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Motivation

Based on

M. R. Gaberdiel and R. G. , “An AdS3 Dual for Minimal Model
CFTs,” arXiv:1011.2986

M. R. Gaberdiel, R. G., T. Hartman and S. Raju, “Partition Functions
of Holographic Minimal Models,” arXiv:1106.1897
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Motivation

A Pair of Questions I : Boundary

The space of large N (not-necessarily-supersymmetric) 2d QFTs is
very rich. Perhaps the best understood examples we have of the
variety of non-trivial dynamical phenomena in QFT.

E.g. Sigma models/Principal Chiral models, Gross-Neveu model, ’t
Hooft model of 2d QCD.

And, of course, 2d CFTs which are the endpoints of RG flows in this
space.

Can we understand these theories (and their nontrivial features)
holographically? Can we extend our AdS/CFT understanding to these
examples?

Are there new features and new lessons to be learnt in non-SUSY
cases?
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Motivation

A Pair of Questions II : Bulk

Are there complete, consistent theories of (AdS) quantum gravity
which do not have a stringy set of additional excitations?

If the answer is yes, 3d is a good place to look for it - gravity is
non-propagating and yet has black holes.

However, the prospects for pure 3d gravity (supergravity) to be
consistent and complete appear dim. Witten [07], Gaberdiel,

Maloney-Witten.

Could a higher spin gravity theory be quantum mechanically well
defined?

Does the dual CFT provide this definition? Or is there an
autonomous definition?
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The Duality

Minimal Model Holography

Proposal: WN minimal model series of 2d CFTs in the large N, ’t Hooft
limit ↔ Vasiliev higher spin theory on AdS3 together with two complex
scalars.

(See Chang-Yin for a modified proposal involving only a modular
noninvariant subsector of the WN model dual to a theory with one
complex scalar.)
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The Duality

Minimal Model Holography

The CFT: A coset WZW theory (generalising the Virasoro unitary series)

SU(N)k × SU(N)1

SU(N)k+1
.

A line of fixed points (labelled by 0 ≤ λ = N
N+k ≤ 1) with

cN(λ) = N(1− λ2) - vector like model.

The Bulk: Fields of spin s = 2, 3, . . .∞ in AdS3 coupled to two complex
scalars of equal mass.

M2 = −1 + λ2.

but quantized oppositely. Correspond to basic primaries h± = 1
2 (1± λ).
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Symmetries

Checks I: Symmetries

Why might something like this be true?

At least in the large k limit (λ = 0), these CFTs are essentially those
of (N − 1) free fermions with a singlet condition.

This has a large WN type higher spin global symmetry. Should be
reflected in a large gauge invariance in the dual bulk description.

Analogous 3d/4d proposal relating O(N) vector models/ Gross-Neveu
models to higher spin theories on AdS4. (Klebanov-Polyakov;

Sezgin-Sundell)
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Symmetries

In AdS3, Vasiliev higher spin theories with spins s = 2, 3, . . .N have an
asymptotic WN symmetry algebra. Henneaux-Rey; Campoleoni et.al..
Generalizes Brown-Henneaux result for pure 3d gravity.

The large N limit of this symmetry is subtle. Asymptotic symmetry
algebra of higher spin theories labelled by one parameter: W∞[λ].
(Gaberdiel-Hartman, Figueroa O’Farill et.al.)

Exact higher spin symmetry algebra is the wedge algebra hs[λ].

At first sight different from the symmetry of the large N, ’t Hooft
limit of the WN minimal models (with wedge subalgebra sl(N)).

Nevertheless, strong evidence for the equivalence of these two
symmetry algebras (generalized level-rank duality Kuniba et.al,

Altschuler et.al.).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 8 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Symmetries

In AdS3, Vasiliev higher spin theories with spins s = 2, 3, . . .N have an
asymptotic WN symmetry algebra. Henneaux-Rey; Campoleoni et.al..
Generalizes Brown-Henneaux result for pure 3d gravity.

The large N limit of this symmetry is subtle. Asymptotic symmetry
algebra of higher spin theories labelled by one parameter: W∞[λ].
(Gaberdiel-Hartman, Figueroa O’Farill et.al.)

Exact higher spin symmetry algebra is the wedge algebra hs[λ].

At first sight different from the symmetry of the large N, ’t Hooft
limit of the WN minimal models (with wedge subalgebra sl(N)).

Nevertheless, strong evidence for the equivalence of these two
symmetry algebras (generalized level-rank duality Kuniba et.al,

Altschuler et.al.).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 8 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Symmetries

In AdS3, Vasiliev higher spin theories with spins s = 2, 3, . . .N have an
asymptotic WN symmetry algebra. Henneaux-Rey; Campoleoni et.al..
Generalizes Brown-Henneaux result for pure 3d gravity.

The large N limit of this symmetry is subtle. Asymptotic symmetry
algebra of higher spin theories labelled by one parameter: W∞[λ].
(Gaberdiel-Hartman, Figueroa O’Farill et.al.)

Exact higher spin symmetry algebra is the wedge algebra hs[λ].

At first sight different from the symmetry of the large N, ’t Hooft
limit of the WN minimal models (with wedge subalgebra sl(N)).

Nevertheless, strong evidence for the equivalence of these two
symmetry algebras (generalized level-rank duality Kuniba et.al,

Altschuler et.al.).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 8 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Symmetries

In AdS3, Vasiliev higher spin theories with spins s = 2, 3, . . .N have an
asymptotic WN symmetry algebra. Henneaux-Rey; Campoleoni et.al..
Generalizes Brown-Henneaux result for pure 3d gravity.

The large N limit of this symmetry is subtle. Asymptotic symmetry
algebra of higher spin theories labelled by one parameter: W∞[λ].
(Gaberdiel-Hartman, Figueroa O’Farill et.al.)

Exact higher spin symmetry algebra is the wedge algebra hs[λ].

At first sight different from the symmetry of the large N, ’t Hooft
limit of the WN minimal models (with wedge subalgebra sl(N)).

Nevertheless, strong evidence for the equivalence of these two
symmetry algebras (generalized level-rank duality Kuniba et.al,

Altschuler et.al.).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 8 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Symmetries

In AdS3, Vasiliev higher spin theories with spins s = 2, 3, . . .N have an
asymptotic WN symmetry algebra. Henneaux-Rey; Campoleoni et.al..
Generalizes Brown-Henneaux result for pure 3d gravity.

The large N limit of this symmetry is subtle. Asymptotic symmetry
algebra of higher spin theories labelled by one parameter: W∞[λ].
(Gaberdiel-Hartman, Figueroa O’Farill et.al.)

Exact higher spin symmetry algebra is the wedge algebra hs[λ].

At first sight different from the symmetry of the large N, ’t Hooft
limit of the WN minimal models (with wedge subalgebra sl(N)).

Nevertheless, strong evidence for the equivalence of these two
symmetry algebras (generalized level-rank duality Kuniba et.al,

Altschuler et.al.).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 8 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

The Bulk Spectrum

The Bulk Spectrum

Can the ”infinite N” CFT reproduce the bulk physical spectrum of
linearised fluctuations of the higher spin fields?

Perturbative bulk spectrum given by

Zbulk = ZclassZ1−loop = (qq̄)−c/24ZHSZscal(h+)2Zscal(h−)2.

where ZHS ,Zscal are the bulk one loop determinants from the higher spin
fields (s = 2, 3 . . . ,∞) and scalars resp.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 9 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

The Bulk Spectrum

The Bulk Spectrum

Can the ”infinite N” CFT reproduce the bulk physical spectrum of
linearised fluctuations of the higher spin fields?

Perturbative bulk spectrum given by

Zbulk = ZclassZ1−loop = (qq̄)−c/24ZHSZscal(h+)2Zscal(h−)2.

where ZHS ,Zscal are the bulk one loop determinants from the higher spin
fields (s = 2, 3 . . . ,∞) and scalars resp.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 9 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

The Bulk Spectrum

ZHS =
∞∏

s=2

∞∏
n=s

1

|1− qn|2
=
∞∏

n=1

|1− qn|2 ×
∞∏

n=1

1

|(1− qn)n|2
≡ |M̃(q)|2.

M. R. Gaberdiel, R. G., A. Saha

Zscal(h) =
∞∏

l=0,l ′=0

1

(1− qh+l q̄h+l ′)

= exp

[ ∞∑
n=1

Zsing par(h, q
n, q̄n)

n

]
=

∑
R

χ
u(∞)
R (zi ) χ

u(∞)
R (z̄i ) (zi = qi+h−1). (1)

where Zsing par(h, q, q̄) = qhq̄h

(1−q)(1−q̄) . (Giombi-Maloney-Yin)
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The Bulk Spectrum

Putting it all together:

Zbulk = (qq̄)−c/24|M̃(q)|2
∑

R±,S±

|χR+(z+
i )χS+(z+

i )χR−(z−i )χS−(z−i )|2.

R±, S± are representations of U(∞) with a finite number of boxes in the
Young Tableaux. (z±i = qi+h±−1).

View this as the combined contribution from (weakly coupled)
multi-particle states of the complex scalar with dimension h+ (the pieces
R+, S+), and that of the scalar with dimension h− (the pieces R−, S−) all
dressed with the boundary graviton excitations in M̃(q).
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CFT Spectrum

Spectrum of Primaries

Primaries in the CFT labelled by two representations (Λ+,Λ−) of
SU(N)k and SU(N)k+1 respectively.

h(Λ+; Λ−) = 1
2p(p+1)

( ∣∣∣∣(p + 1)(Λ+ + ρ)− p(Λ− + ρ)

∣∣∣∣2 − ρ2
)

where ρ is the Weyl vector for SU(N)

h(0; f) = (N−1)
2N

(
1− N+1

N+k+1

)
→ 1

2 (1− λ) = h−;

h(f; 0) = (N−1)
2N

(
1 + N+1

N+k

)
→ 1

2 (1 + λ) = h+.

h(0; adj) = 1− N
N+k+1 → (1−λ) ; h(adj; 0) = 1 + N

N+k → (1 +λ).

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 12 / 22
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

CFT Spectrum

Branching Functions

Contribution to TrqL0 from each of these primaries (taking into account
null states):

b(Λ+;Λ−)(q) =
1

η(q)N−1

∑
w∈Ŵ

ε(w)q
1

2p(p+1)
((p+1)w(Λ++ρ)−p(Λ−+ρ))2

Ŵ is the affine Weyl group (affine translations +usual Weyl reflections)

(Diagonal) modular invariant partition function:

ZCFT =
∑

Λ+,Λ−

|b(Λ+;Λ−)(q)|2.
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

Large N ’t Hooft Limit

To match with bulk spectrum will only consider representations
(Λ+,Λ−) which are finite tensor powers of fundamentals and/or
anti-fundamentals. Λ± = (R±,S±).

R

S

R
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

These representations (i.e. with boxes B(R),B(S) ∼ O(1)) have
finite dimension in the ’t Hooft limit with k ,N →∞.

Typically, primaries for representations Λ± with O(N) boxes have
dimensions that scale as a positive power of N - hence decouple.

However, when Λ± differ by O(1) boxes, the dimension is finite.

Though there are many such states (exponential) most of them
decouple (in, say, 2,3 point functions) from perturbative states (with
O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.

Even for primaries with O(1) boxes there is a large degeneracy.

E.g. all primaries with Λ+ = Λ− have dimensions O( 1
N ).

Need to look carefully at structure of such representations in the ’t
Hooft limit.

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 15 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

Branching functions simplify considerably in the ’t Hooft limit

b(Λ+;Λ−)(q) ∼= q−
c

24 M̃(q) q
λ
2

(B+−B−) qC2(Λ+)+C2(Λ−) SΛ+Λ−

S00
∼= q

λ
2

(B+−B−)
∑

Λ

NΛ
Λ+Λ−

q−
λ
2
B(Λ) b(Λ;0)(q) , (2)

using the Verlinde formula. (B± = B(Λ±) ≡ B(R±) + B(S±)).

This is a signature of the representation becoming reducible.

Further simplifying the RHS

b(Λ;0)(q) ∼= q−
N−1

24
(1−λ2) · M̃(q) · q

λ
2
B(Λ) qC2(Λ) · dimq(Λ)

∼= q−
N−1

24
(1−λ2) · M̃(q) · χRT (z+

i )χST (z+
i ) (3)

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 16 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

Branching functions simplify considerably in the ’t Hooft limit

b(Λ+;Λ−)(q) ∼= q−
c

24 M̃(q) q
λ
2

(B+−B−) qC2(Λ+)+C2(Λ−) SΛ+Λ−

S00
∼= q

λ
2

(B+−B−)
∑

Λ

NΛ
Λ+Λ−

q−
λ
2
B(Λ) b(Λ;0)(q) , (2)

using the Verlinde formula. (B± = B(Λ±) ≡ B(R±) + B(S±)).

This is a signature of the representation becoming reducible.

Further simplifying the RHS

b(Λ;0)(q) ∼= q−
N−1

24
(1−λ2) · M̃(q) · q

λ
2
B(Λ) qC2(Λ) · dimq(Λ)

∼= q−
N−1

24
(1−λ2) · M̃(q) · χRT (z+

i )χST (z+
i ) (3)

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 16 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

Branching functions simplify considerably in the ’t Hooft limit

b(Λ+;Λ−)(q) ∼= q−
c

24 M̃(q) q
λ
2

(B+−B−) qC2(Λ+)+C2(Λ−) SΛ+Λ−

S00
∼= q

λ
2

(B+−B−)
∑

Λ

NΛ
Λ+Λ−

q−
λ
2
B(Λ) b(Λ;0)(q) , (2)

using the Verlinde formula. (B± = B(Λ±) ≡ B(R±) + B(S±)).

This is a signature of the representation becoming reducible.

Further simplifying the RHS

b(Λ;0)(q) ∼= q−
N−1

24
(1−λ2) · M̃(q) · q

λ
2
B(Λ) qC2(Λ) · dimq(Λ)

∼= q−
N−1

24
(1−λ2) · M̃(q) · χRT (z+

i )χST (z+
i ) (3)

Rajesh Gopakumar (HRI) Holographic Minimal Models Strings 2011 16 / 22



Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

’t Hooft Limit

Reducibility

The ’t Hooft limit needs to be carefully defined to understand the
reducibility of representations.

E.g. for Λ+ = Λ− = f

b(f;f) = q−
c

24 (1 + q2 + · · · ) + q−
c

24 (q + 2q2 + · · · ) .

with contributions from vacuum (ω) and adjoint (ψ) primaries.

However, in the large N limit, there is a natural limit of the operator
algebra of these states in which

L1ψ = ω. (4)

But ψ 6= L−1ω: the representation is reducible but indecomposable.

As for null states, ω and its descendants decouple from physical
correlation functions. Only ψ (and its descendants) survive.
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Matching Spectra

Checks II: Matching Perturbative Spectra

Pattern in this reducibility: In Λ+ ⊗ Λ− the only Λ which do not
decouple are the ones where no boxes and antiboxes are annihilated
into singlets.

i.e. B(Λ) = B(Λ+) + B(Λ−)

Thus need to correct the CFT partition function in the ’t Hooft limit
to subtract out these additional null states.

Since NΛ
Λ+Λ−

become Clebsch-Gordon coefficents, corrected branching

function becomes

chcft
R+S+R−S−(q) = q−

c
24 · M̃(q) · χRT

+
(z+

i )χST
+

(z+
i )χRT

−
(z−i )χST

−
(z−i ) .

(5)
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Matching Spectra

Thus the CFT partition function in the strict large N limit is given by

ZCFT(λ) =
∑

R+S+R−S−

|chcft
R+S+R−S−(q)|2 .

Comparing with the perturbative gravity answer

Zbulk(λ) = (qq̄)−c/24|M̃(q)|2
∑

R±,S±

|χR+(z+
i )χS+(z+

i )χR−(z−i )χS−(z−i )|2.

ZCFT (λ) = Zbulk(λ)

for all values of the ’t Hooft coupling λ.

Note that the representations on both sides are related by a transpose.
Duality between W∞[λ] and the ’t Hooft large N limit of WN .
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Introduction Checks I Bulk Partition Fn. CFT Partition Fn. Checks II Checks III Where To?

Matching Correlators

Checks III: Matching Three Point Functions (Chang-Yin)

Compare CFT three point function of two scalar primaries and one
spin s current J(s) i.e.

〈O±Ō±J(s)〉

with bulk three point function of two scalars and one spin s gauge
field.

Boundary computation performed for s = 2, 3 but for any value of the
’t Hooft coupling.

Bulk computation for any spin s but only for λ = 1
2 (”undeformed

theory”).

Exact agreement in each of the four cases.

Possibly can push these computations further in both bulk and
boundary.
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Where To?

Understand better the role of the additional light (degenerate)
primaries at large but finite N. Can one view them as an almost
decoupled sector? Do they contribute at leading order to correlation
functions? What is the bulk interpretation? Proposal needs
modification? Tests.

Generalisations I: Bulk duals for cosets involving other Lie groups (see
Ahn; Gaberdiel-Vollenweider). More general cosets/ RCFTS (see
Kiritsis). Supersymmetric examples.

Generalisations II: Duals for nonconformal QFTs obtained by RG flow
(In Progress).

Applications to ”real-life” systems: ZN ising models/parafermions,
FQHE....
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Where To?

New classical solutions in the bulk theory? Exotic black holes (see
Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular
conical defects?

What does this teach us about theories of 3d gravity? Quantum
Mechanical consistency. Microstates for non-SUSY black holes.
Relation to integrable QFTs. Generalisations (Chen et.al.).

Proving the duality: Figuring out the nuts and bolts of holography.
”Holographic Minimal Models = Minimal Holographic Models ?”

Understand better the role of large N Chern-Simons description in the
presence of scalars. Role of Wilson loops.

Embedding the duality in string theory: a solvable subsector of the
D1-D5 system? Relation to topological strings? (See Horava)
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