Overview of Progress on Scattering Amplitudes

Henriette Elvang
Michigan Center for Theoretical Physics
University of Michigan

Strings 2011
Uppsala, Sweden
June 28, 2011

ACCELERATE PARTICLES TO HIGH ENERGIES...

COLLIDE THEM....

SEE WHAT COMES OUT!

Gluon Amplitudes

Scattering n gluons at tree level
 involves fast-growing number of Feynman diagrams

$$
\begin{array}{rlrrrrrl}
n & = & 3 & 4 & 5 & 6 & 7 & \ldots \\
\text { \# Feynman diagrams } & = & 1 & 3 & 10 & 38 & 149 & \ldots
\end{array}
$$

of increasing complexity, but sum of diagrams is extremely simple:

$$
A_{n}\left(1^{-} 2^{-} 3^{+} \ldots n^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle n 1\rangle}
$$

Spinor helicity formalism: $p_{i \alpha \dot{\alpha}}=|i\rangle_{\alpha}\left[\left.i\right|_{\dot{\alpha}}\right.$.

- Why so simple?
- Better way to calculate?
- New 'dual' formulation?

OVERVIEW

OVERVIEW

Levels of difficulty


```
    MHV \(=\) maximally helicity violating \(=\) sector of \(A_{n}(--+\cdots+)\)
NMHV \(=\) sector of \(A_{n}(---+\cdots+)\)
\(\mathrm{N}^{k} \mathrm{MHV}=\operatorname{sector} A_{n}(\underbrace{-\cdots-}_{k+2} \underbrace{+\cdots+}_{n-k-2})\).
```

$\overline{\mathrm{MHV}}=$ anti- $\mathrm{MHV}=\mathrm{N}^{n-4} \mathrm{MHV}=$ sector of $A_{n}(-\cdots-++)$

Part I:

First tree-level amplitudes in $N=4$ SYM.
Then loop-level amplitudes in planar $N=4$ SYM.

Tree-level Gluon Amplitudes - recursively

Better ways to calculate!

Two powerful "recycling" techniques

following twistor-string [Witten'03]

- BCFW recursion relations
[Britto, Cachazo, Feng'04] [BCF,Witten'05] Get A_{n} from $A_{n^{\prime}<n}$
- CSW expansion [Cachazo,Svrcek,Witten'04] amplitude $=$ sum of diagrams with on-shell MHV vertices.

Tree-level Gluon Amplitudes - recursively

Better ways to calculate!

Two powerful "recycling" techniques

following twistor-string [Witten'03]

- BCFW recursion relations
[Britto, Cachazo, Feng'04] [BCF,Witten'05] Get A_{n} from $A_{n^{\prime}<n}$
- CSW expansion [Cachazo,Svrcek,Witten'04] amplitude $=$ sum of diagrams with on-shell MHV vertices.

Both can be derived from complex deformation of momenta $p_{i} \rightarrow \hat{p}_{i}=p_{i}+z q_{i}$ such that $\hat{p}_{i}^{2}=0$ and $\sum \hat{p}_{i}=0$.
If $\quad(\star) \hat{A}_{n}(z) \rightarrow 0$ as $z \rightarrow \infty \quad$ then
$0=\oint_{\mathcal{C}} \frac{\hat{A}_{n}(z)}{z} \Longrightarrow A_{n}=\hat{A}_{n}(0)=\sum_{l} \hat{A}_{L}\left(z_{I}\right) \frac{1}{P_{l}^{2}} \hat{A}_{R}\left(z_{I}\right)=\sum_{j} \hat{i}_{j+1}^{n}$

When is a shift 'good'?

Tree-level Gluon Amplitudes - recursively

Better ways to calculate!

Two powerful "recycling" techniques

- BCFW recursion relations Get A_{n} from $A_{n^{\prime}<n}$
\leftarrow 2-line shift
$|1\rangle \rightarrow|1\rangle-z|2\rangle, \quad \mid 2] \rightarrow \mid 2]+z \mid 1]$
- CSW expansion \leftarrow "Risager shift" or all-line shift amplitude $=$ sum of diagrams with on-shell MHV vertices.

Both can be derived from complex deformation of momenta $p_{i} \rightarrow \hat{p}_{i}=p_{i}+z q_{i}$ such that $\hat{p}_{i}^{2}=0$ and $\sum \hat{p}_{i}=0$.
If $\quad(\star) \hat{A}_{n}(z) \rightarrow 0$ as $z \rightarrow \infty \quad$ then
$0=\oint_{\mathcal{C}} \frac{\hat{A}_{n}(z)}{z} \Longrightarrow A_{n}=\hat{A}_{n}(0)=\sum_{l} \hat{A}_{L}\left(z_{l}\right) \frac{1}{P_{l}^{2}} \hat{A}_{R}\left(z_{l}\right)=\sum_{j} \frac{\hat{i}}{i}$

When is a shift 'good'?

$\mathcal{N}=4$ SYM Superamplitudes \mathcal{A}_{n}

Promote democracy among the external states:
Collect amplitudes into Grassmann polynomials $\mathcal{A}_{n}\left(\Omega_{1}, \Omega_{2}, \ldots, \Omega_{n}\right)$ using superwavefunction [Ferber'78]

$$
\Omega_{i}=G_{i}^{+}+\eta_{i a} \lambda_{i}^{a}-\frac{1}{2!} \eta_{i a} \eta_{b} S_{i}^{a b}-\frac{1}{3!} \eta_{i a} \eta_{i b} \eta_{i c} \lambda_{i}^{a b c}+\eta_{i 1} \eta_{i 2} \eta_{i 3} \eta_{i 4} G_{i}^{-} .
$$

Then

$$
\mathcal{A}_{n}^{\mathrm{MHV}}=\frac{\delta^{(8)}\left(\sum_{i}|i\rangle \eta_{i}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

and

$$
\mathcal{A}_{n}=\mathcal{A}_{n}^{\mathrm{MHV}}\left(1+\mathcal{P}_{n}^{\mathrm{NMHV}}+\ldots \mathcal{P}_{n}^{\overline{\mathrm{MHV}}}\right)
$$

where $\mathcal{P}_{n}^{\mathrm{N}^{k} \mathrm{MHV}}$ has Grassmann degree $4 k$.

SUSY Ward identities $Q^{a} \mathcal{A}_{n}=\tilde{Q}_{a} \mathcal{A}_{n}=0$.
$\ln \mathcal{N}=4 \mathrm{SYM} \& \mathcal{N}=8$ SG solved in terms of $S U(n-4)$ Young tableaux
[H.E.,Freedman,Kiermaier'09]

Tree-level $\mathcal{N}=4$ SYM

BCFW promoted to supershift:
[Arkani-Hamed, Cachazo, Kaplan'08] [Brandhuber, Heslop, Travaglini'08]

$$
|1\rangle \rightarrow|1\rangle-z|2\rangle, \quad \mid 2] \rightarrow \mid 2]+z \mid 1], \quad \eta_{2 a} \rightarrow \eta_{2 a}+z \eta_{1 a} .
$$

Now $\delta^{(8)}$-function invariant — all shifts "good".

Can SOLVE the super-BCFW recursion relations, all n, all $\mathrm{N}^{k} \mathrm{MHV}$:

$$
\mathcal{P}_{n}^{\mathrm{N}^{k} \mathrm{MHV}}=\sum \text { "R-invariants" } \quad \text { [Drummond } \& \text { Henn’o8] }
$$

So tree-level amplitudes of $\mathcal{N}=4$ SYM solved!

Alternative tree-level solution:
all $\mathrm{N}^{k} \mathrm{MHV}$ tree superamplitudes from CSW.
[Georgio,Glover, Khoze'04] [HE, Freedman, Kiermaier' 08]

A new symmetry

Introduce region variables x_{i} :
$p_{i}=x_{i}-x_{i+1}$

\Longrightarrow mom. cons. automatic

Dual (super)conformal symmetry

acts on region variables as ordinary s.conf. sym.,
e.g. inversion $x_{i}^{\mu} \rightarrow x_{i}^{\mu} / x_{i}^{2}$ and $\langle i, i+1\rangle \rightarrow\langle i, i+1\rangle / x_{i}^{2}$

- Split-helicity gluon amplitudes $A_{n}(-\cdots-+\cdots+)$ transforms covariantly.
- Non-split-helicity amplitudes do NOT transform covariantly. $\frac{\left\langle j j^{4}\right.}{\langle 12\rangle\langle 23\rangle \ldots(n 1\rangle}$
- Tree superamplitudes of $\mathcal{N}=4 \mathrm{SYM}$ are dual superconf. covariant!
- The "R-invariants" are dual superconformal invariant.

More symmetry

Historically:

First hints of dual conformal sym. in loop calculations [Drummond,Henn,Smirnov, Sokatchev'06]
Then at strong coupling. [Alday, Maldacena' ${ }^{07]}$

Planar $\mathcal{N}=4$ SYM has

- ordinary superconformal symmetry
- dual superconformal symmetry

These comprise to two lowest levels of a Yangian algebra
[Drummond, Henn, Plefka'09]
\leftrightarrow Planar $\mathcal{N}=4$ SYM integrable!

Note: symmetry generator must be extended to take into account collinear momenta.
[Bargheer, Beisert, Galleas, Loebbert, McLoughlin'09]

Good variables

(1) spinor helicity $p_{i}=|i\rangle\left[i \mid\right.$ makes null condition $p_{i}^{2}=0$ manifest.
(2) region variables make mom. cons. manifest, but requires $\left(x_{i}-x_{i+1}\right)^{2}=p_{i}^{2}=0$.

Wouldn't it be nice to have unconstrained variables in which dual conformal symmetry is manifest!!?

Good variables

(1) spinor helicity $p_{i}=|i\rangle\left[i \mid\right.$ makes null condition $p_{i}^{2}=0$ manifest.
(2) region variables make mom. cons. manifest, but requires $\left(x_{i}-x_{i+1}\right)^{2}=p_{i}^{2}=0$.

Wouldn't it be nice to have unconstrained variables in which dual conformal symmetry is manifest!!?

This is what momentum twistors do! [Hodges ${ }^{\prime}$ 09]

from [Mason,Skinner'09]

$x_{i} \rightarrow X_{i}$ line in $\mathbb{C P}^{3}$ $\left(x_{i}-x_{i+1}\right)^{2}=0$
$\rightarrow X_{i}$ and X_{i+1} intersect
The intersection points W_{i} are the momentum twistors

Define $\langle i j k l\rangle=\epsilon_{A B C D} W_{i}^{A} W_{j}^{B} W_{k}^{C} W_{l}^{D}$

NMHV tree amplitudes

Now the "R-invariants" of the NMHV tree amplitudes can be expressed as $R_{n i j}=[n, i, i+1, j, j+1]$, where $[i j k l m] \equiv \frac{\delta^{(4)}\left(\chi_{i}(j k l m\rangle+\text { cyclic }\right)}{\langle j k l m\rangle\langle K l m i\rangle\langle m i j\rangle\langle m i j k\rangle\langle j k k\rangle}$.

In fact, the NMHV tree amplitudes can be written

$$
\text { tree-level } \quad \mathcal{A}_{n}^{\mathrm{NMHV}}=\mathcal{A}_{n}^{\mathrm{MHV}} \sum_{i<j}[\star, i, i+1, j, j+1]
$$

where
$\star=W_{n}$ gives super-BCFW form of the superamplitude
$\star=W_{X}$ for some reference momentum twistor W_{X} gives CSW form of the superamplitude.

Amplitudes as geometry!?!

Proposal: [Hodges'09; Arkani-Hamed, Bourjaily, Cachazo, Hodges, Trnka'10]
Amplitudes are volumes of polytopes, and different triangulations correspond to different representations (BCFW/CSW/new).

Has been illustrated for tree-level NMHV and 1-loop MHV integrand.

Amplitudes as geometry!?!

Proposal: [Hodges'09; Arkani-Hamed, Bourjaily, Cachazo, Hodges, Trnka'10]
Amplitudes are volumes of polytopes, and different triangulations correspond to different representations (BCFW/CSW/new).

Has been illustrated for tree-level NMHV and 1-loop MHV integrand.

Here restrict to baby-version:
Let [ijk] be the $\mathbb{C P}^{2}$-analogue of the R -invariants [ijk/m]. The role of the "amplitude" is then played by $A_{n}=\sum_{i}[\star, i, i+1]$. For example, we have $A_{4}=[234]+[241]$ for $\star=2$.
[abc] is area of dual space triangle:

Amplitudes as geometry!?!

Proposal: [Hodges'09; Arkani-Hamed, Bourjaily, Cachazo, Hodges, Trnka'10]

Amplitudes are volumes of polytopes, and different triangulations correspond to different representations (BCFW/CSW/new).

Has been illustrated for tree-level NMHV and 1-loop MHV integrand.

Here restrict to baby-version:
Let [ijk] be the $\mathbb{C P}^{2}$-analogue of the R -invariants [ijk/m]. The role of the "amplitude" is then played by $A_{n}=\sum_{i}[\star, i, i+1]$. For example, we have $A_{4}=[234]+[241]$ for $\star=2$.
[$a b c$] is area of dual space triangle:

Tree-level amplitudes are fascinating!

Remarkable structures!

What about loop amplitudes?

Two aspects: the integrand and the integrated result.

Recursive approach to the loop level integrand

A key to tree-level rec'rel's was that $A_{n}^{\text {tree }}$ is a rational function with only simple poles.
$A_{n}^{\text {loops }} \ni \log$'s, $L i_{k}$'s. .. much more complicated structure. And also need to regulate IR divergences.

Note: in the planar limit, the integrand of a loop amplitude is a well-defined quantity and a rational function.

Recurse it!

Recursive approach to the loop level integrand

A key to tree-level rec'rel's was that $A_{n}^{\text {tree }}$ is a rational function with only simple poles.
$A_{n}^{\text {loops }} \ni$ Log's, $L i_{k}$'s.... much more complicated structure. And also need to regulate IR divergences.

Note: in the planar limit, the integrand of a loop amplitude is a well-defined quantity and a rational function.

Recurse it!

with $n_{\mathrm{L}}+n_{\mathrm{R}}=n+2, \quad k_{\mathrm{L}}+k_{\mathrm{R}}=k-1 \quad$ and $\quad L_{\mathrm{L}}+L_{\mathrm{R}}=L$.
[Arkani-Hamed, Bourjaily, Cachazo,Caron-Huot,Trnka'10] [Caron-Huot'10] [Boels'10]

Integrands - planar $\mathcal{N}=4$ SYM

Examples of integrand results:

- all 2-loop MHV integrand
- 7-point 2-loop NMHV integrand
- 5-point 3-loop MHV integrand

Yangian symmetry manifest.
[Arkani-Hamed, Bourjaily, Cachazo, Caron-Huot,Trnka' 10]

How to integrate?

Integrating the integrand — planar $\mathcal{N}=4$ SYM

IR regulator

Dimensional regularization breaks (dual) conf. sym.
Go on the Coulomb branch [Alday, Henn, Plefka, Schuster '09]
\rightarrow dual conf. sym. restored when transformations include the masses!
Closely related: 6d and 10d maximally SYM planar amplitudes enjoy dual superconformal symmetry.

```
[Bern,Carrasco,Dennen,Huang,Ita'10] [Dennen,Huang'10] [Caron-Huot,0'Connell'10]
```

Interesting forms of integrand \rightarrow easier integration?

```
[Arkani-Hamed,Bourjaily, Cachazo,Trnka'10]
```

Loop-integrals satisfy differential equations \rightarrow iterative structure [Drummond, Henn, Trnka'10]

Generalized unitarity

Generalized unitarity methods give powerful tool to reconstruct full loop amplitudes from trees:

see recent reviews [Britto'10] [Bern,Huang'11] [Carrasco,Johansson'11] and refs therein.

For example $N=4$ SYM:
4-point $L=1,2,3,4$ planar amplitudes + non-planar integrands
$\rightarrow 4$-point $L=1,2,3,4$ amplitudes in $N=8$ supergravity

And methods implemented in numerical codes for QCD backgrounds.

$$
\rightarrow \text { See also Dixon Strings'08 talk }
$$

What can we expect from loops? Planar Limit!

ABDK/BDS ansatz [Anastasiou, Bern, Dixon, Kosower ${ }^{\prime} 03$; Bern, Dixon, Smirnov' 05$]$ captures infrared + collinear behavior of n-point MHV L-loop amplitude, but fixes it only up to "remainder function" $R_{n}^{(L)}$.
(If) dual conformal symmetry
$\Longrightarrow \quad R_{n}^{(L)}$ function of dual conformal cross-ratios,

$$
\text { such as } u_{1346}=\frac{x_{11}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}}\left(\text { using } x_{i j}=x_{i}-x_{j}=p_{i}+p_{i+1}+\cdots+p_{j-1}\right)
$$

What can we expect from loops? Planar Limit!

ABDK/BDS ansatz [Anastasiou, Bern, Dixon, Kosower ${ }^{\prime} 03$; Bern, Dixon, Smirnov' 05$]$ captures infrared + collinear behavior of n-point MHV L-loop amplitude, but fixes it only up to "remainder function" $R_{n}^{(L)}$.
(If) dual conformal symmetry

$$
\begin{aligned}
& \Longrightarrow \quad R_{n}^{(L)} \text { function of dual conformal cross-ratios, } \\
& \quad \text { such as } u_{1346}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}}=\frac{s_{12} s_{45}}{s_{1235345}}\left(\operatorname{sing} x_{i j}=x_{i}-x_{j}=p_{i}+p_{i+1}+\cdots+p_{j-1}\right)
\end{aligned}
$$

No available cross-ratios for $n=4,5$. First non-trivial test $n=6, L=2$:

$$
\left.R_{6}^{(2)}=17 \text { pages of umph! Impressive calculation by [Del Duca, Duhr, Smirnov' } 10\right]
$$

where "umph!" = polylogs $L i_{k}$ and Goncharov logarithms.

What can we expect from loops? Good news!

With application of

- momentum twistors,
- "the Symbol", mathematical 'derivative'-type operation
- careful analysis of branch cuts, and
- Goncharov, the mathematician,
[Goncharov, Spradi in, Vergu, Volovich' ${ }^{10]}$ reduced the result for $R_{6}^{(2)}$ to a ~ 3-line expression of $L i_{k}$'s and \log 's in combinations of uniform transcendentality 4. No Goncharov-logarithms left. Manifestly dual conf.inv.

\rightarrow see Strings'11 talk by Volovich.

The Lesson: There is hope for the future of higher-loop explorations!

What can we expect from loops? Good news!

With application of

- momentum twistors,
- "the Symbol", mathematical 'derivative'-type operation
- careful analysis of branch cuts, and
- Goncharov, the mathematician,
[Goncharov,Spradlin,Vergu, Volovich'10] reduced the result for $R_{6}^{(2)}$ to a ~ 3-line expression of $L i_{k}$'s and log's in combinations of uniform transcendentality 4. No Goncharov-logarithms left. Manifestly dual conf.inv.

```
-> see Strings'11 talk by Volovich.
```

The Lesson: There is hope for the future of higher-loop explorations!
New super-Wilson-loop based proposal for calculating Symbol(Ampl).
[Caron-Huot'11]

Planar $\mathcal{N}=4$ SYM

Why the focus on planar $\mathcal{N}=4$ SYM?

1) It is the simplest!

So excellent "lab" for new methods.
2) It is related to QCD (and to quantum gravity)
'Solving' the scattering amplitudes is part of 'solving' the theory:

- spectrum of scaling dimensions
- correlation functions
- scattering amplitudes
- expectation values of Wilson-loops
- ...

What is the role of integrability for amplitudes?

The Grassmannian: a dual formulation?
Grassmannian $G(n, k)=$ space of k-planes in n-dimensions.

Proposal [arkani-Hamed, Cachazo, Cheung, Kaplan'09]
$G(n, k)$ knows "all" about the $\mathrm{N}^{k-2} \mathrm{MHV} n$-point superamplitudes.

The Grassmannian: a dual formulation?

Grassmannian $G(n, k)=$ space of k-planes in n-dimensions.

Proposal [arkani-Hamed, Cachazo, Cheung, Kaplan'09]
$G(n, k)$ knows "all" about the $\mathrm{N}^{k-2} \mathrm{MHV} n$-point superamplitudes.
Outline:
Momentum conservation $\sum_{i=1}^{n}|i\rangle_{\alpha}\left[\left.i\right|_{\dot{\beta}}=0\right.$.
Linearize momentum conservation condition by considering all k-planes containing the $|i\rangle$-plane.

Leeds to $G(n, k)$-integral

$$
\mathcal{L}_{n, k}=\frac{1}{\operatorname{vol}(\mathrm{GL}(k))} \int \frac{d^{k \times n} C_{A a} \prod_{A=1}^{k} \delta^{4 \mid 4}\left(C_{A a} W_{a}\right)}{(12 \ldots k)(2 \ldots k-1) \cdots(n 1 \ldots k-1)}
$$

This generates all Yangian invariants.
It generates the $\mathcal{N}=4$ tree amplitudes and the "Leading Singularities".
[Drummond,Ferro'10] [Korchemsky,Sokatchev'10] [Mason,Skinner'10] [Spradlin,Volovich'10]
For more, see Arkani-Hamed Strings'10 talk

Planar $\mathcal{N}=4$ SYM

Why the focus on planar $\mathcal{N}=4 \mathrm{SYM}$?
'Solving' the scattering amplitudes is part of 'solving' the theory:

- spectrum of scaling dimensions
- correlation functions
- scattering amplitudes
- expectation values of Wilson-loops
- . .
\longrightarrow Triality proposal

Triality proposal in planar $\mathcal{N}=4 \mathrm{SYM}$

Triality Prososal [Alday,Eden,Korchemsky, Maldacena, Sokatchev'10]
[Belitski,Korchemsky,Sokatchev'10] [Eden,Heslop,Korchemsky, Sokatchev'11]

For example "square of amplitude \approx light-like limit of correlation function".

$$
\left\langle\mathcal{O}\left(x_{1}\right) \ldots \mathcal{O}\left(x_{n}\right)\right\rangle_{\text {tree }}=G_{n}=\sum_{k=0}^{n-4} a^{k} G_{n}^{(k)}
$$

with 't Hooft couping $a=g^{2} N_{c} / \pi^{2}, \mathcal{O}(x)$ is superfield operator version of " $\operatorname{Tr} \phi^{2 "}$, and k denotes Grassmann degree chiral superspace from truncated harmonic superspace

Proposal: $\lim _{x_{i, i+1}^{2} \rightarrow 0} \frac{G_{n}}{G_{n}^{(k=0)}}=\left(\sum_{k=0}^{n-4} a^{k} \frac{\mathcal{A}_{n}^{\mathrm{N}^{k} M H V}}{\mathcal{A}_{n}^{\mathrm{MHV}}}\right)^{2}=\left(1+a \mathcal{P}_{n}^{\mathrm{NMHV}}+\ldots\right)^{2}$
NMHV test passed.
+loop-level generalization for integrands

Overview of planar $\mathcal{N}=4 \mathrm{SYM}$

IR regularization
Coulomb branch

Part II: Safari on the Coulomb branch

So far we discussed $\mathcal{N}=4$ SYM at the origin of moduli space $\left\langle\phi^{a b}\right\rangle=0$

Going on the Coulomb branch of $\mathcal{N}=4$ is very useful for IR regularization [Alday,Henn, Plefka, Schuster'09].

But to explore the Coulomb branch amplitudes
with massive particles is also interesting in its own right.
That's Part II.

$\mathcal{N}=4$ SYM on the Coulomb branch

Most controlled theory with massive particles:

$\mathcal{N}=4$ SYM on the Coulomb branch.

Specific scenario:
$U(N+M) \rightarrow U(N) \times U(M)$ by turning on VEVs

$$
\left\langle\left(\phi^{12}\right),{ }^{J}\right\rangle=\left\langle\left(\phi^{34}\right),{ }^{J}\right\rangle=v \delta_{l}^{J} \quad \text { for } I, J \in U(M)
$$

R-symmetry $S U(4) \rightarrow S p(4) \supset \underbrace{S U(2)}_{12} \times \underbrace{S U(2)}_{34}$.

$$
\left(A_{\mu}\right) \rightarrow\left(\begin{array}{cc}
\left(A_{\mu}\right)_{N \times N} & \left(W_{\mu}\right)_{N \times M} \\
\left(\bar{W}_{\mu}\right)_{M \times N} & \left(\widetilde{A}_{\mu}\right)_{M \times M}
\end{array}\right),
$$

W's are massive " W-bosons", spin- 1 of massive $\mathcal{N}=4$ supermultiplet.
$W^{L} \propto\left(w^{12}+w^{34}\right)$ is longitudinal polarization.

$\mathcal{N}=4$ SYM on the Coulomb branch

Example:

Ultra-Helicity Violating (UHV) sector $A_{n}\left(W^{-} \bar{W}^{+}+\cdots+\right)$ is now the simplest:
$\mathcal{A}_{n, \text { tree }}^{U H V}=-\frac{m^{2}\left[3\left|\prod_{i=4}^{n-1}\left[m^{2}-x_{i 2} x_{2, i+1}\right]\right| n\right]}{\left\langle q 1^{\perp}\right\rangle^{2}\left\langle q 2^{\perp}\right\rangle^{2}\langle 34\rangle\langle 45\rangle \cdots\langle n-1, n\rangle \prod_{i=3}^{n-1}\left(P_{2 i}^{2}+m^{2}\right)} \delta^{(4)}\left(\left\langle q i^{\perp}\right\rangle \eta_{i a}\right)$
[Craig,H.E.,Kiermaier,Slatyer'11] [Boels,Schwinn'11] [Ferrario,Rodrigo,Talavera'06]
q is reference null vector: $p_{i}=p_{i}^{\perp}+\frac{m_{i}^{2}}{2 q \cdot p_{i}} q$.
Massive spinor helicity formalism [Dittmaier'98] [Cohen,H.E.,Kiermaier'10]

Massless \rightarrow massive

Soft-scalar limits probe nearby moduli-space

soft scalar limit of massless amplitude

Massless \rightarrow massive

Soft-scalar limits probe nearby moduli-space
soft scalar limit
of massless amplitude

Example:

$$
\begin{aligned}
& A_{4}\left(W^{-} \bar{W}^{+} g^{+} g^{+}\right)=-\frac{\left\langle 1^{\perp} 2^{\perp}\right\rangle^{2}[34]}{\langle 34\rangle\left(P_{23}^{2}+m^{2}\right)} \rightarrow-m^{2} \frac{\langle 1| q \mid 2]}{\langle 2| q \mid 1] P_{23}^{2}} \quad \text { for } m^{2} \ll P_{i j}^{2} \\
& \langle\phi\rangle^{2} A_{6}\left(g^{-} \phi_{\epsilon q_{1}}^{12} \phi_{\epsilon q_{2}}^{34} g^{+} g^{+} g^{+}\right)+\left(q_{1} \leftrightarrow q_{2}\right) \rightarrow-m^{2} \frac{\langle 1| q \mid 2]}{\langle 2| q \mid 1] P_{23}^{2}} \quad \text { as } \epsilon \rightarrow 0
\end{aligned}
$$

Several other examples of leading-order match [Craig,H.E.E, Kiermaier,S1atyer' 11]

Can the entire massive propagator be re-summed through multiple soft-scalar limits!
Yes! Works beautifully! [Kiermaier ${ }^{11]}$
Motivates new proposal for CSW-type expansion for Coulomb branch amplitudes.

Part III: Other non-gravitational theories

One goal is practical applications of amplitude techniques to QCD backgrounds.

Another goal is to further advance the formal developments.

In part III, we leave the safe comfort of $\mathcal{N}=4$ SYM.

General theories

Tree-level on-shell recursion relations (BCFW, CSW) have been a major input for the developments in $\mathcal{N}=4$ SYM.

But when are they valid? (for which amplitudes in which theories?)
Link between factorization needed for BCFW and various classic S-matrix result (spin ≤ 2, interacting spin- 1 is Yang-Mills theory w/ anti-sym structure constants etc). [Cachazo, Benincasa $\left.{ }^{\prime} 07\right]$

Other types of recursion?

All-line shift recursion relations

Validity of CSW in $\mathcal{N}=4$ SYM can be derived using "all-line shift" recursion relations

$$
\left.\mid \hat{i}]=\mid i]+z c_{i} \mid X\right], \quad|\hat{i}\rangle=|i\rangle, \quad \sum_{i=1}^{n} c_{i}|i\rangle=0
$$

[H.E.,Freedman,Kiermaier'08] following minus-line shift [Risager'05]; SUSY-shift version [Kiermaier,Naculich'09]

Validity (i.e. large-z falloff of amplitudes) at tree-level in general 4d Lorentz invariant local theories

- with or without supersymmetry,
- with massless and/or massive particles,
- with or without non-renormalizable effective interactions can be explored by simple dim'I analysis and little group scaling.

Result: For helicity ${ }^{*)}$ amplitude $A_{n}\left(1^{h_{1}} 2^{h_{2}} \ldots n^{h_{n}}\right)$, under above all-line shift

$$
\hat{A}_{n}(z) \rightarrow z^{s} \quad \text { as } \quad z \rightarrow \infty, \quad \text { with } \quad 2 s=4-n-c+\sum_{i=1}^{n} h_{i}
$$

with $c=$ mass-dimension of product of contributing couplings. [Cohen,H.E., Kiermaier'10]
*) "frame" fixed by massive spinor helicity formalism.

All-line shift recursion relations

What is the physics of the sufficient condition $2 s=4-n-c+\sum_{i=1}^{n} h_{i}<0$?

- when can we even expect tree-level "on-shell constructibility"?

Example: scalar-QED $|D \phi|^{2} \ni A_{\mu} \phi \partial^{\mu} \bar{\phi}$ and $A_{\mu} A^{\mu} \phi \bar{\phi}$

- $A_{4}\left(-1-2 \phi_{3} \phi_{4}\right)$ has $2 s=4-4-0+(-2)=-2<0$
so on-shell constructible.
\rightarrow No info needed about 4-pt contact term, which is in \mathcal{L} to ensure off-shell gauge-inv.

All-line shift recursion relations

What is the physics of the sufficient condition $2 s=4-n-c+\sum_{i=1}^{n} h_{i}<0$?

- when can we even expect tree-level "on-shell constructibility"?

Example: scalar-QED $|D \phi|^{2} \ni A_{\mu} \phi \partial^{\mu} \bar{\phi}$ and $A_{\mu} A^{\mu} \phi \bar{\phi}$

- $A_{4}\left(-1-2 \phi_{3} \phi_{4}\right)$ has $2 s=4-4-0+(-2)=-2<0$
so on-shell constructible. (actually, sum of two CSW-diagram $=0$)
\rightarrow No info needed about 4-pt contact term, which is in \mathcal{L} to ensure off-shell gauge-inv.
- $A_{4}\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)$ has $2 s=4-4-0+0=0$ so NOT on-shell constructible.

Why? Well, how are rec'rel's supposed to know if theory has $\lambda|\phi|^{4}$?
That is indep. gauge invariant input.
So must supply the individual needed gauge indep. input.
Rec'rel's take care of the rest.

From $\mathcal{N}=4 \mathrm{SYM}$ to $\mathcal{N}<4$ SYM and beyond

- Tree-level direct map from $\mathcal{N}=4$ SYM to QCD w/ massless quarks.
[Dixon, Henn, Plefka, Schuster'10]
- Tree-level truncation at superamplitude level from $\mathcal{N}=4$ SYM to pure $\mathcal{N}=0,1,2,3 \mathrm{SYM} . \quad(\mathcal{N}=3$ is equiv. to $\mathcal{N}=4)$
[Bern, Carrasco, Ita, Johannson, Roiban'09] [H.E.,Huang, Peng' 11]
- 1-loop β-function coeff. b_{0} from \sum cubbles $=-b_{0} A_{n}^{\text {tree }}$
[Dixon] [Arkani-Hamed,Cachazo,Kaplan'08] [H.E.,Huang, Peng'11]
- The Next-to-Simplest QFT's: no bubbles \& triangles [Lal,Raju'09]
following $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG no-triangle, no-bubbles, no-rationals results of
[Bern/Kosower/Dunbar'91-92] [Bjerrum-Bohr,Dunbar,Ita,Perkins,Risager'06]
[Bjerrum-Bohr,Vanhove'08] [Arkani-Hamed, Cachazo,Kaplan'08]
- Dual superconformal sym: explicitly verified in 6d and 10d maxSYM. Some tools for higher-D and lower-D amplitudes developed. [Cheung, 0^{\prime} Connel1'09] [Bern, Carrasco,Dennen, Huang, Ita '10] [Dennen,Huang'10] [Caron-Huot, 0'Connell'10] [Boels'09] [Dennen,Huang, Siegel'09]
- 3d: ABJM amplitudes [Huang,Lipstein'10×2] [Agarwal,Beisert,McLoughlin'08] [Bargheer, Loebbert, Meneghelli'10] [Lee'10] [Gang,Huang, Koh,Lee,Lipstein'10]

And of course the on-shell recursion relations + generalized unitarity methods have been applied in countless applications to calculate QCD-backgrounds relevant for collider experiments.

Implemented and automated in numerical codes.

From Dixon's "QFT 2011" talk:

	Method for rational part:
CutTools: Ossola, Papadopolous, Pittau, 0711.3596	
NLO WWW, WWZ, .. Binoth+OPP, 0804.0350	specialized
NLO $t \bar{t} \bar{b} \bar{b}, t \bar{t}+2$ jets Bevilacqua, Czakon, Papadopoulos, Pittau, Worek, 0907.4723; 1002.4009; now going into MadGraph	$\leftrightarrow \begin{aligned} & \text { Feynman } \\ & \text { rules }\end{aligned}$
Rocket: Giele, Zanderighi, 0805.2152 Ellis, Giele, Kunszt, Melnikov, Zanderighi, 0810.2762	D-dim'l
NLO $W+3$ jets (large N_{c}),$W^{+} W^{+}+2$ jets emz, 0901.4101, 0906.1445; Melia, Melnikov, Rontsch, Zanderighi,1007.5313	$/ \sqrt{\begin{array}{l} \text { D-dim'l } \\ \text { unitarity } \end{array}}$
SAMURAI: Mastrolia, Ossola, Reiter, Tramontano, 1006.0710	* + +on-shell
NGluon: Badger, Biedermann, Uwer, 1011.2900	recursion
Blackhat: Berger, Bern, LD, Febres Cordero, Forde, H. Ita, D. Kosow T. Gleisberg, 0803.4180, 0808.0941, 0907.1984, 0912.4927, 1004.1659, 1	wer, D. Maître; 1009.2338
+ Sherpa \rightarrow NLO production of W, $Z+3,4$ jets	

Part IV: Gravity Amplitudes

From "maximally practical" to ...
Part IV: Gravity Amplitudes.

Compare SYM with supergravity Amplitudes

Some similarities/differences:

$\mathcal{N}=4$ SYM	$\mathcal{N}=8$ SG	
color-ordered	no color-ordering	
Super-BCFW valid $\hat{A}_{n}(z) \sim \frac{1}{z}$ (adj.) $\frac{1}{z^{2}}$ (non-adj) CSW valid	Super-BCFW valid $\hat{A}_{n}(z) \sim \frac{1}{z^{2}}$	[Arkani-Hamed, Cachazo,Kaplan'08]
BCJ relations	generally no CSW-exp.	[Bianchi,H.E.,Freedman'08]
UV finite	finite? where 1st divergence?	
planar limit $\rightarrow x_{i}$-variables	how to define	
\rightarrow integrand well-defined	good variables??	
Dual + ord. superconf. sym	Anything???	
\Longrightarrow Yonus structure???		

Overview

