3d theories from 3d manifolds

T.Dimofte, S.Gukov, D.G. to appear

Introduction

Previous talk by prof. Gukov: The T[M] theories

- 3d N=2 SCFT associated to 3-manifold
- IR limit of A₁ 6d (2,0) SCFT on M

Expected properties of T[M]

Space of $R^2 \times S^1$ vacua of T[M] <===>

SL(2,C) flat connections on M

• Follows from 6d on $S^1 == 5d SYM$

Expected properties of T[M]

Ellipsoid partition function of T[M]

<===>

SL(2) CS partition function on M

• Motivated by AGT, Nekrasov-Witten

Motivation

The 6d theory is mysterious

Can we define T[M] directly in 3d?

Simple cutting

Cut M along Riemann surfaces?

Too many unknown building blocks

Main result

Explicit three-dimensional construction of a class of 3d N=2 SCFTs labeled by the same data as SL(2) Chern-Simons wavefunctions

Labels

- 3d manifold M with boundary + knots
- triangulation of boundary
- ``polarization" of the boundary

 $\Upsilon \Psi(X,Z,...) = -h(\partial_X + \partial_Z) \Psi(X,Z,...)$

Main result

SL(2) CS wavefunction on M equals Ellipsoid partition function of 3d SCFT

Main conjecture

If M has no boundary, only knots

3d SCFT labeled by M coincides with T[M]

Main conjecture

If M has boundary ∂M

3d SCFT [M] + 4d SW theory [∂M] coincides with the IR limit of A₁ 6d (2,0) SCFT on M

Main tool

Decompose M into tetrahedra

- SL(2) CS wavefunction from glued tetrahedra
- 3d theory from "glued" chiral multiplets.
 - Abelian gauge fields and superpotentials

Consistency conditions

Different decompositions

mirror 3d theories

Consistency conditions

$N_f = I$ SQED <==> 3 chirals; W=XYZ

Aharony, Hanany, Intriligator, Seiberg, Strassler

Consistency conditions

 $U(I)_{1/2} + I$ chiral == I chiral == $U(I)_{-1/2} + I$ chiral

Generalizations

Line defects in 3d SCFT

• Labeled by CS Wilson loops in M

Higher rank?

Ellipsoid partition function

- 3d N=2 SUSY gauge theory on ellipsoid
 - $b^2 |z|^2 + b^{-2} |w|^2 = 1$

Kapustin, Willet, Yaakov Hama, Hosomichi, Lee

- Computable in UV by localization
- Will denote as Ψ_{b}

Ellipsoid partition function

- U(I) Flavor symmetry ==> parameter x
 - x= m + i (b+b⁻¹) R
 - m: twisted mass
 - R: R-symmetry assignment
 - $\Psi_{b}(x)$ holomorphic in x

Ψ_b in Abelian 3d theories

Chiral multiplet partition function $\Psi_b(x_a)^{chiral} = s_b(i Q/2-x_a)$ Q=b+b⁻¹

$$s_b(x) \equiv \prod_{m,n\in\mathbb{Z}_{\geq 0}} \frac{mb+nb^{-1}+\frac{Q}{2}-ix}{mb+nb^{-1}+\frac{Q}{2}+ix},$$

Ellipsoid partition function

- Almost unaffected by superpotential W
 - W can break flavor symmetries
 - W must have R-charge 2

Ellipsoid partition function

- Example: W=XYZ
 - x,y,z parameters for $U(I)_X U(I)_Y U(I)_Z$
 - x+y+z = 0 + i (b+b⁻¹) =i Q
 - Adding W constrains z = iQ-x-y
- $\Psi_b = \Psi_b(x)^{chiral} \Psi_b(y)^{chiral} \Psi_b(iQ-x-y)^{chiral}$

Ψ_b in Abelian 3d theories

- Gauge multiplets ===> y_i scalar fields
 - q_aⁱ charge of chiral multiplet ``a''
 - $\mathbf{x}_a = \mathbf{q}_a{}^i \mathbf{y}_i + \mathbf{q}_a{}^f \mathbf{z}_f$
- Topological currents $*F_i$ give extra flavor
 - FI parameters are twisted masses z'_i

Ψ_b in Abelian 3d theories

•
$$\Psi_{b}(z,z') = \int \Psi_{b}(x_{a})^{chiral} e^{-i\pi(y,y) - 2i\pi z'.y} dy_{i}$$

- (y,y) Chern-Simons pairing
 - $(y,y) = k y^2$ for gauge field level k

N_f=1 SQED

$$\int \Psi_{b}(z+y)^{chiral} \Psi_{b}(z-y)^{chiral} e^{-i\pi(y,y) - 2i\pi z'.y} dy$$

Things to remember

- Gauging a flavor symmetry
 - Fourier transform with gaussian kernel
 - Sp(2N,Z) on $(2\pi x, -i\partial_x)$
- Adding superpotential
 - linear constraint.

Comparison with wavefunctions

- Dimofte rules
 - tetrahedron => quantum dilogarithm
 - gluing => linear constraints on arguments
 - changes of polarization => Fourier transform

Ψ_b in Abelian 3d theories

tetrahedron => quantum dilogarithm $e_b(i Q/2-x_a)$

- $e_b(x) = s_b(x) \exp i\pi x^2/2$
 - Chiral multiplet
 - background CS coupling level -1/2
 - physically required: cancel anomaly

Comparison with wavefunctions

- Pick a 3-manifold decomposed into tetrahedra
- Build 3d theory with $\Psi_b(z)$ = wavefunction
 - tetrahedron ==> chiral multiplet (+CS term)
 - changes of polarization ==> gauging
 - internal edges ==> superpotential terms

Conclusions

- We conjecture a 3d definition of T[M]
 - Many mirror descriptions
 - All are Abelian CSM theories. Why?
- 3d Field theories as 3-manifold invariants!
- We have no direct 6d to 3d derivation

Refined statement

Boundary conditions for N=2 4d Abelian gauge theories

- 3d manifold M with boundary + knots
- triangulation of boundary
- polarization

Refined statement

Boundary conditions for N=2 4d SW theories (with BPS particles)

- 3d manifold M with boundary + knots
- triangulation of the boundary