Introduction 00 00		CFT Partition Fn. 00 0000	Checks II 00	Checks III O	

Holographic Minimal Models

Rajesh Gopakumar

Harish-Chandra Research Institute Allahabad, India

> Strings 2011 Uppsala, Sweden 30th Jun., 2011

< 3 ×

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	

Introduction

- Motivation
- The Duality

Checks I

- Symmetries
- Bulk Partition Fn. 3 The Bulk Spectrum
 - CFT Partition Fn.
 - CFT Spectrum
 - 't Hooft Limit

Checks II

- Matching Spectra
- Checks III 6
 - Matching Correlators
- Where To?

Introduction •0 •0		CFT Partition Fn. 00 0000	Checks III O	
Motivation				
Based o	n			

- M. R. Gaberdiel and R. G., *"An AdS*₃ *Dual for Minimal Model CFTs,"* arXiv:1011.2986
- M. R. Gaberdiel, R. G., T. Hartman and S. Raju, *"Partition Functions of Holographic Minimal Models,"* arXiv:1106.1897

• = • •

Introduction •0 •0		CFT Partition Fn. 00 0000	Checks III O	
Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

	Introduction •0 •0		CFT Partition Fn. 00 0000	Checks III O	
Motivation	Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

	Introduction •0 •0		CFT Partition Fn. 00 0000	Checks III O	
Motivation	Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

	Introduction •0 •0		CFT Partition Fn. 00 0000	Checks III O	
Motivation	Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

Introduction ●0 ○0		CFT Partition Fn. 00 0000	Checks III O	
Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

Introduction			Checks III	
00		0000		
Motivation				

- The space of large *N* (not-necessarily-supersymmetric) 2d QFTs is very rich. Perhaps the best understood examples we have of the variety of non-trivial dynamical phenomena in QFT.
- E.g. Sigma models/Principal Chiral models, Gross-Neveu model, 't Hooft model of 2d QCD.
- And, of course, 2d CFTs which are the endpoints of RG flows in this space.
- Can we understand these theories (and their nontrivial features) holographically? Can we extend our AdS/CFT understanding to these examples?
- Are there new features and new lessons to be learnt in non-SUSY cases?

Introduction			Checks III	
00		00		
Motivation		0000		

• Are there complete, consistent theories of (AdS) quantum gravity which do not have a stringy set of additional excitations?

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

イロト イロト イヨト イヨト

Introduction			Checks III	
00		00		
Motivation		0000		

• Are there complete, consistent theories of (AdS) quantum gravity which do not have a stringy set of additional excitations?

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

イロト イロト イヨト イヨト

Introduction			Checks III	
00		00		
Motivation				

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

Introduction			Checks III	
00		00		
Motivation		0000		

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

Introduction			Checks III	
00		00		
Motivation		0000		

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

Introduction			Checks III	
00		00		
Motivation		0000		

- If the answer is yes, 3d is a good place to look for it gravity is non-propagating and yet has black holes.
- However, the prospects for pure 3d gravity (supergravity) to be consistent and complete appear dim. Witten [07], Gaberdiel, Maloney-Witten.
- Could a higher spin gravity theory be quantum mechanically well defined?
- Does the dual CFT provide this definition? Or is there an autonomous definition?

Introduction			Checks III	
00		00		
00		0000		
The Duality				

Proposal: W_N minimal model series of 2d CFTs in the large N, 't Hooft limit \leftrightarrow Vasiliev higher spin theory on AdS₃ together with two complex scalars.

(See Chang-Yin for a modified proposal involving only a modular noninvariant subsector of the \mathcal{W}_N model dual to a theory with one complex scalar.)

Introduction			Checks III	
00		00		
00		0000		
The Duality				

Proposal: W_N minimal model series of 2d CFTs in the large N, 't Hooft limit \leftrightarrow Vasiliev higher spin theory on AdS₃ together with two complex scalars.

(See Chang-Yin for a modified proposal involving only a modular noninvariant subsector of the W_N model dual to a theory with one complex scalar.)

Introduction			Checks III	
00				
00		0000		
The Duality				

The CFT: A coset WZW theory (generalising the Virasoro unitary series)

 $\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}.$

A line of fixed points (labelled by $0 \le \lambda = \frac{N}{N+k} \le 1$) with $c_N(\lambda) = N(1 - \lambda^2)$ - vector like model.

The Bulk: Fields of spin $s = 2, 3, ... \infty$ in AdS_3 coupled to two complex scalars of equal mass.

 $M^2 = -1 + \lambda^2.$

but quantized oppositely. Correspond to basic primaries $h_{\pm} = \frac{1}{2}(1 \pm \lambda)$.

(4回) (4回) (4回)

Introduction			Checks III	
00		0000		
The Duality				

The CFT: A coset WZW theory (generalising the Virasoro unitary series)

 $\frac{SU(N)_k \times SU(N)_1}{SU(N)_{k+1}}.$

A line of fixed points (labelled by $0 \le \lambda = \frac{N}{N+k} \le 1$) with $c_N(\lambda) = N(1 - \lambda^2)$ - vector like model.

The Bulk: Fields of spin $s = 2, 3, ... \infty$ in AdS_3 coupled to two complex scalars of equal mass.

 $M^2 = -1 + \lambda^2.$

but quantized oppositely. Correspond to basic primaries $h_{\pm} = \frac{1}{2}(1 \pm \lambda)$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Introduction 00 00	Checks I ●0	CFT Partition Fn. 00 0000	Checks III 0	

• Why might something like this be true?

- At least in the large k limit (λ = 0), these CFTs are essentially those of (N - 1) free fermions with a singlet condition.
- This has a large W_N type higher spin global symmetry. Should be reflected in a large gauge invariance in the dual bulk description.
- Analogous 3d/4d proposal relating O(N) vector models/ Gross-Neveu models to higher spin theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell)

Introduction 00 00	Checks I ●0	CFT Partition Fn. 00 0000	Checks III O	

- Why might something like this be true?
- At least in the large k limit (λ = 0), these CFTs are essentially those of (N − 1) free fermions with a singlet condition.
- This has a large W_N type higher spin global symmetry. Should be reflected in a large gauge invariance in the dual bulk description.
- Analogous 3d/4d proposal relating O(N) vector models/ Gross-Neveu models to higher spin theories on AdS_4 . (Klebanov-Polyakov; Sezgin-Sundell)

Introduction 00 00	Checks I ●0	CFT Partition Fn. 00 0000	Checks III O	

- Why might something like this be true?
- At least in the large k limit (λ = 0), these CFTs are essentially those of (N − 1) free fermions with a singlet condition.
- This has a large W_N type higher spin global symmetry. Should be reflected in a large gauge invariance in the dual bulk description.
- Analogous 3d/4d proposal relating O(N) vector models/ Gross-Neveu models to higher spin theories on AdS₄. (Klebanov-Polyakov; Sezgin-Sundell)

Introduction 00 00	Checks I ●0	CFT Partition Fn. 00 0000	Checks III O	

- Why might something like this be true?
- At least in the large k limit (λ = 0), these CFTs are essentially those of (N − 1) free fermions with a singlet condition.
- This has a large \mathcal{W}_N type higher spin global symmetry. Should be reflected in a large gauge invariance in the dual bulk description.
- Analogous 3d/4d proposal relating O(N) vector models/ Gross-Neveu models to higher spin theories on AdS₄. (Klebanov-Polyakov; Sezgin-Sundell)

Introduction 00 00	Checks I 0●	CFT Partition Fn. 00 0000	Checks III O	
Symmetries				

- The large N limit of this symmetry is subtle. Asymptotic symmetry algebra of higher spin theories labelled by one parameter: W_∞[λ].
 (Gaberdiel-Hartman, Figueroa O'Farill et.al.)
- Exact higher spin symmetry algebra is the wedge algebra hs[λ].
- At first sight different from the symmetry of the large N, 't Hooft limit of the W_N minimal models (with wedge subalgebra s/(N)).
- Nevertheless, strong evidence for the equivalence of these two symmetry algebras (generalized level-rank duality Kuniba et.al, Altschuler et.al.).

Image: A match a ma

Introduction C 00 C 00	Checks I 0●	CFT Partition Fn. 00 0000	Checks II 00	Checks III O	
Symmetries					

- The large N limit of this symmetry is subtle. Asymptotic symmetry algebra of higher spin theories labelled by one parameter: $\mathcal{W}_{\infty}[\lambda]$. (Gaberdiel-Hartman, Figueroa O'Farill et.al.)
- Exact higher spin symmetry algebra is the wedge algebra $hs[\lambda]$.
- At first sight different from the symmetry of the large N, 't Hooft limit of the \mathcal{W}_N minimal models (with wedge subalgebra sl(N)).
- Nevertheless, strong evidence for the equivalence of these two symmetry algebras (generalized level-rank duality Kuniba et.al, Altschuler et.al.).

Introduction 00 00	Checks I ○●	CFT Partition Fn. 00 0000	Checks III O	
Symmetries				

- The large N limit of this symmetry is subtle. Asymptotic symmetry algebra of higher spin theories labelled by one parameter: $\mathcal{W}_{\infty}[\lambda]$. (Gaberdiel-Hartman, Figueroa O'Farill et.al.)
- Exact higher spin symmetry algebra is the wedge algebra $hs[\lambda]$.
- At first sight different from the symmetry of the large N, 't Hooft limit of the \mathcal{W}_N minimal models (with wedge subalgebra sl(N)).
- Nevertheless, strong evidence for the equivalence of these two symmetry algebras (generalized level-rank duality Kuniba et.al, Altschuler et.al.).

Introduction 00 00	Checks I 0●	CFT Partition Fn. 00 0000	Checks III 0	
Symmetries				

- The large N limit of this symmetry is subtle. Asymptotic symmetry algebra of higher spin theories labelled by one parameter: $\mathcal{W}_{\infty}[\lambda]$. (Gaberdiel-Hartman, Figueroa O'Farill et.al.)
- Exact higher spin symmetry algebra is the wedge algebra $hs[\lambda]$.
- At first sight different from the symmetry of the large N, 't Hooft limit of the \mathcal{W}_N minimal models (with wedge subalgebra s/(N)).
- Nevertheless, strong evidence for the equivalence of these two symmetry algebras (generalized level-rank duality Kuniba et.al, Altschuler et.al.).

イロト イポト イヨト イヨト

Introduction 00 00	Checks I 0●	CFT Partition Fn. 00 0000	Checks III 0	
Symmetries				

- The large N limit of this symmetry is subtle. Asymptotic symmetry algebra of higher spin theories labelled by one parameter: $\mathcal{W}_{\infty}[\lambda]$. (Gaberdiel-Hartman, Figueroa O'Farill et.al.)
- Exact higher spin symmetry algebra is the wedge algebra $hs[\lambda]$.
- At first sight different from the symmetry of the large N, 't Hooft limit of the \mathcal{W}_N minimal models (with wedge subalgebra s/(N)).
- Nevertheless, strong evidence for the equivalence of these two symmetry algebras (generalized level-rank duality Kuniba et.al, Altschuler et.al.).

Introduction 00 00		Bulk Partition Fn. ●00	CFT Partition Fn. 00 0000	Checks III O	
The Bulk Spectru	m				

The Bulk Spectrum

Can the "infinite N" CFT reproduce the bulk physical spectrum of linearised fluctuations of the higher spin fields?

Perturbative bulk spectrum given by

$$Z_{
m bulk} = Z_{class} Z_{1-loop} = (q\bar{q})^{-c/24} Z_{
m HS} Z_{
m scal}(h_+)^2 Z_{
m scal}(h_-)^2.$$

where Z_{HS}, Z_{scal} are the bulk one loop determinants from the higher spin fields ($s = 2, 3..., \infty$) and scalars resp.

Introduction 00 00		Bulk Partition Fn. ●00	CFT Partition Fn. 00 0000	Checks III O	
The Bulk Spectru	ım				

The Bulk Spectrum

Can the "infinite N" CFT reproduce the bulk physical spectrum of linearised fluctuations of the higher spin fields?

Perturbative bulk spectrum given by

$$Z_{\text{bulk}} = Z_{class} Z_{1-loop} = (q\bar{q})^{-c/24} Z_{\text{HS}} Z_{\text{scal}}(h_+)^2 Z_{\text{scal}}(h_-)^2.$$

where Z_{HS} , Z_{scal} are the bulk one loop determinants from the higher spin fields ($s = 2, 3..., \infty$) and scalars resp.

Introduction 00 00		Bulk Partition Fn. 0●0	CFT Partition Fn. 00 0000	Checks III O	
The Bulk Spectru	m				

$$Z_{HS} = \prod_{s=2}^{\infty} \prod_{n=s}^{\infty} \frac{1}{|1-q^n|^2} = \prod_{n=1}^{\infty} |1-q^n|^2 \times \prod_{n=1}^{\infty} \frac{1}{|(1-q^n)^n|^2} \equiv |\tilde{M}(q)|^2.$$

M. R. Gaberdiel, R. G., A. Saha

$$Z_{scal}(h) = \prod_{l=0,l'=0}^{\infty} \frac{1}{(1-q^{h+l}\bar{q}^{h+l'})} \\ = \exp\left[\sum_{n=1}^{\infty} \frac{Z_{sing par}(h,q^{n},\bar{q}^{n})}{n}\right] \\ = \sum_{R} \chi_{R}^{u(\infty)}(z_{i}) \ \chi_{R}^{u(\infty)}(\bar{z}_{i}) \qquad (z_{i}=q^{i+h-1}).$$
(1)

where
$$Z_{\text{sing par}}(h, q, \bar{q}) = \frac{q^h \bar{q}^h}{(1-q)(1-\bar{q})}$$
. (Giombi-Maloney-Yin)

Introduction 00 00		Bulk Partition Fn. 0●0	CFT Partition Fn. 00 0000	Checks III O	
The Bulk Spectru	m				

$$Z_{HS} = \prod_{s=2}^{\infty} \prod_{n=s}^{\infty} \frac{1}{|1-q^n|^2} = \prod_{n=1}^{\infty} |1-q^n|^2 \times \prod_{n=1}^{\infty} \frac{1}{|(1-q^n)^n|^2} \equiv |\tilde{M}(q)|^2.$$

M. R. Gaberdiel, R. G., A. Saha

$$Z_{scal}(h) = \prod_{l=0,l'=0}^{\infty} \frac{1}{(1-q^{h+l}\bar{q}^{h+l'})}$$

= $\exp\left[\sum_{n=1}^{\infty} \frac{Z_{sing par}(h,q^n,\bar{q}^n)}{n}\right]$
= $\sum_{R} \chi_R^{u(\infty)}(z_i) \ \chi_R^{u(\infty)}(\bar{z}_i) \qquad (z_i = q^{i+h-1}).$ (1)

where $Z_{\text{sing par}}(h, q, \bar{q}) = \frac{q^h \bar{q}^h}{(1-q)(1-\bar{q})}$. (Giombi-Maloney-Yin)

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Strings 2011 10 / 22

Introduction 00 00		Bulk Partition Fn. 00●	CFT Partition Fn. 00 0000	Checks II 00	Checks III O	
The Bulk Spectru	m					

Putting it all together:

 $Z_{\text{bulk}} = (q\bar{q})^{-c/24} |\tilde{M}(q)|^2 \sum_{R_{\pm},S_{\pm}} |\chi_{R_{\pm}}(z_i^+) \chi_{S_{\pm}}(z_i^+) \chi_{R_{-}}(z_i^-) \chi_{S_{-}}(z_i^-)|^2.$

 R_{\pm}, S_{\pm} are representations of $U(\infty)$ with a finite number of boxes in the Young Tableaux. $(z_i^{\pm} = q^{i+h_{\pm}-1})$.

View this as the combined contribution from (weakly coupled) multi-particle states of the complex scalar with dimension h_+ (the pieces R_+ , S_+), and that of the scalar with dimension h_- (the pieces R_- , S_-) all dressed with the boundary graviton excitations in $\tilde{M}(q)$.

(日) (同) (三) (三)

Introduction 00 00		Bulk Partition Fn. 00●	CFT Partition Fn. 00 0000	Checks II 00	Checks III O	
The Bulk Spectru	m					

Putting it all together:

 $Z_{\text{bulk}} = (q\bar{q})^{-c/24} |\tilde{M}(q)|^2 \sum_{R_{\pm}, S_{\pm}} |\chi_{R_{\pm}}(z_i^+) \chi_{S_{\pm}}(z_i^+) \chi_{R_{-}}(z_i^-) \chi_{S_{-}}(z_i^-)|^2.$

 R_{\pm}, S_{\pm} are representations of $U(\infty)$ with a finite number of boxes in the Young Tableaux. $(z_i^{\pm} = q^{i+h_{\pm}-1})$.

View this as the combined contribution from (weakly coupled) multi-particle states of the complex scalar with dimension h_+ (the pieces R_+ , S_+), and that of the scalar with dimension h_- (the pieces R_- , S_-) all dressed with the boundary graviton excitations in $\tilde{M}(q)$.

- 本間 と えき と えき とうき

Introduction 00 00		CFT Partition Fn. ●0 ○○○○	Checks III O	
CFT Spectrum				

Spectrum of Primaries

Primaries in the CFT labelled by two representations (Λ⁺, Λ⁻) of SU(N)_k and SU(N)_{k+1} respectively.

•
$$h(\Lambda^+; \Lambda^-) = \frac{1}{2\rho(\rho+1)} \left(\left| (\rho+1)(\Lambda^++\rho) - \rho(\Lambda^-+\rho) \right|^2 - \rho^2 \right)$$

where ρ is the Weyl vector for $SU(N)$

•
$$h(0; f) = \frac{(N-1)}{2N} \left(1 - \frac{N+1}{N+k+1} \right) \rightarrow \frac{1}{2} (1-\lambda) = h_{-};$$

 $h(f; 0) = \frac{(N-1)}{2N} \left(1 + \frac{N+1}{N+k} \right) \rightarrow \frac{1}{2} (1+\lambda) = h_{+}.$

•
$$h(0; \operatorname{adj}) = 1 - \frac{N}{N+k+1} \rightarrow (1-\lambda);$$
 $h(\operatorname{adj}; 0) = 1 + \frac{N}{N+k} \rightarrow (1+\lambda).$

<**□** > < **≥** > <

Introduction 00 00		CFT Partition Fn. ●0 ○○○○	Checks III O	
CFT Spectrum				

Spectrum of Primaries

Primaries in the CFT labelled by two representations (Λ⁺, Λ⁻) of SU(N)_k and SU(N)_{k+1} respectively.

•
$$h(\Lambda^+; \Lambda^-) = \frac{1}{2p(p+1)} \left(\left| (p+1)(\Lambda^+ + \rho) - p(\Lambda^- + \rho) \right|^2 - \rho^2 \right)$$

where ρ is the Weyl vector for $SU(N)$

•
$$h(0; f) = \frac{(N-1)}{2N} \left(1 - \frac{N+1}{N+k+1} \right) \rightarrow \frac{1}{2} (1-\lambda) = h_{-};$$

 $h(f; 0) = \frac{(N-1)}{2N} \left(1 + \frac{N+1}{N+k} \right) \rightarrow \frac{1}{2} (1+\lambda) = h_{+}.$

•
$$h(0; \operatorname{adj}) = 1 - \frac{N}{N+k+1} \rightarrow (1-\lambda);$$
 $h(\operatorname{adj}; 0) = 1 + \frac{N}{N+k} \rightarrow (1+\lambda).$

▲圖▶ ▲臣▶ ▲臣
Introduction 00 00		CFT Partition Fn. ●0 ○○○○	Checks III O	
CFT Spectrum				

Spectrum of Primaries

Primaries in the CFT labelled by two representations (Λ⁺, Λ⁻) of SU(N)_k and SU(N)_{k+1} respectively.

•
$$h(\Lambda^+; \Lambda^-) = \frac{1}{2p(p+1)} \left(\left| (p+1)(\Lambda^+ + \rho) - p(\Lambda^- + \rho) \right|^2 - \rho^2 \right)$$

where ρ is the Weyl vector for $SU(N)$

•
$$h(0; f) = \frac{(N-1)}{2N} \left(1 - \frac{N+1}{N+k+1}\right) \rightarrow \frac{1}{2}(1-\lambda) = h_{-};$$

 $h(f; 0) = \frac{(N-1)}{2N} \left(1 + \frac{N+1}{N+k}\right) \rightarrow \frac{1}{2}(1+\lambda) = h_{+}.$

• $h(0; \operatorname{adj}) = 1 - \frac{N}{N+k+1} \rightarrow (1-\lambda);$ $h(\operatorname{adj}; 0) = 1 + \frac{N}{N+k} \rightarrow (1+\lambda).$

* (四) * * (日) * * (日)

Introduction 00 00		CFT Partition Fn. ●0 ○○○○	Checks III O	
CFT Spectrum				

Spectrum of Primaries

Primaries in the CFT labelled by two representations (Λ⁺, Λ⁻) of SU(N)_k and SU(N)_{k+1} respectively.

•
$$h(\Lambda^+; \Lambda^-) = \frac{1}{2p(p+1)} \left(\left| (p+1)(\Lambda^+ + \rho) - p(\Lambda^- + \rho) \right|^2 - \rho^2 \right)$$

where ρ is the Weyl vector for $SU(N)$

•
$$h(0; f) = \frac{(N-1)}{2N} \left(1 - \frac{N+1}{N+k+1} \right) \rightarrow \frac{1}{2} (1-\lambda) = h_{-};$$

 $h(f; 0) = \frac{(N-1)}{2N} \left(1 + \frac{N+1}{N+k} \right) \rightarrow \frac{1}{2} (1+\lambda) = h_{+}.$

•
$$h(0; \operatorname{adj}) = 1 - \frac{N}{N+k+1} \rightarrow (1-\lambda);$$
 $h(\operatorname{adj}; 0) = 1 + \frac{N}{N+k} \rightarrow (1+\lambda).$

▲圖▶ ▲臣▶ ▲臣

Introduction 00 00		CFT Partition Fn. ○● ○○○○	Checks III O	
CFT Spectrum				

Branching Functions

Contribution to $\text{Tr}q^{L_0}$ from each of these primaries (taking into account null states):

$$b_{(\Lambda^+;\Lambda^-)}(q) = rac{1}{\eta(q)^{N-1}} \sum_{w \in \hat{W}} \epsilon(w) q^{rac{1}{2p(
ho+1)}((
ho+1)w(\Lambda^++
ho)-p(\Lambda^-+
ho))^2}$$

 \hat{W} is the affine Weyl group (affine translations +usual Weyl reflections)

(Diagonal) modular invariant partition function:

$$Z_{CFT} = \sum_{\Lambda^+,\Lambda^-} |b_{(\Lambda^+;\Lambda^-)}(q)|^2.$$

Introduction 00 00		CFT Partition Fn. ○● ○○○○	Checks III O	
CFT Spectrum				

Branching Functions

Contribution to $\text{Tr}q^{L_0}$ from each of these primaries (taking into account null states):

$$b_{(\Lambda^+;\Lambda^-)}(q) = rac{1}{\eta(q)^{N-1}} \sum_{w \in \hat{W}} \epsilon(w) q^{rac{1}{2p(
ho+1)}((
ho+1)w(\Lambda^++
ho)-p(\Lambda^-+
ho))^2}$$

 \hat{W} is the affine Weyl group (affine translations +usual Weyl reflections)

(Diagonal) modular invariant partition function:

$$Z_{CFT} = \sum_{\Lambda^+,\Lambda^-} |b_{(\Lambda^+;\Lambda^-)}(q)|^2.$$

Introduction Chi 00 00		CFT Partition Fn. 00 0000	Checks II 00	Checks III O	
't Hooft Limit					

Large N 't Hooft Limit

• To match with bulk spectrum will only consider representations (Λ^+, Λ^-) which are finite tensor powers of fundamentals and/or anti-fundamentals. $\Lambda_{\pm} = (\overline{R}_{\pm}, S_{\pm})$.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ O(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by $\mathbb{O}(1)$ boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathbb{O}(\frac{1}{N})$.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ O(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by $\mathbb{O}(1)$ boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathcal{O}(\frac{1}{N})$.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ 0(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by O(1) boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathcal{O}(\frac{1}{N})$.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ 0(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by O(1) boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathcal{O}(\frac{1}{N})$.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ 0(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by O(1) boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathcal{O}(\frac{1}{N})$.
- Need to look carefully at structure of such representations in the 't Hooft limit.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ 0(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by O(1) boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_{+} = \Lambda_{-}$ have dimensions $O(\frac{1}{N})$.
- Need to look carefully at structure of such representations in the 't Hooft limit.

Introduction 00 00		CFT Partition Fn. ○○ ○●○○	Checks III O	
't Hooft Limit				

- These representations (i.e. with boxes B(R), B(S) ~ O(1)) have finite dimension in the 't Hooft limit with k, N → ∞.
- Typically, primaries for representations Λ_± with O(N) boxes have dimensions that scale as a positive power of N - hence decouple.
- However, when Λ_{\pm} differ by O(1) boxes, the dimension is finite.
- Though there are many such states (exponential) most of them decouple (in, say, 2,3 point functions) from perturbative states (with O(1) boxes) - even for large but finite N. Due to fusion rules of CFT.
- Even for primaries with O(1) boxes there is a large degeneracy.
- E.g. all primaries with $\Lambda_+ = \Lambda_-$ have dimensions $\mathcal{O}(\frac{1}{N})$.
- Need to look carefully at structure of such representations in the 't Hooft limit.

		CFT Partition Fn.		
00	000	00 0000		
't Hooft Limit				

• Branching functions simplify considerably in the 't Hooft limit

$$b_{(\Lambda_{+};\Lambda_{-})}(q) \cong q^{-\frac{c}{24}} \tilde{M}(q) q^{\frac{\lambda}{2}(B_{+}-B_{-})} q^{C_{2}(\Lambda_{+})+C_{2}(\Lambda_{-})} \frac{S_{\Lambda_{+}\Lambda_{-}}}{S_{00}}$$
$$\cong q^{\frac{\lambda}{2}(B_{+}-B_{-})} \sum_{\Lambda} N_{\Lambda_{+}\overline{\Lambda}_{-}}^{\Lambda} q^{-\frac{\lambda}{2}B(\Lambda)} b_{(\Lambda;0)}(q) , \quad (2)$$

using the Verlinde formula. $(B_{\pm} = B(\Lambda_{\pm}) \equiv B(R_{\pm}) + B(S_{\pm})).$

This is a signature of the representation becoming reducible.Further simplifying the RHS

$$b_{(\Lambda;0)}(q) \cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot q^{\frac{\lambda}{2}B(\Lambda)} q^{C_2(\Lambda)} \cdot \dim_q(\Lambda)$$

$$\cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot \chi_{R^T}(z_i^+) \chi_{S^T}(z_i^+)$$
(3)

		CFT Partition Fn.	Checks III 0	
		0000		
't Hooft Limit				

• Branching functions simplify considerably in the 't Hooft limit

$$b_{(\Lambda_{+};\Lambda_{-})}(q) \cong q^{-\frac{c}{24}} \tilde{M}(q) q^{\frac{\lambda}{2}(B_{+}-B_{-})} q^{C_{2}(\Lambda_{+})+C_{2}(\Lambda_{-})} \frac{S_{\Lambda_{+}\Lambda_{-}}}{S_{00}}$$
$$\cong q^{\frac{\lambda}{2}(B_{+}-B_{-})} \sum_{\Lambda} N_{\Lambda_{+}\overline{\Lambda}_{-}}^{\Lambda} q^{-\frac{\lambda}{2}B(\Lambda)} b_{(\Lambda;0)}(q) , \quad (2)$$

using the Verlinde formula. $(B_{\pm} = B(\Lambda_{\pm}) \equiv B(R_{\pm}) + B(S_{\pm})).$

• This is a signature of the representation becoming reducible.

• Further simplifying the RHS

$$b_{(\Lambda;0)}(q) \cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot q^{\frac{\lambda}{2}B(\Lambda)} q^{C_2(\Lambda)} \cdot \dim_q(\Lambda)$$

$$\cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot \chi_{R^T}(z_i^+) \chi_{S^T}(z_i^+)$$
(3)

		CFT Partition Fn.	Checks III 0	
		0000		
't Hooft Limit				

• Branching functions simplify considerably in the 't Hooft limit

$$\begin{aligned}
\dot{b}_{(\Lambda_{+};\Lambda_{-})}(q) &\cong q^{-\frac{c}{24}} \tilde{M}(q) q^{\frac{\lambda}{2}(B_{+}-B_{-})} q^{C_{2}(\Lambda_{+})+C_{2}(\Lambda_{-})} \frac{S_{\Lambda_{+}\Lambda_{-}}}{S_{00}} \\
&\cong q^{\frac{\lambda}{2}(B_{+}-B_{-})} \sum_{\Lambda} N^{\Lambda}_{\Lambda_{+}\overline{\Lambda}_{-}} q^{-\frac{\lambda}{2}B(\Lambda)} b_{(\Lambda;0)}(q) , \quad (2)
\end{aligned}$$

using the Verlinde formula. $(B_{\pm} = B(\Lambda_{\pm}) \equiv B(R_{\pm}) + B(S_{\pm})).$

- This is a signature of the representation becoming reducible.
- Further simplifying the RHS

$$b_{(\Lambda;0)}(q) \cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot q^{\frac{\lambda}{2}B(\Lambda)} q^{C_2(\Lambda)} \cdot \dim_q(\Lambda)$$

$$\cong q^{-\frac{N-1}{24}(1-\lambda^2)} \cdot \tilde{M}(q) \cdot \chi_{R^T}(z_i^+) \chi_{S^T}(z_i^+)$$
(3)

Introduction 00 00		CFT Partition Fn. ○○ ○○○●	Checks III O	
't Hooft Limit				

- The 't Hooft limit needs to be carefully defined to understand the reducibility of representations.
- E.g. for $\Lambda_+ = \Lambda_- = f$

$$b_{(\mathrm{f};\mathrm{f})} = q^{-rac{c}{24}}(1+q^2+\cdots)+q^{-rac{c}{24}}(q+2q^2+\cdots) \; .$$

with contributions from vacuum (ω) and adjoint (ψ) primaries.

• However, in the large N limit, there is a natural limit of the operator algebra of these states in which

$$L_1 \psi = \omega. \tag{4}$$

- But $\psi \neq L_{-1}\omega$: the representation is reducible but *indecomposable*.
- As for null states, ω and its descendants decouple from physical correlation functions. Only ψ (and its descendants) survive.

Introduction 00 00		CFT Partition Fn. ○○ ○○○●	Checks III O	
't Hooft Limit				

- The 't Hooft limit needs to be carefully defined to understand the reducibility of representations.
- E.g. for $\Lambda_+=\Lambda_-=f$

$$b_{(\mathrm{f};\mathrm{f})} = q^{-\frac{c}{24}}(1+q^2+\cdots)+q^{-\frac{c}{24}}(q+2q^2+\cdots) \; .$$

with contributions from vacuum (ω) and adjoint (ψ) primaries.

• However, in the large N limit, there is a natural limit of the operator algebra of these states in which

$$L_1 \psi = \omega. \tag{4}$$

- But $\psi \neq L_{-1}\omega$: the representation is reducible but *indecomposable*.
- As for null states, ω and its descendants decouple from physical correlation functions. Only ψ (and its descendants) survive.

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Introduction 00 00		CFT Partition Fn. ○○ ○○○●	Checks III O	
't Hooft Limit				

- The 't Hooft limit needs to be carefully defined to understand the reducibility of representations.
- E.g. for $\Lambda_+=\Lambda_-={\rm f}$

$$b_{(\mathrm{f};\mathrm{f})} = q^{-\frac{c}{24}}(1+q^2+\cdots)+q^{-\frac{c}{24}}(q+2q^2+\cdots) \; .$$

with contributions from vacuum (ω) and adjoint (ψ) primaries.

• However, in the large N limit, there is a natural limit of the operator algebra of these states in which

$$L_1\psi = \omega. \tag{4}$$

• But $\psi \neq L_{-1}\omega$: the representation is reducible but *indecomposable*.

• As for null states, ω and its descendants decouple from physical correlation functions. Only ψ (and its descendants) survive.

000 0000	Introduction 00 00		CFT Partition Fn. ○○ ○○○●	Checks III O	
't Hooft Limit	't Hooft Limit				

- The 't Hooft limit needs to be carefully defined to understand the reducibility of representations.
- E.g. for $\Lambda_+=\Lambda_-={\rm f}$

$$b_{(\mathrm{f};\mathrm{f})} = q^{-\frac{c}{24}}(1+q^2+\cdots)+q^{-\frac{c}{24}}(q+2q^2+\cdots) \; .$$

with contributions from vacuum (ω) and adjoint (ψ) primaries.

• However, in the large N limit, there is a natural limit of the operator algebra of these states in which

$$L_1\psi=\omega. \tag{4}$$

• But $\psi \neq L_{-1}\omega$: the representation is reducible but *indecomposable*.

• As for null states, ω and its descendants decouple from physical correlation functions. Only ψ (and its descendants) survive.

000 0000	Introduction 00 00		CFT Partition Fn. ○○ ○○○●	Checks III O	
't Hooft Limit	't Hooft Limit				

- The 't Hooft limit needs to be carefully defined to understand the reducibility of representations.
- E.g. for $\Lambda_+=\Lambda_-={\rm f}$

$$b_{(\mathrm{f};\mathrm{f})} = q^{-\frac{c}{24}}(1+q^2+\cdots)+q^{-\frac{c}{24}}(q+2q^2+\cdots) \; .$$

with contributions from vacuum (ω) and adjoint (ψ) primaries.

• However, in the large N limit, there is a natural limit of the operator algebra of these states in which

$$L_1\psi=\omega. \tag{4}$$

- But $\psi \neq L_{-1}\omega$: the representation is reducible but *indecomposable*.
- As for null states, ω and its descendants decouple from physical correlation functions. Only ψ (and its descendants) survive.

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ●0	Checks III O	
Matching Spectra					

- Pattern in this reducibility: In $\Lambda_+ \otimes \overline{\Lambda}_-$ the only Λ which do not decouple are the ones where no boxes and antiboxes are annihilated into singlets.
- i.e. $B(\Lambda) = B(\Lambda_+) + B(\Lambda_-)$
- Thus need to correct the CFT partition function in the 't Hooft limit to subtract out these additional null states.
- \bullet Since ${\it N}^{\Lambda}_{\Lambda+\overline{\Lambda}_{-}}$ become Clebsch-Gordon coefficents, corrected branching function becomes

 $\operatorname{ch}_{R+S+R-S_{-}}^{\operatorname{cft}}(q) = q^{-\frac{c}{24}} \cdot \tilde{M}(q) \cdot \chi_{R_{+}^{T}}(z_{i}^{+}) \chi_{S_{+}^{T}}(z_{i}^{+}) \chi_{R_{-}^{T}}(z_{i}^{-}) \chi_{S_{-}^{T}}(z_{i}^{-}) \ .$

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ●0	Checks III O	
Matching Spectra					

- Pattern in this reducibility: In $\Lambda_+ \otimes \overline{\Lambda}_-$ the only Λ which do not decouple are the ones where no boxes and antiboxes are annihilated into singlets.
- i.e. $B(\Lambda) = B(\Lambda_+) + B(\Lambda_-)$
- Thus need to correct the CFT partition function in the 't Hooft limit to subtract out these additional null states.
- \bullet Since ${\it N}^{\Lambda}_{\Lambda+\overline{\Lambda}_{-}}$ become Clebsch-Gordon coefficents, corrected branching function becomes

 $\mathrm{ch}_{R+S+R-S_{-}}^{\mathrm{cft}}(q) = q^{-\frac{c}{24}} \cdot \tilde{M}(q) \cdot \chi_{R_{+}^{T}}(z_{i}^{+}) \chi_{S_{+}^{T}}(z_{i}^{+}) \chi_{R_{-}^{T}}(z_{i}^{-}) \chi_{S_{-}^{T}}(z_{i}^{-}) \; .$

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ●0	Checks III O	
Matching Spectra					

- Pattern in this reducibility: In Λ₊ ⊗ Λ
 the only Λ which do not decouple are the ones where no boxes and antiboxes are annihilated into singlets.
- i.e. $B(\Lambda) = B(\Lambda_+) + B(\Lambda_-)$
- Thus need to correct the CFT partition function in the 't Hooft limit to subtract out these additional null states.
- Since $N^{\Lambda}_{\Lambda+\overline{\Lambda}_{-}}$ become Clebsch-Gordon coefficents, corrected branching function becomes

 $\mathrm{ch}_{R+S+R-S_{-}}^{\mathrm{cft}}(q) = q^{-\frac{c}{24}} \cdot \tilde{M}(q) \cdot \chi_{R_{+}^{T}}(z_{i}^{+}) \chi_{S_{+}^{T}}(z_{i}^{+}) \chi_{R_{-}^{T}}(z_{i}^{-}) \chi_{S_{-}^{T}}(z_{i}^{-}) \; .$

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ●0	Checks III O	
Matching Spectra					

- Pattern in this reducibility: In Λ₊ ⊗ Λ
 the only Λ which do not decouple are the ones where no boxes and antiboxes are annihilated into singlets.
- i.e. $B(\Lambda) = B(\Lambda_+) + B(\Lambda_-)$
- Thus need to correct the CFT partition function in the 't Hooft limit to subtract out these additional null states.
- Since $\textit{N}^{\Lambda}_{\Lambda_+\overline{\Lambda}_-}$ become Clebsch-Gordon coefficents, corrected branching function becomes

$$\operatorname{ch}_{R+S+R_-S_-}^{\operatorname{cft}}(q) = q^{-\frac{c}{24}} \cdot \tilde{M}(q) \cdot \chi_{R_+^{\mathsf{T}}}(z_i^+) \chi_{S_+^{\mathsf{T}}}(z_i^+) \chi_{R_-^{\mathsf{T}}}(z_i^-) \chi_{S_-^{\mathsf{T}}}(z_i^-) \ .$$

(5)

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ⊙●	Checks III O	
Matching Spectra					

Thus the CFT partition function in the strict large N limit is given by

$$Z_{ ext{CFT}}(\lambda) = \sum_{R_+S_+R_-S_-} | ext{ch}_{R_+S_+R_-S_-}^{ ext{cft}}(q)|^2 \; .$$

Comparing with the perturbative gravity answer

 $Z_{\text{bulk}}(\lambda) = (q\bar{q})^{-c/24} |\tilde{M}(q)|^2 \sum_{R_{\pm}, S_{\pm}} |\chi_{R_{\pm}}(z_i^{+}) \chi_{S_{\pm}}(z_i^{+}) \chi_{R_{-}}(z_i^{-}) \chi_{S_{-}}(z_i^{-})|^2.$

 $Z_{CFT}(\lambda) = Z_{bulk}(\lambda)$

for all values of the 't Hooft coupling λ .

Note that the representations on both sides are related by a transpose. Duality between $\mathcal{W}_{\infty}[\lambda]$ and the 't Hooft large N limit of \mathcal{W}_{N} .

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Strings 2011 19 / 22

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ⊙●	Checks III O	
Matching Spectra					

Thus the CFT partition function in the strict large N limit is given by

$$Z_{ ext{CFT}}(\lambda) = \sum_{R_+S_+R_-S_-} | ext{ch}_{R_+S_+R_-S_-}^{ ext{cft}}(q)|^2 \; .$$

Comparing with the perturbative gravity answer

 $Z_{\text{bulk}}(\lambda) = (q\bar{q})^{-c/24} |\tilde{M}(q)|^2 \sum_{R_{\pm},S_{\pm}} |\chi_{R_{\pm}}(z_i^+)\chi_{S_{\pm}}(z_i^+)\chi_{R_{-}}(z_i^-)\chi_{S_{-}}(z_i^-)|^2.$

$$Z_{CFT}(\lambda) = Z_{bulk}(\lambda)$$

for all values of the 't Hooft coupling λ .

Note that the representations on both sides are related by a transpose. Duality between $\mathcal{W}_{\infty}[\lambda]$ and the 't Hooft large N limit of \mathcal{W}_{N} .

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Strings 2011 19 / 22

Introduction 00 00		CFT Partition Fn. 00 0000	Checks II ⊙●	Checks III O	
Matching Spectra					

Thus the CFT partition function in the strict large N limit is given by

$$Z_{ ext{CFT}}(\lambda) = \sum_{R_+S_+R_-S_-} | ext{ch}_{R_+S_+R_-S_-}^{ ext{cft}}(q)|^2 \; .$$

Comparing with the perturbative gravity answer

 $Z_{\text{bulk}}(\lambda) = (q\bar{q})^{-c/24} |\tilde{M}(q)|^2 \sum_{R_{\pm},S_{\pm}} |\chi_{R_{\pm}}(z_i^+) \chi_{S_{\pm}}(z_i^+) \chi_{R_{-}}(z_i^-) \chi_{S_{-}}(z_i^-)|^2.$

$$Z_{CFT}(\lambda) = Z_{bulk}(\lambda)$$

for all values of the 't Hooft coupling λ .

Note that the representations on both sides are related by a transpose. Duality between $\mathcal{W}_{\infty}[\lambda]$ and the 't Hooft large N limit of \mathcal{W}_{N} .

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Strings 2011 19 / 22

			CFT Partition Fn. 00	Checks II 00	Checks III		
00			0000				
Matching Correlators							

• Compare CFT three point function of two scalar primaries and one spin *s* current *J*^(*s*) i.e.

 $\langle 0_{\pm} \bar{0}_{\pm} J^{(s)} \rangle$

with bulk three point function of two scalars and one spin s gauge field.

- Boundary computation performed for s=2,3 but for any value of the 't Hooft coupling.
- Bulk computation for any spin s but only for $\lambda = \frac{1}{2}$ ("undeformed theory").
- Exact agreement in each of the four cases.
- Possibly can push these computations further in both bulk and boundary.

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Introduction 00 00			CFT Partition Fn. 00 0000		Checks III ●		
Matching Correlators							

• Compare CFT three point function of two scalar primaries and one spin s current $J^{(s)}$ i.e.

$$\langle \mathbb{O}_{\pm} \bar{\mathbb{O}}_{\pm} J^{(s)} \rangle$$

with bulk three point function of two scalars and one spin s gauge field.

- Boundary computation performed for s = 2, 3 but for any value of the 't Hooft coupling.
- Bulk computation for any spin s but only for $\lambda=\frac{1}{2}$ ("undeformed theory").
- Exact agreement in each of the four cases.
- Possibly can push these computations further in both bulk and boundary.

Rajesh Gopakumar (HRI)

Introduction 00 00			CFT Partition Fn. 00 0000		Checks III ●		
Matching Correlators							

• Compare CFT three point function of two scalar primaries and one spin s current $J^{(s)}$ i.e.

$$\langle \mathbb{O}_{\pm} \bar{\mathbb{O}}_{\pm} J^{(s)} \rangle$$

with bulk three point function of two scalars and one spin s gauge field.

- Boundary computation performed for s = 2, 3 but for any value of the 't Hooft coupling.
- Bulk computation for any spin s but only for $\lambda=\frac{1}{2}$ ("undeformed theory").
- Exact agreement in each of the four cases.
- Possibly can push these computations further in both bulk and boundary.

Rajesh Gopakumar (HRI)

Introduction 00 00			CFT Partition Fn. 00 0000		Checks III ●		
Matching Correlators							

• Compare CFT three point function of two scalar primaries and one spin *s* current *J*^(*s*) i.e.

$$\langle \mathbb{O}_{\pm} \bar{\mathbb{O}}_{\pm} J^{(s)} \rangle$$

with bulk three point function of two scalars and one spin s gauge field.

- Boundary computation performed for s = 2, 3 but for any value of the 't Hooft coupling.
- Bulk computation for any spin s but only for $\lambda=\frac{1}{2}$ ("undeformed theory").
- Exact agreement in each of the four cases.
- Possibly can push these computations further in both bulk and boundary.

Rajesh Gopakumar (HRI)

Introduction 00 00			CFT Partition Fn. 00 0000		Checks III ●		
Matching Correlators							

• Compare CFT three point function of two scalar primaries and one spin s current $J^{(s)}$ i.e.

$$\langle \mathfrak{O}_{\pm} \bar{\mathfrak{O}}_{\pm} J^{(s)} \rangle$$

with bulk three point function of two scalars and one spin s gauge field.

- Boundary computation performed for s = 2, 3 but for any value of the 't Hooft coupling.
- Bulk computation for any spin s but only for $\lambda=\frac{1}{2}$ ("undeformed theory").
- Exact agreement in each of the four cases.
- Possibly can push these computations further in both bulk and boundary.

Rajesh Gopakumar (HRI)

Holographic Minimal Models

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- Understand better the role of the additional light (degenerate) primaries at large but finite *N*. Can one view them as an almost decoupled sector? Do they contribute at leading order to correlation functions? What is the bulk interpretation? Proposal needs modification? Tests.
- Generalisations I: Bulk duals for cosets involving other Lie groups (see Ahn; Gaberdiel-Vollenweider). More general cosets/ RCFTS (see Kiritsis). Supersymmetric examples.
- Generalisations II: Duals for nonconformal QFTs obtained by RG flow (In Progress).
- Applications to "real-life" systems: *Z_N* ising models/parafermions, FQHE....

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- Understand better the role of the additional light (degenerate) primaries at large but finite *N*. Can one view them as an almost decoupled sector? Do they contribute at leading order to correlation functions? What is the bulk interpretation? Proposal needs modification? Tests.
- Generalisations I: Bulk duals for cosets involving other Lie groups (see Ahn; Gaberdiel-Vollenweider). More general cosets/ RCFTS (see Kiritsis). Supersymmetric examples.
- Generalisations II: Duals for nonconformal QFTs obtained by RG flow (In Progress).
- Applications to "real-life" systems: Z_N ising models/parafermions, FQHE....

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- Understand better the role of the additional light (degenerate) primaries at large but finite *N*. Can one view them as an almost decoupled sector? Do they contribute at leading order to correlation functions? What is the bulk interpretation? Proposal needs modification? Tests.
- Generalisations I: Bulk duals for cosets involving other Lie groups (see Ahn; Gaberdiel-Vollenweider). More general cosets/ RCFTS (see Kiritsis). Supersymmetric examples.
- Generalisations II: Duals for nonconformal QFTs obtained by RG flow (In Progress).
- Applications to "real-life" systems: *Z_N* ising models/parafermions, FQHE....

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- Understand better the role of the additional light (degenerate) primaries at large but finite *N*. Can one view them as an almost decoupled sector? Do they contribute at leading order to correlation functions? What is the bulk interpretation? Proposal needs modification? Tests.
- Generalisations I: Bulk duals for cosets involving other Lie groups (see Ahn; Gaberdiel-Vollenweider). More general cosets/ RCFTS (see Kiritsis). Supersymmetric examples.
- Generalisations II: Duals for nonconformal QFTs obtained by RG flow (In Progress).
- Applications to "real-life" systems: Z_N ising models/parafermions, FQHE....
| Introduction
00
00 | | CFT Partition Fn.
00
0000 | Checks III
O | Where To? |
|--------------------------|--|---------------------------------|-----------------|-----------|
| | | | | |

- New classical solutions in the bulk theory? Exotic black holes (see Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular conical defects?
- What does this teach us about theories of 3d gravity? Quantum Mechanical consistency. Microstates for non-SUSY black holes. Relation to integrable QFTs. Generalisations (Chen et.al.).
- Proving the duality: Figuring out the nuts and bolts of holography. "Holographic Minimal Models = Minimal Holographic Models ?"
- Understand better the role of large N Chern-Simons description in the presence of scalars. Role of Wilson loops.
- Embedding the duality in string theory: a solvable subsector of the D1-D5 system? Relation to topological strings? (See Horava)

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- New classical solutions in the bulk theory? Exotic black holes (see Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular conical defects?
- What does this teach us about theories of 3d gravity? Quantum Mechanical consistency. Microstates for non-SUSY black holes. Relation to integrable QFTs. Generalisations (Chen et.al.).
- Proving the duality: Figuring out the nuts and bolts of holography. "Holographic Minimal Models = Minimal Holographic Models ?"
- Understand better the role of large N Chern-Simons description in the presence of scalars. Role of Wilson loops.
- Embedding the duality in string theory: a solvable subsector of the D1-D5 system? Relation to topological strings? (See Horava)

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- New classical solutions in the bulk theory? Exotic black holes (see Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular conical defects?
- What does this teach us about theories of 3d gravity? Quantum Mechanical consistency. Microstates for non-SUSY black holes. Relation to integrable QFTs. Generalisations (Chen et.al.).
- Proving the duality: Figuring out the nuts and bolts of holography. "Holographic Minimal Models = Minimal Holographic Models ?"
- Understand better the role of large N Chern-Simons description in the presence of scalars. Role of Wilson loops.
- Embedding the duality in string theory: a solvable subsector of the D1-D5 system? Relation to topological strings? (See Horava)

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- New classical solutions in the bulk theory? Exotic black holes (see Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular conical defects?
- What does this teach us about theories of 3d gravity? Quantum Mechanical consistency. Microstates for non-SUSY black holes. Relation to integrable QFTs. Generalisations (Chen et.al.).
- Proving the duality: Figuring out the nuts and bolts of holography. "Holographic Minimal Models = Minimal Holographic Models ?"
- Understand better the role of large N Chern-Simons description in the presence of scalars. Role of Wilson loops.
- Embedding the duality in string theory: a solvable subsector of the D1-D5 system? Relation to topological strings? (See Horava)

Introduction 00 00		CFT Partition Fn. 00 0000	Checks III O	Where To?

- New classical solutions in the bulk theory? Exotic black holes (see Gutperle-Kraus, Ammon et.al). Solutions with scalar hair? Non-singular conical defects?
- What does this teach us about theories of 3d gravity? Quantum Mechanical consistency. Microstates for non-SUSY black holes. Relation to integrable QFTs. Generalisations (Chen et.al.).
- Proving the duality: Figuring out the nuts and bolts of holography. "Holographic Minimal Models = Minimal Holographic Models ?"
- Understand better the role of large N Chern-Simons description in the presence of scalars. Role of Wilson loops.
- Embedding the duality in string theory: a solvable subsector of the D1-D5 system? Relation to topological strings? (See Horava)