Multiloop systematics in pure spinor field theory

Michael B. Green
DAMTP, Cambridge

STRINGS 2011

Uppsala June 28, 2011

With Jonas Bjornsson

Over the past 15 years there have been impressive advances in evaluating multiloop field theory amplitudes - especially in maximally supersymmetric Yang-Mills and supergravity (so far up to four loops).
$L=4$
But going to higher orders, specially for supergravity, and understanding the general structure seems a daunting task.

The motivation for this work is to develop an understanding of how the relative simplicity of string perturbation diagrams may be mimicked in the field theory limit - what is the field theory limit of string perturbation theory?

Recall:
Maximally supersymmetric Yang-Mills is UV finite in $D=4$ dimensions. Interesting systematics of UV divergence as function of D and loop number, L (and colour).
e.g. $\partial^{2} \operatorname{Tr} F^{4}$ is renormalized beyond $\mathrm{L}=2$ but $\partial^{2}\left(\operatorname{Tr} F^{2}\right)^{2}$ is not for any D.

Heroic calculations in maximal supergravity determine that, for $L<5$, the leading low energy behaviour of the L-loop four-graviton amplitude is $\partial^{2 L} R_{\text {. }}$
esp. Bern, Carrasco, Dixon, Johansson, Kosower, Roiban
Various arguments suggest that for $L>4$ the leading behaviour is $\partial^{8} R^{4}$. This would imply the presence of a seven-loop logarithmic divergence when $D=4$.

Supersymmetry counterterm arguments
Arguments based on string theory
Some disagreement, however.

Bossard, Howe, Stelle, Vanhove Elvang, Kiermaeir
Berkovits, MBG, Russo, Vanhove
Kallosh

In string theory perturbative loop amplitudes can be formulated in an efficient manner. RNS or Pure Spinor

Pure spinor formalism - superstring perturbation theory in a manifestly supersymmetric manner.

Berkovits
No sum over spin structures.
Powerful calculational tool.
viz. explicit string loop calculations
Multiparticle string tree amplitudes

Berkovits, Gomez, Mafra Mafra, Schlotterer, Stieberger

The talk will sketch an efficient way of describing some systematics of multiloop field theory computations using a pure spinor formalism that makes supersymmetry manifest.

- UV behaviour determined by counting fermion zero modes
- Suggestive insights into $L \geq 5$

Modeled closely on Berkovits' string formalism

Field Theory Loop Calculations Using Pure Spinors.

- World-line action
"Non-minimal" pure spinor

$$
S=\int d \tau\left(\dot{X} P-\frac{1}{2} P^{2}+\dot{\theta} p+\dot{\lambda} w+\bar{w} \dot{\bar{\lambda}}-s \dot{r}\right)
$$

Fermionic zero modes
extra fermionic and bosonic coordinates
(in pink) need to be
saturated

- First quantized (world-line) version of the pure spinor string theory formalism of Berkovits.
- Manifestly space-time supersymmetric.
- The geometric origins are still mysterious (but see recent suggestions for how it may arise from gauge fixing classical pure spinor theory. Berkovits; Oda)

World-line coordinates in the non-minimal version

For supergravity these are doubled
$\hat{\theta}, \hat{d}, \hat{\lambda}, \bar{\lambda}, \hat{w}, \hat{\bar{w}}, \hat{r}, \hat{s}$

$$
Q=\lambda d+\bar{w} r \quad \hat{Q}=\hat{d} \hat{\lambda}+\hat{\bar{w}} \hat{r}
$$

$$
\text { SUGRA } \quad Q_{t o t}=Q+\hat{Q}
$$

so that

$$
\left[Q_{t o t},(b+\hat{b})\right]=H, \quad\left[Q_{t o t},(b-\hat{b})\right]=0
$$

with composite b ghost

$$
\begin{aligned}
& \quad b=-\frac{1}{4}\left(\frac{P^{m} \bar{\lambda} \gamma_{m} d}{(\lambda \bar{\lambda})}+\frac{\bar{\lambda} \gamma_{m n p} r\left(d \gamma^{m n p} d\right)}{384(\lambda \bar{\lambda})^{2}}+\ldots\right) \\
& {[Q, b]=H} \\
& b^{2}=0
\end{aligned} \quad \text { one d one } P \quad \text { two d's no } \mathrm{P} \text { 's }
$$

$$
\text { note potential small } \lambda, \bar{\lambda} \text { singularities }
$$

Similarly for \hat{b}

Trees and loops

Amplitudes constructed by tying together vertices with propagators, mimicking string theory.

Structure of loop amplitudes.
Consider ϕ^{3} L-loop $(L>1)$ skeleton diagram b_{I}-cycles
($3 L-3$) moduli propagator lengths $T_{i} \quad(i=1, \ldots, 3 L-3)$
Basis of one forms $\omega_{I}=a_{I}^{i} d \tau_{i} \quad\left(a_{I}^{i}= \pm 1\right) \quad I=1, \ldots, L$

Period matrix

$$
\Omega_{I J}=\oint_{b_{I}} w_{J}
$$

$$
\Omega_{I J}=\left(\begin{array}{cc}
T_{1}+T_{2} & -T_{2} \\
-T_{2} & T_{2}+T_{3}
\end{array}\right)
$$

L-loop SUGRA amplitude $(L>1)$:

$$
A=\sum_{F_{L}} \int_{0}^{\infty} d T_{1} \ldots d T_{3 L-3} \int_{F_{L}} \prod_{r=1}^{N} d \tau_{r} K\left(\left\{T_{i}\right\},\left\{\tau_{r}\right\},\left\{k_{r}\right\}\right)
$$

sum over skeletons

$$
\begin{gathered}
K=\int \underset{\sim}{\mathcal{D} \Phi \mathcal{D}} \hat{\Phi}\left(\underset{\mathcal{N}}{\mathcal{\mathcal { N }}} \prod_{i=1}^{3 L-3}\left(\int_{0}^{T_{i}} \frac{d \tau_{i}}{T_{i}} b \int_{0}^{T_{i}} \frac{d \tau_{i}}{T_{i}} \hat{b}\right) \int \prod_{r=1}^{N} d \tau_{r} V\left(k_{1}, \tau_{1}\right) \ldots V\left(k_{N}, \tau_{N}\right) e^{-S}\right) \\
\text { measure regulator } \quad \text { b-ghost insertions plane-wave vertices }
\end{gathered}
$$

Saturation of fermionic zero modes requires consideration of modes coming from:
(i) integrated vertex operators, V
(ii) the regulator $\mathcal{N} \hat{\mathcal{N}}$ of large $\lambda, \bar{\lambda}, \hat{\lambda}, \bar{\lambda}$ divergences,
(iii) composite b-ghost insertions

Constrains pattern of diagrams that contribute to the amplitude.

(i) Vertex operators

Unintegrated

$$
\begin{gathered}
U=\lambda^{\alpha} \hat{\lambda}_{\beta} A_{\alpha}^{\beta}(X, \theta, \hat{\theta}) \\
{[Q, U]=0=[\hat{Q}, U]}
\end{gathered}
$$

superfiel

$$
A \sim \cdots+\theta^{3} \hat{\theta}^{3} R+\ldots
$$

Integrated

internal momenta
 d modes

$V \sim P^{m^{\natural}} P^{n} G_{m n}(X, \theta, \hat{\theta})+d^{\alpha} \ddot{d}_{\beta} W_{\alpha}^{\beta}(X, \theta, \hat{\theta})+\ldots$
$G \sim D \bar{D} A \sim \cdots+\theta^{2} \hat{\theta}^{2} R+\ldots$
metric
$W \sim D \bar{D} G \sim \cdots+\theta \hat{\theta} R+\ldots$ bispinor

Superfields satisfy linearized eqs. of motion
(ii) Regulator for large $\lambda, \bar{\lambda}$ divergences (as well as source of s)

$$
\begin{aligned}
& \qquad \mathcal{N}=e^{-\int[Q, \chi] d \tau} \sim 1-[Q, \chi] \quad \text { BRST exact } \\
& =e^{-\int(\lambda \bar{\lambda}+\theta r-\lambda d s+\ldots) d \tau} \\
& \text { powers of } \theta \text { correlated } \\
& \text { with powers of } r
\end{aligned}
$$

Integration over s zero modes pulls out a factor $(\lambda d s)^{11 L}$

NOTE:

Each d has $16 L$ zero modes.
$11 L$ of these are can be soaked up by the d 's in the factor $(\lambda d s)^{11 L}$
i.e. $5 L d$ zero modes must be soaked up by the b insertions and the vertex operators (5 for each loop).
(iii) The term in b zero mode containing two d zero modes is

$$
\frac{1}{T_{i}} \int_{0}^{T_{i}} d \tau_{i} b_{z e r o}=b^{I J} \frac{\partial \Omega_{I J}}{\partial T_{i}} \sim d_{\gamma}^{I} d_{\delta}^{J} \frac{\partial \Omega_{I J}}{\partial T_{i}}
$$

The term with one less d zero mode has a ℓ_{m}^{I} factor loop momentum (zero mode of P^{m})

NOTE condition:
If no. of independent components of $\frac{\partial \Omega_{I J}}{\partial T_{i}}$ is $<3 L-3$
not all the d zero modes can be supported
In that case other terms in $b^{I J}$ must contribute. (and more $d^{I I} s$ must come from elsewhere).

BRST invariance and contact terms.
Check that a BRST - exact vertex decouples.

$$
[Q, \rho] \text { for SYM }\left[Q_{t o t}, \chi\right] \text { for SUGRA }
$$

Certain "contact terms" need to be cancelled with new interactions.

- No internal contact vertices needed.
- Contact vertices are needed for external states for $L>2$.
e,g.
Three
loops

These vertices encode nonlinear corrections to the SYM and SUGRA superfield equations.

They modify the UV behaviour in SYM but not in SUGRA
Do not contribute to non-planar SYM 4-point amplitude.

Consider four-graviton scattering :
Amplitude $\sim R^{4} \overleftarrow{I(s, t, u)}$

ONE LOOP

$x=$ unintegrated vertex $A \lambda \hat{\lambda}$

- = integrated vertex $W d \hat{d}$

Scalar field theory box diagram cutoff

$$
R^{4} \int d^{D} k\left(\frac{1}{k^{2}}\right)^{4}
$$

$$
R^{4} \Lambda^{D-8}
$$

$(D \hat{D})^{8} G$
Log divergence in $D=8$

[Yang-Mills case: $F^{4} \Lambda^{D-8}$]

Two-loop skeleton

$$
c_{2}^{D} \partial^{4} R^{4} \Lambda^{2(D-7)}
$$

$(D \hat{D})^{12} G$

The two types of allowed contributions
Log divergence in $D=7$
Forbidden diagram $=0$
[Yang-Mills case:
$\left.F^{4} \Lambda^{2(D-7)}\right]$
$c_{2}^{(7+\epsilon)} \sim$ Vacuum amplitude in $(3+\epsilon)$ dimensions

THREE LOOPS - period matrices Degenerate case

$\Omega_{I J}$ only depends on five combinations of T_{i}

$$
\text { (on } T_{5}+T_{6} \text { not } T_{5}-T_{6} \text {) }
$$

The two distinct three-loop skeletons

$$
\Omega_{I J}=\left(\begin{array}{ccc}
T_{1}+T_{4}+T_{5} & -T_{5} & -T_{4} \\
-T_{5} & T_{2}+T_{5}+T_{6} & -T_{6} \\
-T_{4} & -T_{6} & T_{3}+T_{4}+T_{6}
\end{array}\right)
$$

THREE LOOPS

Ladder amplitude

The two distinct three-loop skeletons

$$
c_{3}^{D} \partial^{6} R^{4} \Lambda^{3(D-6)}
$$

$(D \hat{D})^{14} G$

Log divergence in
$D=6$

not allowed

$$
\mathrm{O}=\text { integrated vertex } G P P
$$

$\mathbf{O}=$ integrated vertex $G P P$

Examples of contributions

Coefficient $c_{3}^{(6+\epsilon)}=$ vacuum amplitude for ϕ^{3} scalar field theory in $(4+\epsilon)$ dimensions

Comment on contact interaction :
>0 = contact vertex

Arises in YM planar term (and SUGRA) only
$\partial^{2} \operatorname{Tr} F^{4} \Lambda^{3 D-18}$

- not in nonplanar term, giving milder
$\partial^{4}\left(\operatorname{Tr} F^{2}\right)^{2} \Lambda^{3 D-20}$ divergence.

FOUR LOOPS

$$
\partial^{12} R^{4} \Lambda^{4 D-26}
$$

Ladder amplitude

Two of the five four-loop skeletons

Log divergence in

$$
D=11 / 2
$$

Example of a leading amplitude

- Results up to four loops agree with the suggestion that ultraviolet divergence first occurs as log divergence at L loops in dimension

$$
\begin{aligned}
& \qquad D=4+\frac{6}{L} \quad \text { Planar SYM and SUGRA] } \\
& \text { c.f. Bern, Carrasco, Dixon, Johansson, Kosower, Roiban }
\end{aligned}
$$

Would lead to finiteness in $D=4$ if true for all loops

- This behaviour followed by dimensional analysis once the fermionic zero modes have been extracted.

What happens at five loops?

FIVE LOOPS
The sixteen five-loop skeletons
to which vertices must be attached

5

6

7

10

12

13

14

15

16

New feature arises at five loops. In this case require $3 L-3=12$ binsertions. Can now get a new singularity

$$
\left(\frac{r}{\lambda \bar{\lambda}}\right)^{12} d^{24}
$$

Small- $\lambda, \bar{\lambda}$ singularity and more than $11 r$'s gives $0 / 0$. Needs new regulator for tip of the cone. Berkovits and Nekrasov.

Effectively exchanges a power of $r / \lambda \bar{\lambda}$ for a d giving a total of $24+1=25 d$'s, as required. But subtle details need to be resolved!

This only affects the leading divergence, which arises entirely from the last two skeleton diagrams. No triangles.

All four vertices can now be $G_{m n} P^{m} P^{n}$.

Only the last two diagrams give leading contribution:
(Skeletons with no sub-triangles)

$c_{5}^{(D)} \partial^{8} R^{4} \Lambda^{5 D-24}$

Nonplanar

Planar

The vertices contain momentum factors that cancel four propagators, leaving the vacuum (skeleton) diagrams

$$
\partial^{8} R^{4} \int d^{5 D} k\left(\frac{1}{k^{2}}\right)^{12}
$$

SUGGESTS that at FIVE LOOPS leading divergence is

$$
c_{5}^{(D)} \partial^{8} R^{4} \Lambda^{5 D-24}
$$

- Would give a 5-loop log divergence in $D=24 / 5$ dimensions. (but $c_{5}^{(24 / 5+\epsilon)}$ is unknown)
- Earlier formula suggests $\partial^{10} R^{4} \Lambda^{5 D-26}$ - logarithm in dimensions.

$$
D=4+6 / L=26 / 5
$$

- In $D=4$ dimensions ($N=8$ supergravity) this gives the L-loop behaviour

$$
\partial^{8} R^{4} \Lambda^{L(D-2)-14}
$$

which would lead to a log divergence in four dimensions at seven loops $D=4, L=7$.

- It would be a surprise if its coefficient were to vanish since there is no (obvious) supersymmetry protection.

A more complete 5-loop calculation is of interest.

Questions

- Does perturbative supergravity make sense in isolation from string theory? At what order do UV divergences arise?
- Can the perturbation expansion of supergravity be obtained from string theory?
Can the onset of UV divergences of multi-loop supergravity be determined as a limit of multi-loop superstring theory?
- How is the structure of perturbative supergravity embedded in the non-perturbative duality symmetries of string theory?

Discrete versus continuous duality symmetry groups
Role of non-perturbative states.

