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Introduction 

Previous talk by prof. Gukov: 

The T[M] theories

• 3d N=2 SCFT associated to 3-manifold

• IR limit of A1 6d (2,0) SCFT on M



Expected properties of  T[M]

Space of R2 x S1 vacua of T[M]

<====>

SL(2,C) flat connections on M

• Follows from 6d on S1  ==  5d SYM



Expected properties of  T[M]

Ellipsoid partition function of T[M]

<====>

SL(2) CS partition function on M

• Motivated by AGT, Nekrasov-Witten  



Motivation 

The 6d theory is mysterious

Can we define T[M] directly in 3d? 



M2C 

4d theory[C] 3d b.c.[M2]

M1

3d b.c.[M1]



Simple cutting 

Cut M along Riemann surfaces?

Too many unknown building blocks



Main result 

Explicit three-dimensional construction  

of a class of 3d N=2 SCFTs 

labeled by the same data as 

SL(2) Chern-Simons wavefunctions

 



Labels 

• 3d manifold M with boundary + knots

• triangulation of boundary

• ``polarization’’ of the boundary



Polarization

ZY
X [X,Y]=h

[Z,Y]=h

[X,Z]=0

Y Ψ(X,Z,...) =-h(∂X + ∂Z) Ψ(X,Z,...)  

...........

...................



Main result 

SL(2) CS wavefunction on M 

equals

Ellipsoid partition function of 3d SCFT



Main conjecture 

If M has no boundary, only knots

3d SCFT labeled by M 

coincides with T[M]



M∂M 

4d theory 3d b.c.



Main conjecture 

If M has boundary ∂M

3d SCFT [M] + 4d SW theory [∂M]

coincides with the

IR limit of A1 6d (2,0) SCFT on M



Main tool 

Decompose M into tetrahedra 

• SL(2) CS wavefunction from glued tetrahedra 

• 3d theory from “glued” chiral multiplets. 

• Abelian gauge fields and superpotentials

Dimofte



Consistency conditions

Different decompositions 

<==> 

mirror 3d theories



Consistency conditions

Nf =1   SQED      <==>    3 chirals; W=XYZ
Aharony, Hanany, Intriligator, Seiberg, Strassler



Consistency conditions

U(1)1/2 + 1 chiral  == 1 chiral == U(1)-1/2 + 1 chiral



Generalizations

Line defects in 3d SCFT

• Labeled by CS Wilson loops in M

Higher rank?



Ellipsoid partition function

• 3d N=2 SUSY gauge theory on ellipsoid

• b2 |z|2 + b-2|w|2 =1

• Computable in UV by localization 

• Will denote as Ψb

 Hama,Hosomichi,Lee
 Kapustin,Willet,Yaakov



Ellipsoid partition function

• U(1) Flavor symmetry ==> parameter x  

• x= m + i (b+b-1) R          

• m:  twisted mass           

• R: R-symmetry assignment

• Ψb(x)   holomorphic in x
 Jafferis



Ψb  in Abelian 3d theories

Chiral multiplet partition function

Ψb(xa)chiral = sb(i Q/2-xa) 

Q=b+b-1

building blocks for the structure constants in Liouville or Toda CFTs with b = 1. Here b is

the coupling which determines the central charge of Liouville or Toda theories, for example

for Liouville theory one has c = 1+6(b+ b−1)2. In particular, the one-loop determinant of

a charged matter multiplet is given by a double sine function sb(x) at b = 1,

sb(x) ≡
∏

m,n∈Z≥0

mb+ nb−1 + Q
2 − ix

mb+ nb−1 + Q
2 + ix

,
(

Q ≡ b+ 1
b

)

(1.1)

and x is related to a coordinate on the Coulomb branch. See [20, 21] for more details on

this function. This is plausible if we recall that 4D N = 2 gauge theories on round S4 are

in correspondence with Liouville or Toda theories with b = 1. It is not yet known how to

obtain theories with more general b though, as suggested in [19], a reasonable guess would

be that the background sphere should admit a continuous deformation to account for this.

In this paper we present the answer to this question for 3D theories.

We begin by presenting two kinds of squashed S3 in Section 2. The first one appears

frequently in the literature; the metric is written in terms of left-invariant one-forms and

preserves SU(2) × U(1) symmetry. The second one is less familiar and preserves only

U(1)×U(1) symmetry, but it has a simple definition as a hyper-ellipsoid embedded in flat

R4. For both squashings we show that, if a suitable background U(1) gauge field is turned

on, one can find a pair of Killing spinors with the U(1) charges ±1 which is necessary

for defining N = 2 supersymmetric gauge theories. We give the general construction of

supersymmetric gauge theories in Section 3.

We then turn to the computation of partition functions. Section 4 discusses the case

of SU(2) × U(1) symmetric squashing, where we use the spherical harmonics to work out

all the eigenmodes of the relevant Laplace and Dirac operators. We then use them to

compute the one-loop determinant at each saddle point. Disappointingly, the partition

function turns out to be essentially the same as that for round sphere, essentially due

to SU(2) isometry. Next we discuss the less symmetric squashing in Section 5. Rather

than working out the full spectrum of the Laplace and Dirac operators, we look closely

into the structures in which the bosonic and fermionic modes are paired, and exhaust

the modes unpaired which give nontrivial contributions to the one-loop determinant. The

final expression for the integration measure and determinant are found to be precisely the

building blocks for structure constants in Liouville or Toda theories with general b.

We end the introduction by summarizing our conventions for bilinear products of

spinors.

ε̄λ = ε̄αCαβλ
β, ε̄γaλ = ε̄α(Cγa)αβλ

β, etc. (1.2)

Here C is the charge conjugation matrix with nonzero elements C12 = −C21 = 1, and γa

are Pauli’s matrices. Noticing that C is antisymmetric and Cγa are symmetric, one finds

ε̄λ = λε̄, ε̄γaλ = −λγaε̄ (1.3)

for all spinors ε̄,λ which we assume to be Grassmann odd.
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Ellipsoid partition function

• Almost unaffected by superpotential W

• W can break flavor symmetries

• W must have R-charge 2



Ellipsoid partition function

• Example:       W=XYZ

• x,y,z parameters for U(1)X  U(1)Y  U(1)Z

• x+y+z = 0 + i (b+b-1) =i Q

• Adding  W  constrains z = iQ-x-y 

• Ψb = Ψb(x)chiral Ψb(y)chiral Ψb(iQ-x-y)chiral



Ψb  in Abelian 3d theories

• Gauge multiplets ===>  yi scalar fields

• qai    charge of chiral multiplet ``a’’

• xa = qai yi + qaf zf

• Topological currents *Fi give extra flavor

• FI parameters are twisted masses z’i



Ψb  in Abelian 3d theories

• Ψb(z,z’) = ∫Ψb(xa)chiral  e-iπ(y,y) - 2 iπ z’.y dyi

• (y,y) Chern-Simons pairing

• (y,y) = k y2   for gauge field level k



Nf=1 SQED

∫Ψb(z+y)chiral Ψb(z-y)chiral  e-iπ(y,y) - 2 iπ z’.y dy



Things to remember

• Gauging a flavor symmetry

•  Fourier transform with gaussian kernel 

•   Sp(2N,Z) on (2πx, - i∂x)

• Adding superpotential

• linear constraint.



Comparison with 
wavefunctions

• Dimofte rules

• tetrahedron => quantum dilogarithm

• gluing => linear constraints on arguments

• changes of polarization => Fourier transform



Ψb  in Abelian 3d theories

tetrahedron => quantum dilogarithm eb(i Q/2-xa)

• eb(x) = sb(x) exp iπ x2/2 

• Chiral multiplet 

• background CS coupling level -1/2

• physically required: cancel anomaly



Comparison with 
wavefunctions

• Pick a 3-manifold decomposed into tetrahedra

• Build 3d theory with Ψb(z) = wavefunction

• tetrahedron ==> chiral multiplet (+CS term)

• changes of polarization ==> gauging 

• internal edges ==> superpotential terms



Conclusions

• We conjecture a 3d definition of T[M]

• Many mirror descriptions

• All are Abelian CSM theories. Why?

• 3d Field theories as 3-manifold invariants!

• We have no direct 6d to 3d derivation



Refined statement

Boundary conditions for N=2 

4d Abelian gauge theories

• 3d manifold M with boundary + knots

• triangulation of boundary

• polarization



Refined statement 

Boundary conditions for N=2 

4d SW theories (with BPS particles)

• 3d manifold M with boundary + knots

• triangulation of the boundary


