators of $S L(D)$

$$
\left[K^{a}{ }_{b}, K^{c}{ }_{d}\right]=\delta_{b}^{c} K^{a}{ }_{d}-\delta_{d}^{a} K^{c}{ }_{b} \quad\left[K^{a}{ }_{b}, P_{c}\right]=\delta_{c}^{a} P_{b}
$$

Gravity is formulated as the non-linear realisation of the closure of this group with the conformal group

The theory is invariant under

$$
g \rightarrow g_{0} g h^{-1}
$$

where h is local $S O(D)$

An introduction to E_{11}

Maurer-Cartan form:

$$
\mathcal{V}=g^{-1} d g-\omega
$$

ω : spin connection. It transforms as

$$
\omega \rightarrow h \omega h^{-1}+h d h^{-1}
$$

As a result, \mathcal{V} transforms as

$$
\mathcal{V} \rightarrow h \mathcal{V} h^{-1}
$$

An introduction to E_{11}

Maurer-Cartan form:

$$
\mathcal{V}=g^{-1} d g-\omega
$$

ω : spin connection. It transforms as

$$
\omega \rightarrow h \omega h^{-1}+h d h^{-1}
$$

As a result, \mathcal{V} transforms as

$$
\mathcal{V} \rightarrow h \mathcal{V} h^{-1}
$$

One gets

$$
\mathcal{V}=d x^{\mu}\left(e_{\mu}{ }^{a} P_{a}+\Omega_{\mu a}{ }^{b} K^{a}{ }_{b}\right)
$$

An introduction to E_{11}

Similar analysis for the bosonic sector of 11-dimensional supergravity:

$$
\left[R^{a b c}, R^{d e f}\right]=R^{a b c d e f}
$$

group element:

$$
g=\exp \left(x^{a} P_{a}\right) \exp \left(h_{a}{ }^{b} K^{a}{ }_{b}\right) \exp \left(A_{a b c} R^{a b c}+A_{a b c d e f} R^{a b c d e f}\right)
$$

An introduction to E_{11}

Similar analysis for the bosonic sector of 11-dimensional supergravity:

$$
\left[R^{a b c}, R^{d e f}\right]=R^{a b c d e f}
$$

group element:

$$
g=\exp \left(x^{a} P_{a}\right) \exp \left(h_{a}{ }^{b} K^{a}{ }_{b}\right) \exp \left(A_{a b c} R^{a b c}+A_{a b c d e f} R^{a b c d e f}\right)
$$

Field equations: duality relations
West, hep-th/0005270

An introduction to E_{11}

Similar analysis for the bosonic sector of 11-dimensional supergravity:

$$
\left[R^{a b c}, R^{d e f}\right]=R^{a b c d e f}
$$

group element:

$$
g=\exp \left(x^{a} P_{a}\right) \exp \left(h_{a}^{b} K_{b}^{a}\right) \exp \left(A_{a b c} R^{a b c}+A_{a b c d e f} R^{a b c d e f}\right)
$$

Field equations: duality relations
West, hep-th/0005270
E_{11} is the smallest Kac-Moody group that contains this group
West, hep-th/0104081

An introduction to E_{11}

An introduction to E_{11}

Cartan matrix has negative eigenvalues \rightarrow The algebra is infinite-dimensional

An introduction to E_{11}

Cartan matrix has negative eigenvalues \rightarrow The algebra is infinite-dimensional

A complete list of the generators is lacking, not to mention other representations...

An introduction to E_{11}

Cartan matrix has negative eigenvalues \rightarrow The algebra is infinite-dimensional

A complete list of the generators is lacking, not to mention other representations...

Idea: write each positive root in terms of the simple roots of A_{10} and the simple root α_{11}

$$
\alpha=\sum_{i=1}^{10} n_{i} \alpha_{i}+l \alpha_{11} \quad l=\text { level }
$$

An introduction to E_{11}

A necessary condition for the occurrence of a representation of A_{10} with highest weight $\sum_{j} p_{j} \lambda_{j}$ is that this weight arises in a root of E_{11}. One then gets

$$
\alpha^{2}=-\frac{2}{11} l^{2}+\sum_{i, j} p_{i}\left(A_{i j}\right)^{-1} p_{j}
$$

An introduction to E_{11}

A necessary condition for the occurrence of a representation of A_{10} with highest weight $\sum_{j} p_{j} \lambda_{j}$ is that this weight arises in a root of E_{11}. One then gets

$$
\alpha^{2}=-\frac{2}{11} l^{2}+\sum_{i, j} p_{i}\left(A_{i j}\right)^{-1} p_{j}
$$

The fact that E_{11} is a Kac-Moody algebra with symmetric Cartan matrix imposes the constraint

$$
\alpha^{2}=2,0,-2,-4 \ldots
$$

An introduction to E_{11}

A necessary condition for the occurrence of a representation of A_{10} with highest weight $\sum_{j} p_{j} \lambda_{j}$ is that this weight arises in a root of E_{11}. One then gets

$$
\alpha^{2}=-\frac{2}{11} l^{2}+\sum_{i, j} p_{i}\left(A_{i j}\right)^{-1} p_{j}
$$

The fact that E_{11} is a Kac-Moody algebra with symmetric Cartan matrix imposes the constraint

$$
\alpha^{2}=2,0,-2,-4 \ldots
$$

We can solve this level by level

An introduction to E_{11}

Solutions, using $q_{j}=p_{11-j}$:

$$
\begin{gathered}
K_{b}^{a} l=0 \\
R^{a b c} l=1, q_{3}=1 \\
R^{a_{1} \ldots a_{6}}, \quad l=2, q_{6}=1 \\
R^{a_{1} \ldots a_{8}, b}, l=3, q_{1}=1, q_{8}=1
\end{gathered}
$$

An introduction to E_{11}

Solutions, using $q_{j}=p_{11-j}$:

$$
\begin{gathered}
K^{a}{ }_{b} l=0 \\
R^{a b c} l=1, q_{3}=1 \\
R^{a_{1} \ldots a_{6}}, l=2, q_{6}=1 \\
R^{a_{1} \ldots a_{8}, b}, l=3, q_{1}=1, q_{8}=1
\end{gathered}
$$

The $(8,1)$ generator is associated to the dual graviton

An introduction to E_{11}

Solutions, using $q_{j}=p_{11-j}$:

$$
\begin{gathered}
K_{b}^{a} l=0 \\
R^{a b c} l=1, q_{3}=1 \\
R^{a_{1} \ldots a_{6}}, \quad l=2, q_{6}=1 \\
R^{a_{1} \ldots a_{8}, b}, l=3, q_{1}=1, q_{8}=1
\end{gathered}
$$

The $(8,1)$ generator is associated to the dual graviton
All the generators arise from multiple commutators of $R^{a b c}$
The level is the number of times $R^{a b c}$ occurs

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

All bosonic fields are Goldstone bosons of E_{11}

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

All bosonic fields are Goldstone bosons of E_{11}
The field equations are first order duality relations

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

All bosonic fields are Goldstone bosons of E_{11}
The field equations are first order duality relations
At level 4 one gets the solution $q_{10}=1, q_{1}=2$ corresponding to the gauge field
$A_{10,1,1}$

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

All bosonic fields are Goldstone bosons of E_{11}
The field equations are first order duality relations
At level 4 one gets the solution $q_{10}=1, q_{1}=2$ corresponding to the gauge field

$$
A_{10,1,1}
$$

Dimensional reduction $\rightarrow A_{9}$, that is Romans theory!
Schnakenburg and West, hep-th/0204207, West, hep-th/0402140

An introduction to E_{11}

Non-linear realisation: To each positive level generator we associate a gauge field

All bosonic fields are Goldstone bosons of E_{11}
The field equations are first order duality relations
At level 4 one gets the solution $q_{10}=1, q_{1}=2$ corresponding to the gauge field

$$
A_{10,1,1}
$$

Dimensional reduction $\rightarrow A_{9}$, that is Romans theory!
Schnakenburg and West, hep-th/0204207, West, hep-th/0402140
The theory is unique, gravity emerges from the choice of the background

$D=10 A$

$D=10 B$

$$
D=9
$$

$$
D=8
$$

$D=7$

$$
D=6
$$

$$
D=5
$$

$$
D=4
$$

$D=3$

E_{11} and supergravities

E_{11} predicts for IIB the following fields at low levels:

$$
A_{2}^{\alpha} \quad A_{4} \quad A_{6}^{\alpha} \quad A_{8}^{(\alpha \beta)} \quad A_{10}^{(\alpha \beta \gamma)} \quad A_{10}^{\alpha}
$$

E_{11} and supergravities

E_{11} predicts for IIB the following fields at low levels:

$$
\begin{array}{llllll}
A_{2}^{\alpha} & A_{4} & A_{6}^{\alpha} & A_{8}^{(\alpha \beta)} & A_{10}^{(\alpha \beta \gamma)} & A_{10}^{\alpha}
\end{array}
$$

Supersymmetry algebra of IIB: democratic formulation. All the fields appear together with their magnetic duals

Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013
One finds exactly the same forms

E_{11} and supergravities

E_{11} predicts for IIB the following fields at low levels:

$$
\begin{array}{llllll}
A_{2}^{\alpha} & A_{4} & A_{6}^{\alpha} & A_{8}^{(\alpha \beta)} & A_{10}^{(\alpha \beta \gamma)} & A_{10}^{\alpha}
\end{array}
$$

Supersymmetry algebra of IIB: democratic formulation. All the fields appear together with their magnetic duals
Bergshoeff, de Roo, Kerstan, F.R., hep-th/0506013
One finds exactly the same forms
Besides, it turns out E_{11} reproduces the same bosonic algebra encoded in the supersymmetric theory
West, hep-th/0511153

E_{11} and supergravities

Same analysis for IIA

Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280

E_{11} and supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
The algebra closes among the rest on a 9-form (field strength dual to Romans cosmological constant) and two 10-forms

E_{11} and supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
The algebra closes among the rest on a 9-form (field strength dual to Romans cosmological constant) and two 10 -forms

The algebra describes both massless and massive IIA
If $m \neq 0$ the algebra does not arise from 11-dimensional supergravity

E_{11} and supergravities

Same analysis for IIA
Bergshoeff, Kallosh, Ortin, Roest, Van Proeyen, hep-th/0103233
Bergshoeff, de Roo, Kerstan, Ortin, F.R., hep-th/0602280
The algebra closes among the rest on a 9-form (field strength dual to Romans cosmological constant) and two 10-forms

The algebra describes both massless and massive IIA
If $m \neq 0$ the algebra does not arise from 11-dimensional supergravity

Again, precise agreement with E_{11}

E_{11} and supergravities

In a series of papers, all the gauged maximal supergravities in $D=7,6, \ldots, 3$ have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289
Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076

E_{11} and supergravities

In a series of papers, all the gauged maximal supergravities in $D=7,6, \ldots, 3$ have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289
Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076
Gauging:

$$
D_{\mu}=\partial_{\mu}-A_{\mu}^{M} \Theta_{M}{ }^{\alpha} t_{\alpha}
$$

The embedding tensor Θ belongs to a reducible representation of G

E_{11} and supergravities

In a series of papers, all the gauged maximal supergravities in $D=7,6, \ldots, 3$ have been classified
de Wit, Samtleben and Trigiante, hep-th/0212239, hep-th/0412173, hep-th/0507289
Samtleben and Weidner, hep-th/0506237 Nicolai and Samtleben, hep-th/0010076
Gauging:

$$
D_{\mu}=\partial_{\mu}-A_{\mu}^{M} \Theta_{M}{ }^{\alpha} t_{\alpha}
$$

The embedding tensor Θ belongs to a reducible representation of G

Jacobi identities, as well as supersymmetry, pose constraints on Θ

E_{11} and supergravities

D	G	Θ
$\mathbf{7}$	$S L(5, \mathbb{R})$	$\mathbf{1 5} \oplus \mathbf{4 0}$
6	$S O(5,5)$	$\overline{\mathbf{1 4 4}}$
$\mathbf{5}$	$E_{6(+6)}$	$\overline{\mathbf{3 5 1}}$
4	$E_{7(+7)}$	$\mathbf{9 1 2}$
3	$E_{8(+8)}$	$\mathbf{1} \oplus \mathbf{3 8 7 5}$

E_{11} and supergravities

\mathbf{D}	\mathbf{G}	Θ
$\mathbf{7}$	$S L(5, \mathbb{R})$	$\mathbf{1 5} \oplus \mathbf{4 0}$
6	$S O(5,5)$	$\overline{\mathbf{1 4 4}}$
5	$E_{6(+6)}$	$\overline{\mathbf{3 5 1}}$
4	$E_{7(+7)}$	$\mathbf{9 1 2}$
3	$E_{8(+8)}$	$\mathbf{1} \oplus \mathbf{3 8 7 5}$

In $D=9$ all the gauged supergravities have been classified via a case-by-case analysis Mass deformations in $\mathbf{2} \oplus \mathbf{3}$ of $S L(2, \mathbb{R})$
Bergshoeff, de Wit, Gran, Linares, Roest, hep-th/0209205

The fields of E_{11}

Supersymmetry relates gauging and mass deformations, in the same representation of the embedding tensor

The fields of E_{11}

Supersymmetry relates gauging and mass deformations, in the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to $D-1$ forms in D dimensions

The fields of E_{11}

Supersymmetry relates gauging and mass deformations, in the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to $D-1$ forms in D dimensions

We want to classify all the forms that arise in E_{11} in D dimensions

The fields of E_{11}

Supersymmetry relates gauging and mass deformations, in the same representation of the embedding tensor

Following the IIA case, we assume that these are dual to $D-1$ forms in D dimensions

We want to classify all the forms that arise in E_{11} in D dimensions

Basic idea: the sum of the indices of each field has to be equal to $3 l$:

$$
11 n+\sum_{j} j q_{j}=3 l
$$

The fields of E_{11}

We substitute $11 n+\sum_{j} j q_{j}=3 l$ into

$$
\alpha^{2}=-\frac{2}{11} l^{2}+\sum_{i, j} q_{i}\left(A_{i j}\right)^{-1} q_{j}
$$

The fields of E_{11}

We substitute $11 n+\sum_{j} j q_{j}=3 l$ into

$$
\alpha^{2}=-\frac{2}{11} l^{2}+\sum_{i, j} q_{i}\left(A_{i j}\right)^{-1} q_{j}
$$

We get

$$
\begin{aligned}
\alpha^{2} & =\frac{1}{9} \sum_{j=1}^{10} j(9-j) q_{j}^{2}+\frac{2}{9} \sum_{i<j} i(9-j) p_{i} p_{j} \\
& -\frac{4}{9} n \sum_{i} i p_{i}-\frac{2 \cdot 11}{9} n^{2}=2,0,-2, \ldots
\end{aligned}
$$

The fields of E_{11}

Propagating fields have $n=q_{10}=0$. One gets

$$
A_{9,9, \ldots, 9,3} \quad A_{9,9, \ldots, 9,6} \quad A_{9,9, \ldots, 9,8,1}
$$

That is we get infinitely many dual descriptions of the same fields. The propagating fields in dimension D arise from the propagating fields in $D=11$

The fields of E_{11}

Propagating fields have $n=q_{10}=0$. One gets

$$
A_{9,9, \ldots, 9,3} \quad A_{9,9, \ldots, 9,6} \quad A_{9,9, \ldots, 9,8,1}
$$

That is we get infinitely many dual descriptions of the same fields. The propagating fields in dimension D arise from the propagating fields in $D=11$
In order to determine the D-1-forms, we also need to consider $n=q_{9}=0 q_{10}=1$

The fields of E_{11}

Propagating fields have $n=q_{10}=0$. One gets

$$
A_{9,9, \ldots, 9,3} \quad A_{9,9, \ldots, 9,6} \quad A_{9,9, \ldots, 9,8,1}
$$

That is we get infinitely many dual descriptions of the same fields. The propagating fields in dimension D arise from the propagating fields in $D=11$
In order to determine the D-1-forms, we also need to consider $n=q_{9}=0 q_{10}=1$
Finally, in order to determine the D-forms, we also need to consider $q_{10}=q_{9}=0 n=1$

The fields of E_{11}

Propagating fields have $n=q_{10}=0$. One gets

$$
A_{9,9, \ldots, 9,3} \quad A_{9,9, \ldots, 9,6} \quad A_{9,9, \ldots, 9,8,1}
$$

That is we get infinitely many dual descriptions of the same fields. The propagating fields in dimension D arise from the propagating fields in $D=11$
In order to determine the D-1-forms, we also need to consider $n=q_{9}=0 q_{10}=1$
Finally, in order to determine the D-forms, we also need to consider $q_{10}=q_{9}=0 n=1$
Remarkably, there are only a finite number of 11-dimensional fields that give rise to forms in any dimension above two

The fields of E_{11}

D	field
10	$\hat{g}^{1}{ }_{1}$
	\hat{A}_{3}
	\hat{A}_{6}
	$\hat{A}_{8,1}$
8	$\hat{A}_{9,3}$
5	$\hat{A}_{9,6}$
3	$\hat{A}_{9,8,1}$

The fields of E_{11}

D	field
10	$\hat{A}_{10,1,1}$
7	$\hat{A}_{10,4,1}$
5	$\hat{A}_{10,6,2}$
4	$\hat{A}_{10,7,1}$
	$\hat{A}_{10,7,4}$
	$\hat{A}_{10,7,7}$
3	$\hat{A}_{10,8}$
	$\hat{A}_{10,8,2,1}$
	$\hat{A}_{10,8,3}$
	$\hat{A}_{10,8,5,1}$
	$\hat{A}_{10,8,6}$
	$\hat{A}_{10,8,7,2}$
	$\hat{A}_{10,8,8,1}$
	$\hat{A}_{10,8,8,4}$
	$\hat{A}_{10,8,8,7}$

The fields of E_{11}

D	field	μ
10	$\hat{A}_{11,1}$	1
8	$\hat{A}_{11,3,1}$	1
7	$\hat{A}_{11,4}$	1
	$\hat{A}_{11,4,3}$	1
6	$\hat{A}_{11,5,1,1}$	1
5	$\hat{A}_{11,6,1}$	2
	$\hat{A}_{11,6,3,1}$	1
	$\hat{A}_{11,6,4}$	1
	$\hat{A}_{11,6,6,1}$	1
4	$\hat{A}_{11,7}$	1
	$\hat{A}_{11,7,2,1}$	1
	$\hat{A}_{11,7,3}$	2
	$\hat{A}_{11,7,4,2}$	1
	$\hat{A}_{11,7,5,1}$	1
	$\hat{A}_{11,7,6}$	2
	$\hat{A}_{11,7,6,3}$	1
	$\hat{A}_{11,7,7,2}$	1
	$\hat{A}_{11,7,7,5}$	1

E_{11} and dimensional reduction

Consider the 7-dimensional example

E_{11} and dimensional reduction

Consider the 7-dimensional example
6 -forms:

$$
\begin{gathered}
\hat{A}_{6} \rightarrow \mathbf{1} \quad \hat{A}_{8,1} \rightarrow \overline{\mathbf{4}} \oplus \overline{\mathbf{2 0}} \\
\hat{A}_{9,3} \rightarrow \mathbf{6} \oplus \overline{\mathbf{1 0}} \quad \hat{A}_{10,1,1} \rightarrow \mathbf{1 0} \quad \hat{A}_{10,4,1} \rightarrow 4
\end{gathered}
$$

of $S L(4, R)$. This is $\overline{\mathbf{1 5}} \oplus \overline{\mathbf{4 0}}$ of $S L(5, R)$

E_{11} and dimensional reduction

Consider the 7-dimensional example
6-forms:

$$
\begin{gathered}
\hat{A}_{6} \rightarrow \mathbf{1} \quad \hat{A}_{8,1} \rightarrow \overline{\mathbf{4}} \oplus \overline{\mathbf{2 0}} \\
\hat{A}_{9,3} \rightarrow \mathbf{6} \oplus \overline{\mathbf{1 0}} \quad \hat{A}_{10,1,1} \rightarrow \mathbf{1 0} \quad \hat{A}_{10,4,1} \rightarrow 4
\end{gathered}
$$

of $S L(4, R)$. This is $\overline{\mathbf{1 5}} \oplus \overline{\mathbf{4 0}}$ of $S L(5, R)$
7-forms:

$$
\begin{array}{rlrl}
\hat{A}_{8,1} & \rightarrow \mathbf{6} \oplus \mathbf{1 0} & \hat{A}_{9,3} \rightarrow \mathbf{4} \oplus \mathbf{2 0} \\
\hat{A}_{10,1,1} & \rightarrow \mathbf{4} \oplus \mathbf{3 6} & \hat{A}_{10,4,1} \rightarrow \mathbf{1} \oplus \mathbf{1 5} \\
\hat{A}_{11,1} \rightarrow \mathbf{4} \quad \hat{A}_{11,3,1} \rightarrow \mathbf{1 5} & \hat{A}_{11,4} \rightarrow \mathbf{1} \quad \hat{A}_{11,4,3} \rightarrow \overline{4}
\end{array}
$$

that is $\mathbf{5} \oplus \mathbf{4 5} \oplus \mathbf{7 0}$ of $S L(5, R)$

E_{11} and dimensional reduction

D	G	1-forms	2-forms	3-forms	4-forms	5-forms	6-forms	7-forms	8-forms	9-forms	10-forms
10A	\mathbb{R}^{+}	1	1	1		1	1	1	1	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
10B	$S L(2, \mathbb{R})$		2		1		2		3		$\begin{aligned} & 4 \\ & 2 \end{aligned}$
9	$S L(2, \mathbb{R}) \times \mathbb{R}^{+}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	2	1	1	2	2 1	3 1	3 2	$\begin{aligned} & 4 \\ & 2 \\ & 2 \end{aligned}$	
8	$S L(3, \mathbb{R}) \times S L(2, \mathbb{R})$	$(\overline{3}, 2)$	$(3,1)$	$(1,2)$	$(\overline{3}, 1)$	$(3,2)$	$\begin{aligned} & (8,1) \\ & (1,3) \end{aligned}$	$\begin{aligned} & (6,2) \\ & (\overline{3}, 2) \end{aligned}$	$\begin{gathered} (15,1) \\ (3,3) \\ (3,1) \\ (3,1) \end{gathered}$		
7	$S L(5, \mathbb{R})$	$\overline{10}$	5	$\overline{5}$	10	24	$\begin{aligned} & \overline{40} \\ & \overline{15} \end{aligned}$	$\begin{gathered} 70 \\ 45 \\ 5 \end{gathered}$			
6	$S O(5,5)$	16	10	$\overline{16}$	45	144	$\begin{gathered} \hline 320 \\ \hline 126 \\ 10 \end{gathered}$				
5	$E_{6(+6)}$	27	$\overline{27}$	78	351	$\begin{gathered} \overline{1728} \\ \overline{27} \end{gathered}$					
4	$E_{7(+7)}$	56	133	912	$\begin{gathered} 8645 \\ 133 \end{gathered}$						
3	$E_{8(+8)}$	248	$\begin{gathered} 3875 \\ 1 \end{gathered}$?							

Conclusions

- 3-forms in 3 dimensions: $248 \oplus 3875 \oplus 147250$ of E_{8}

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

Conclusions

- 3-forms in 3 dimensions: $248 \oplus 3875 \oplus 147250$ of E_{8}

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

- We find complete agreement with all the known supergravity results, for which E_{11} provides an 11-dimensional origin

Conclusions

- 3-forms in 3 dimensions: $248 \oplus 3875 \oplus 147250$ of E_{8}

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

- We find complete agreement with all the known supergravity results, for which E_{11} provides an 11-dimensional origin
- We also predict the massive deformations in $D=8$ and the D-forms in any dimension D below 10

Conclusions

- 3-forms in 3 dimensions: $248 \oplus 3875 \oplus 147250$ of E_{8}

Bergshoeff, De Baetselier, Nutma, arXiv:0705.1304

- We find complete agreement with all the known supergravity results, for which E_{11} provides an 11-dimensional origin
- We also predict the massive deformations in $D=8$ and the D-forms in any dimension D below 10
- E_{11} provides a completely unified description of all supergravities and it encodes all their dynamical features

