### Topological Strings and Crystal Melting Revisited

Hirosi Ooguri

California Institute of Technology and

IPMU, the University of Tokyo







#### Based on the papers with M. Yamazaki:

arXiv:0811.2801:

Crystal Melting and Toric Calabi-Yau Manifolds,

arXiv:0902.3996:

Emergent Calabi-Yau Geometry,

and the work in progress with M. Aganagic, C. Vafa and M. Yamazaki on the wall crossing phenomena.

#### Topological Strings and Crystal Melting, circa 2003

Okounkov, Reshetikhin and Vafa showed that  $Z_{top}$  in  $C^3$  can be expressed as a sum over molten crystals in 3 dimensions.



$$Z_{crystal} = \sum_{m} \Omega(m) e^{-g_{sm}}$$

This has been generalized to the topological vertex.



What does each crystal configuration mean in the physical superstring theory?

# Topological String counts BPS States.

Topological String: 
$$Z_{top} = \exp\left(\sum_{g} g_s^{2g-2} F_g\right)$$

Topological String: 
$$Z_{top} = \exp\left(\sum_{g} g_s^{2g-2} F_g\right)$$

The holomorphic anomaly equations determine it recursively.

For the quintic, computation up to g=51 is possible.

Huang, Klemm, Quackenbush ('06)

For toric CY3's, the topological vertex computes the partition function for all genera.

Aganagic, Klemm, Marino, Vafa ('03)

#### **Gopakumar-Vafa:**

$$Z_{BPS} = Z_{top}$$

OSV:

$$\frac{1}{2}_{BPS} = \frac{1}{2}_{top}$$

#### Gopakumar-Vafa:

$$Z_{BPS} = Z_{top}$$

We will start with this.

#### We will end with this.

$$\frac{1}{2}_{BPS} = \frac{1}{2}_{top}$$

Gopakumar-Vafa:  $M_2$  brane on  $CY_3 \times \mathbb{R}^{4.1}$ 

- ·  $M_2$  charge  $m_2 \in H_2(CY_3)$
- · (SL, SR): SU(2) & SU(2) & Spin on R 4.1

$$Z_{top} = \pi \left( \frac{\infty}{\pi} \left( 1 - q^{m+s} Q^{m_2} \right)^m \right)^{N_S, m_2}$$

#### **Donaldson-Thomas:**

1 
$$D_6$$
 +  $m_0$   $D_0$  +  $m_2$   $D_2$  on  $CY_3 \times \mathbb{R}^{3,1}$ 

#### **Gopakumar-Vafa:**

#### **Donaldson-Thomas:**

1 
$$D_6$$
 +  $m_0$   $D_0$  +  $m_2$   $D_2$  on  $CY_3 \times \mathbb{R}^{3,1}$ 

$$Z_{GV}^{(5d)} \sim Z_{DT}^{(4d)}$$

- (1) Conjectured by Iqbal, Nekrasov, Okounkov, Vafa ('04).
- (2) Explained by Dijkgraaf, Vafa, Verlinde ('06), using the 4d 5d connection of Gaiotto, Strominger, Yin ('05).
- (3) Proven mathematically by Maulik, Oblomkov, Okounkov, Pandharipande for toric CY3' ('08).

## There is another way to count BPS states.



#### D brane bound states



#### **Crystal Melting**

The low energy effective theory of D branes wrapping cycles of a toric CY is described by the gauge theory characterized by a quiver diagram and a superpotential.

Douglas, Moore ('96) -----

Feng, Franco, Hanany, He, Imamura, Kennaway, Martelli, Sparks, Vafa, Vegh, Wecht, Yamazaki, .... ('06-'08)

Calabi-Yau Geometry



Combinatorial data for the quiver gauge theory

Toric CY3:  $(\mathcal{L}^{N+3} / \mathcal{U}(I)^{\otimes N})$ 

Mirror of Toric CY3: uv + F(x, y) = 0

Toric CY3:  $(\mathcal{L}^{N+3} / \mathcal{U}(I)^{\otimes N})$ 

Mirror of Toric CY3: uv + F(x, y) = 0

#### **Amoeba and Alga:**





Amoeba = 
$$\{(r,p): \exists (\theta,\phi), F(e^{r+i\theta}, e^{p+i\phi}) = 0\}$$
  
Alga =  $\{(\theta,\phi): \exists (r,p), F(e^{r+i\theta}, e^{p+i\phi}) = 0\}$ 

Example: 
$$F(x,y) = x + y + 1$$

$$F(x,g) = 0$$
in  $\mathbb{C}^2$ 

Example: 
$$F(x,y) = x + y + 1$$



#### Example: F(x,y) = x+y+1



Example: 
$$F(x,y) = x+y+1$$



The Alga determines the <u>quiver diagram</u> and the <u>superpotential</u> of the gauge theory on D branes in the toric CY3.

The Amoeba counts the number of bound states of D branes for large charges.

The Alga determines the <u>quiver diagram</u> and the <u>superpotential</u> of the gauge theory on D branes in the toric CY3.

The Amoeba counts the number of bound states of D branes for large charges.

### The Alga is the Question. The Amoeba is the Answer.

# The Alga determines the Lagrangian

(the quiver diagram and the superpotential)

e.g. 
$$F(x,y) = x+y+1$$

mirror of  $C^3$ 



F(x,y) = x + y + 1e.g. 2T Take an analogue of the tropical limit. **2**T



e.g. 
$$F(x,y) = x + y + 1$$



#### e.g. F(x,y) = x + y + 1



### Superpotential = I ± (ordered product of bi-fundamentals around alga)

e.g., suspended pinched point singularity



$$W = \operatorname{tr}(X_{21}X_{12}X_{23}X_{32} - X_{23}X_{33}X_{32} + X_{33}X_{31}X_{13} - X_{31}X_{12}X_{21}X_{13})$$

# Each bound state counted by the Witten index corresponds to

a perfect matching of the periodic bi-partite graph.

> Szendroi [0705.3419] Mozgovoy, Reineke [0809.0117] Yamazaki + H.O. [0811.2801]

#### A simple example: F(x, y) = x + y + 1



bi-partite graph on a torus



bi-partite graph in the universal covering



a perfect matching



Its dual graph looks like a crystal corner.



Its dual graph looks like a crystal corner.



Each molten crystal represents Do brane bound state in  $\mathbb{C}^3$ 

#### This generalizes to an arbitrary toric CY3.

Yamazaki + H.O. [0811.2801]



The crystal consists of **atoms** of different types corresponding to **nodes of the quiver** diagram.

The **edges** of the quiver determine the **chemical bonds**.

#### This generalizes to an arbitrary toric CY3.

Yamazaki + H.O. [0811.2801]



The crystal consists of **atoms** of different types corresponding to **nodes of the quiver** diagram.

The **edges** of the quiver determine the **chemical bonds**.

$$Z_{crystal} = \sum_{\alpha} \Omega(m_0, m_{\alpha}) e^{-g_s m_0 - t^{\alpha} m_{\alpha}}$$

 $m_0 = \# Do branes$   $m_a = \# D2 branes$ ,  $a = 1, \dots, dim H_2$ 

Kenyon, Okounkov and Sheffield evaluated Zcrystal and related its thermodynamic limit  $g_s \to 0$  to the Amoeba of F(z,y).













From the work of Kenyon, Okounkov and Sheffield, one can deduce:

Zcrystal ~ 
$$\exp\left(-\frac{1}{g_s^2}\int_{-\infty}^{\infty} dxdy \mathcal{R}(x,y)\right)$$

where

$$\mathcal{R}(x,y) = \int_{0}^{2\pi} \frac{d\theta d\phi}{(2\pi)^{2}} \log F(e^{x+i\theta}, e^{y+i\phi})$$

Ronkin function

From the work of Kenyon, Okounkov and Sheffield, one can deduce:

Zcrystal ~ 
$$exp\left(-\frac{1}{g_s^2}\int_{-\infty}^{\infty} dxdy \mathcal{R}(x,g)\right)$$

where

$$\mathcal{R}(x,y) = \int_{0}^{2\pi} \frac{d\theta d\phi}{(2\pi)^{2}} \log F(e^{x+i\theta}, e^{y+i\phi})$$

Ronkin function uv +

$$uv + F(\alpha, y) = 0$$
  
mirror of toric CY3

We have shown that this is equal to the genus - O topological string partition function.

$$\mathcal{F}_o = \int_{\gamma} \omega$$

W: holomorphic 3-form

7: mirror of 6-cycle of toric CY3

Yamazaki + H.O. [0902.3996]

### Does this mean

# Wall Crossing



#### Wall Crossing:

The number of BPS states depends on

- ... the asymptotic values of the CY moduli.
- ... the stability conditions on D brane bound states.
- ... how to treat the 1 D6 brane.
- ... the choice of the crystal ground state.

### They are all related.



D2/Do bound states
be emitted?

A BPS particle can decay when the central charges of the fragments align.

For 
$$1[D_6] + m_0[D_0] + m_i[D_2]i$$
,  
Central Charge =  $\infty e^{i\varphi} + m_0 + m_i t^i/g_s$   
 $\simeq \infty e^{i\varphi}$ 



$$Volume(CY_3) = \infty$$

A BPS particle can decay when the central charges of the fragments align.

For 
$$1[D_6] + m_0[D_0] + m_i[D_2]i$$
,  
Central Charge =  $\infty e^{i\varphi} + m_0 + m_i t^i/g_s$   
 $\simeq \infty e^{i\varphi}$ 

It can decay and emit 
$$mo[Do] + mi[D_2]i$$
 if  $arg(\infty e^{i\varphi}) \sim arg(mo + mit^i/g_s)$  i.e.  $Im[e^{-i\varphi}(mo + mit^i/g_s)] = 0$ 

When t/gs: real,

$$Im\left[e^{-i\varphi}(m_0+m_i\frac{t^i}{g_s})\right] = -\sin\varphi(m_0+m_i\frac{t^i}{g_s})$$

=> The walls are at mogs+mit=0.

$$Im\left[e^{-i\varphi}(m_0+m_i\frac{t^i}{g_s})\right] = -\sin\varphi(m_0+m_i\frac{t^i}{g_s})$$

 $\Rightarrow$  The walls are at mogs+mit<sup>i</sup>=0.

$$Z_{DT} = T_{m_0, m_2} (1 \pm e^{-m_0 g_s - m_i t^i})^{C_{m_0, m_2}}$$

Every time we cross a wall, we gain/lose a factor of  $(1 \pm e^{-n_0 g_s - m_i t^i})^{C_{m_0, m_2}}$ .

e.g. Conifold

$$Z_{DT} = \frac{\prod_{m} (1 - g^{m} Q)^{m}}{\prod_{m} (1 - g^{m})^{2m}} \qquad g = e^{-gs}$$

$$Q = e^{-t}$$

$$Z_{crystal} = \frac{\prod_{m} (1 - g^{m} Q)^{m} (1 - g^{m} Q^{-1})^{m}}{\prod_{m} (1 - g^{m})^{2m}}$$

The walls are at  $q^m Q^{\pm 1} = 1$ ,  $q^m = 1$ .

Szendroi ('07); Nakajima, Nagao ('08), Jafferis, Moore ('08)

For the conifold, the wall crossing can also be interpreted as changing of the ground state of the crystal:



Chuang, Jafferis ('08)

Nagao, Nakajima ('08, v2)

This generalizes to an arbitrary toric CY3 without compact 4 cycles. Nagao ('08, '09)

Aganagic, Vafa, Yamazaki + H.O. ('09).

# Unified Description of Chambers

For the conifold

$$Z_{crystal} = \frac{\prod_{m} (1 - g^{m} Q)^{m} (1 - g^{m} Q^{-1})^{m}}{\prod_{m} (1 - g^{m} Q)^{m}}$$

$$Z_{DT} = \frac{\prod_{m} (1 - g^{m} Q)^{m}}{\prod_{m} (1 - g^{m} Q)^{m}}$$

$$Z_{top} = \frac{\prod_{m} (1 - g^{m} Q)^{m}}{\prod_{m} (1 - g^{m} Q)^{m}}$$

# Unified Description of Chambers

For the conifold

$$Z_{crystal} = \frac{\prod_{m} (1 - g^{m}Q)^{m} (1 - g^{m}Q^{-1})^{m}}{\prod_{m} (1 - g^{m})^{2m}}$$

This generalizes to an arbitrary toric CY3 without compact 4 cycles.

Aganagic, Vafa, Yamazaki + H.O. ('09).

This explains why the  $g_s \rightarrow 0$  limit of the crystal melting model reproduced  $\mathcal{F}_o$ .

Zcrystal 
$$\sim \exp\left(-\frac{1}{g_s^2}\int_{-\infty}^{\infty} dxdy R(x,g)\right)$$
  
 $\int_{-\infty}^{\infty} \omega \text{ of the mirror.}$ 

Yamazaki + H.O. ('09)

More generally, in any chamber between the DT and the Crystal Chambers, 2 Q\* such that Z<sub>BPS</sub> = Z<sub>top</sub>(g,Q)· Z<sub>top</sub>(g,Q\*Q<sup>-1</sup>) More generally, in any chamber between the DT and the Crystal Chambers,  ${}^{2}Q*$  such that

$$Z_{BPS} = Z_{top}(q, Q) \cdot Z_{top}(q, Q_*Q^{-1})$$

$$D_0 + D_2$$

$$D_0 + \overline{D}_2$$

free gas of mutually BPS particles

Aganagic, Vafa, Yamazaki + H.O. ('09).

More generally, in any chamber between the DT and the Crystal Chambers,

<sup>2</sup> Q\* such that

This holds for an arbitrary toric CY3 without compact 4 cycles.

$$Z_{BPS} = Z_{top}(g, Q) \cdot Z_{top}(g, Q_*Q^{-1})$$

Note: This is not OSV.

We need
 $(g_s, t) \rightarrow (1/g_s, t/g_s)$ 

When  $t/g_s$  are real, the walls separating the Donaldson-Thomas theory and the crystal melting model are at mogs + miti=0.





 $1g_{s}1 \ll 1t^{i}1$ perturbative in  $g_{s}$ .



Crystal Chamber :

 $19s1 \sim 1t^{i}1$ non-perturbative in 9s. Questions:

With compact 4-cycles?

For compact CY3?