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An important class of
N = 2 4d models:

Complete (quiver) theories
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QUIVER N = 2 THEORIES

F There is a large class of 4d N = 2 theories whose BPS states
correspond to the supersymmetric states of a 1d quiver SQM

Da = Fα = 0. (∗)
• Douglas, Moore • Douglas et al • Denef

F from a 4d viewpoint the quiver Q encodes the
electric/magnetic/flavor charges and their Dirac pairing

• Γ ' ⊕r
i=1Z ei lattice of (quantized) electric/magnetic/flavor charges

• 〈γ, γ′〉Dirac = −〈γ′, γ〉Dirac ∈ Z, γ, γ′ ∈ Γ (bilinear)

• associate a quiver Q : one node i per lattice generator ei .

the integer 〈ei , ej 〉Dirac gives the signed number of arrows i → j

F 1d gauge group
∏

i U(Ni ) ⇒ BPS charge vector
∑

i Ni ei ∈ Γ

F central charge Z (·) : Γ→ C (linear). M = |Z (γ)|, γ ∈ Γ.
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F BPS states correspond to Z –stable representations X of the
quiver path algebra subjected to the relationsFα ≡ ∂αW = 0. In
particular, EndX = C (bricks).

F The quiver Q is not unique: 1d Seiberg duality.

Quiver mutations: products of basic mutations µk at k–th node

µk : 1) invert all arrows trough node k ;

2) for each pairs of arrows i
α−→ k

β−→ j ,

add a new arrow i
[αβ]−−−−→ j ;

3) delete pair of opposite arrows i � j ;

4) replace the superpotential W → µk(W ).

Two quivers are mutation equivalent if related by a chain of
Seiberg dualities. A (quiver) N = 2 theory is associated to a
mutation class of 2–acyclic quivers.
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Examples:
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SU(2) SQCD Nf = 1

(2 distinct quivers in class)

• Kronecker quiver ≡ the acyclic affine quiver Â1

• SU(2) SQCD Nf = 1 ≡ the acyclic affine quiver Â2

1, 1

����

1, 2oo // 1, 3

����

· · · · · ·oo 1,N − 1oo

2, 1 // 2, 2

OO OO

2, 3oo // · · · · · · // 2,N − 1

OO OO

SU(N) SYM (just a representative in a big class)
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The central charge Zi ≡ Z (ei ) is a function of all physical parameters
(gauge couplings, masses, Coulomb branch coordinates,...)

Changing the parameters, we cross walls of marginally stability: the BPS
spectrum jumps ⇒ the Kontsevich–Soilbelman WCF

We also need to change the quiver to another one in the mutation–class

NOT all the consequences of the WCF are physical
NOT all the (mathematical) formal BPS chambers C BPS

i exist:

The image of the map (r = rank Γ)

P ≡ (space of physical parameters) −→

−→ (space of central charges) ≡ Cr =
⋃

i
C BPS
i ,

has, in general, a positive codimension and some chambers C BPS
i are not

physically realizable
imP ∩ C BPS

i = ∅

One has to determine imP ⊂ Cr . Simpler case: complete theories
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Complete (quiver) N = 2 theories:
the map P → Cr is ‘generically surjective’

To get a rough idea of what completeness is about, consider a theory

with a weakly–coupled Lagrangian description (most complete theories

have NO such description !)

Count of dimensions

• rank Γ = #electric + #magnetic + #flavor = 2 rankG + rankGf

• dim(parameter space) =

= #gauge couplings + # dim(Coulomb branch) + #masses =

= #(simple factors of G ) + rankG + rankGf

We get the condition rankG = #(simple factors of G ) ⇒

G = SU(2)m, m ∈ N
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Why complete theories are interesting?

they can be completely classified;

many interesting models turn out to be complete;

to compute their non–perturbative physics (not just the BPS
spectrum !) in detail is both easy and elegant;

it is an ideal ‘non–perturbative laboratory’: the insights we
get allow us to extend methods and results to more general
N = 2 theories (general G ,...)

Remark: complete theories are, in particular, UV complete.
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CLASSIFICATION: The idea

If the theory is complete, we have enough physical deformations to give a
large mass M to all states, but those having a charge vector of the form

n ei + m ej

for any chosen pair of nodes i , j of the quiver Q. In the decoupling limit

M →∞ we get an effective N = 2 theory with rank Γeff = 2 and an

effective quiver

Qeff :
i

〈ei ,ej 〉
////////// j

• 2–nodes quivers are consistent with QFT iff have at most two arrows.

• Complete ⇒ all quivers in its class correspond to physical regimes

The quiver of a complete theory has the property that all quivers
in its class have at most 2 arrows between any pair of nodes
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Quivers with this property are classified: Felikson–Shapiro–Tumarkin thm

1 all incidence quivers of ideal triangulations of bordered
surfaces with punctures and marked points on the boundary

2 11 exceptional mutation classes:

E6, E7, E8 E –type finite–type Dynkin graph

E
(1)
6 , E

(1)
7 , E

(1)
8 E –type affine Dynkin graph

E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 E –type elliptic (toroidal) Dynkin graph

X6, X7 Derksen–Owen quivers

with all triangles oriented

All these quiver classes correspond to N = 2 theories which
may be string–engineered or have a Lagrangian description

Full list of the complete quiver N = 2 theories
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Incidence quiver of an ideal triangulation

• nodes of quiver ↔ arcs γ` of the ideal triangulation
• # arrows from i to j

#{i → j} =
∑

4 shared
by arcs γi ,γj

±1 ⇒ |#{i → j}| ≤ 2

Ideal triangulations of a surface have mutation equivalent quivers
⇒ complete
• Number of arcs ≡ rank Γ

r = 6g − 6 + 3p + 3b + c

∣∣∣∣∣∣
g genus

p # punctures

b # boundary components

c # boundary marks

each boundary component has at least one mark, and p + b > 0
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IDENTIFICATION WITH THE N = 2 MODELS

Quiver of an ideal triangulation of a surface with given (g , p, b, ci ) ⇔
N = 2 model constructed á la Gaiotto–Moore–Neitzke: A1 (2, 0) theory

on the a curve of genus g , the Hitchin quadratic differential φ2 has an

ordinary double pole for each puncture, a pole of order k + 2 for a

boundary component with k marked points

UV superconformal↔

{
g = 0 p = 0, 1, b = 1 A,D–type AD

b = 0 Gaiotto theories

X7 is a mass deformation of the g = 2, p = b = 0 model (hence
UV superconformal). X6 is a decoupling limit of X7, (hence AF)

All other complete theories have quivers which are (mutation
equivalent) to Dynkin diagrams
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The N = 2 4d models

associated to Lie algebras

(In particular, the nine E -type
exceptional complete theories)
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Complete theories with Dynkin quiver

simply–laced Dynkin quivers ⇒ ADE Argyres–Douglas models
vector–less, UV superconformal;

affine Dynkin quivers ⇒ Â(p, q) (p ≥ q ≥ 1), D̂r (r ≥ 4), and Êr

(r = 6, 7, 8) asymptotically–free SU(2) gauge theories;

elliptic (toroidal) Dynkin quivers ⇒ D
(1,1)
4 ≡ SU(2) SQCD Nf = 4,

E
(1,1)
r (r = 6, 7, 8) UV superconformal SU(2) gauge theories

The BPS spectrum has a Lie algebraic interpretation

charge lattice ≡ root lattice of corresponding Lie algebra

α ∈ Γ is the the charge vector of a stable BPS particle ⇒ α is a
(brick) root of the (finite–dimensional, affine, or toroidal) Lie
algebra

real root ⇒ hypermultiplet
imaginary root ⇒ vector–multiplet

Kac–Moody (finite or affine): ∃ strong coupling chamber with just
BPS hypermultiplets of charge vectors αi (simple roots)
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But for the Argyres–Douglas models, all these theories have weakly
coupled chambers with a W BPS vector–multiplet. In the g → 0 limit we
get a theory of an SU(2) SYM weakly gauging the global SU(2)
symmetries of a collection of D–type Argyres–Douglas systems:

Dynkin quiver class AD ‘matter’ coupled to SU(2) SYM

Â(p, q), p ≥ q ≥ 1 Dp, Dq (E.g. SU(2) SQCD Nf = 0, 1, 2)

D̂r , r ≥ 4 D2, D2, Dr−2 (E.g. SU(2) SQCD Nf = 3)

Êr , r = 6, 7, 8 D2, D3, Dr−3

D
(1,1)
4 D2, D2, D2, D2 SU(2) SQCD Nf = 4

E
(1,1)
6 D3, D3, D3

E
(1,1)
7 D2, D4, D4

E
(1,1)
8 D2, D3, D6

Convention: D1 is the empty matter, D2 is a fundamental hypermultiplet

b = 4− 2
∑
i

(
1− 1

ri

)
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Simpler technique: graphical analysis S.C., C. Vafa, 1103.5832

A quiver with a Kronecker subquiver i ⇒ j has a stable BPS
vector–multiplet of charge ei + ej iff ImZ (ej) < ImZ (ei )

The gauge coupling of a system with fundamental (electric) charge
to a vector–multiplet from a Kronecker subquiver

· · · •

����

• · · ·
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· · · •

88qqqqqqqqqqq

by the Dirac
pairing
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Alternative (equivalent) forms of the affine quivers

Â(n + 1,m + 1)

1 // · · · // n // •
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• SU(2) vector coupled to 0,1,2, or 3 Argyres–Douglas systems
• same for elliptic Dynkin quivers

N = 2 gauge theories and algebras



E
(1,1)
6 :

•

�� ��

•oo •oo

• // •

??~~~~~~~

•

__@@@@@@@

GG��������������
// •

WW//////////////
// •

E
(1,1)
7 :

•

�� ��

•oo •oo •oo

•

??~~~~~~~

•

__@@@@@@@

GG��������������
// •

WW//////////////
// • // •

E
(1,1)
8 :

•

�� ��

•oo •oo •oo •oo •oo

•

??~~~~~~~

•

__@@@@@@@

GG��������������
// •

WW//////////////
// •

N = 2 gauge theories and algebras



Type IIB engineering of Dynkin N = 2 complete theories

Gabrielov: the elliptic Dynkin graphs E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 are the

Coxeter–Dynkin graphs of Arnold’s parabolic singularities W (x , y , z)

E
(1,1)
6 x3 + y 3 + z3 + λxyz

E
(1,1)
7 x4 + y 4 + z2 + λx2y 2

E
(1,1)
8 x3 + y 6 + z2 + λx2y 2

⇒ N = 2 model obtained as Type IIB on the local CY

W (x , y , z) + u2 = 0

• explicit SW curve and differential
• (fractional) monodromy, BPS strong coupling spectrum, etc.
see arXiv:1006.3435
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CONCLUSIONS

the algebraic/combinatoric methods are a very powerful tool
to study (quiver) N = 2 4d theories

the special class of complete theories is expecially nice and
fully classified

the detailed physics of the generalized Dynkin models (finite,
affine, elliptic) follows from standard representation theory

methods and results may be extended to large classes of
non–complete N = 2: higher rank gauge groups,...
(to appear)

N = 2 gauge theories and algebras


