strings 2011

 UPPSALA JUNE 27-JULY 2 A-polynomial, B-model, and S-dualitysergei Gukov
Organizers: Lars Brink Ulf Danielsson Ulf Lindström Joseph Minahan Antti Niemi Maxim Zabzine

Conclusions

In this talk, I will present evidence for the following new results about Chern-Simons theory:

- Hidden symmetry

$$
G \rightarrow{ }^{L} G \quad \hbar \rightarrow{ }^{L} \hbar=-\frac{4 \pi^{2}}{\hbar}
$$

- A-polynomial = space of SUSY vacua in 3d $\mathrm{N}=2$ gauge theory
- simple formula that turns classical curves $A(x, y)=0$ into quantum operators

Chern-Simons gauge theory

$$
S=\int_{M} \operatorname{Tr}\left(A_{\wedge} d A+\frac{2}{3} A_{\wedge} A_{\wedge} A\right)
$$

> non-abelian interacting gauge theory
> has a long history ...
$>$ has many applications ...

Chern-Simons gauge theory

$$
S=\int_{M} \operatorname{Tr}\left(A_{\wedge} d A+\frac{2}{3} A_{\wedge} A_{\wedge} A\right)
$$

$M=3$-manifold (possibly with boundary)

$$
Z(M)=\int e^{-\frac{S}{\hbar}} \nsubseteq A
$$

"quantum invariant" of M
[E.Witten]
> depends on the choice of the gauge group
$>$ depends on the "coupling constant" \hbar

$$
q=e^{\hbar}
$$

Modular Form?

Jones polynomial
z(3) $=$
[E.Witten]

Modular Form?

$$
z(\&)=q^{-2}-q^{-1}+1-q^{1}+q^{2}
$$

- "experiments" with Don Zagier (circa 2007): analytically continue to complex q
leads to G

[E.Witten]

Modular Form?

$$
z(囚)=q^{-2}-q^{-1}+1-q^{1}+q^{2}
$$

Jones polynomial

- "experiments" with Don Zagier (circa 2007): analytically continue to complex q
leads to $\mathrm{G} \leadsto \mathrm{G}_{\mathbb{C}}$

$$
\begin{aligned}
\mathbf{Z}(丹) & =1-\left(q^{-1}-2-q^{1}\right)+\ldots \\
& =\sum_{m=0}^{\infty} \prod_{n=1}^{m}\left(1-q^{n}\right)\left(1-q^{-n}\right)
\end{aligned}
$$

Modular Form?

$$
Z(\otimes)=q^{-2}-q^{-1}+1-q^{1}+q^{2}
$$

Jones polynomial

$$
\begin{aligned}
& =1-\left(q^{-1}-2-q^{1}\right)+\ldots \\
& =\sum_{m=0}^{\infty} \prod_{n=1}^{m}\left(1-q^{n}\right)\left(1-q^{-n}\right)
\end{aligned}
$$

Realization in String Theory

6d five-brane theory
[J.Gauntlett, N.Kim] on $M \times S^{3}$
[T.Dimofte, S.G, L.Hollands] [S.Cecotti, A.Neitzke, C.Vafa]
[E.Witten]
[K.Hosomichi, S.Lee, J.Park] [Y.Terashima, M.Yamazaki]

SL(2) Chern-Simons on 3-manifold M

3d $\mathcal{N}=2$ "effective" gauge theory on S^{3}

"Geometric Engineering"

6d five-brane theory

 on $M \times S^{3}$(partial topological twist along M)

SL(2) Chern-Simons on 3-manifold M
(Ω-deformation along S^{3})

3d $\mathcal{N}=2$ "effective" gauge theory on S^{3}

3d analog of AGT correspondence

2-manifold C

4d $\mathcal{N}=2$ SUSY gauge theory on $\mathbb{R} \times S^{3}$

$$
\mathcal{H}_{b}^{\text {Liouv }}(C)=\mathcal{H}_{\epsilon 1,2}^{\mathcal{N}=2}\left(S^{3}\right)
$$

[L.F.Alday, D.Gaiotto, Y.Tachikawa]

3d $\mathcal{N}=2$ "effective"
3-manifold M \leadsto gauge theory on S^{3}

$$
Z^{C S}(M ; \hbar)=Z^{3 d}\left(\epsilon_{1} / \epsilon_{2}\right)
$$

Reduction on $M=\mathbb{R} \times C$

6d five-brane theory
on $M \times S^{3}$

SL(2) Chern-Simons on 3-manifold M

3d $\mathcal{N}=2$ "effective" gauge theory on S^{3}

Reduction on $M=\mathbb{R} \times C$

[L.F.Alday, D.Gaiotto, Y.Tachikawa] 6d five-brane theory [N.Nekrasov, E.Witten]

on $\mathbb{R} \times C \times S^{3}$

SL(2) Chern-Simons on 3 -manifold $\mathbb{R} \times C$

4d $\mathcal{N}=2$ SUSY gauge theory on $\mathbb{R} \times S^{3}$

$$
\begin{gathered}
\mathcal{H}_{\hbar}^{C S}(C)=\mathcal{H}_{b}^{\text {Liouv }}(C)=\mathcal{H}_{\epsilon_{1,2}}^{\mathcal{N}=2}\left(S^{3}\right) \\
\hbar=2 \pi i b^{2}=2 \pi i \frac{\epsilon_{1}}{\epsilon_{2}}
\end{gathered}
$$

The semi-classical limit h w $b^{2} / 0$

6d five-brane theory on $M \times S^{3}$

SL(2) Chern-Simons on 3-manifold M

3d $\mathcal{N}=2$ theory $T(M)$ on S_{b}^{3}

The semi-classical limif hw blo 0

[T.Dimofte, S.G., L.Hollands]

5d $\mathcal{N}=2$ super-Yang-Mills

on $M \times \mathbb{R}^{2}$
(partial topological twist along M)
(Ω-deformation along \mathbb{R}^{2})

3d $\mathcal{N}=2$ theory $T(M)$
on $\mathbb{R}^{2} \times S^{1}$
 bosons : fermions :

$$
(4,4) \rightarrow \mathbf{3}^{(\pm 1, \pm 1)} \oplus \mathbf{1}^{(\pm 1, \pm 1)}
$$

Flat connections = SUSY Moduli

[T.Dimofte, S.G., L. Hollands]

Sd $\mathcal{N}=2$ super-Yang-Mills

(partial topological on $M \times \mathbb{R}^{2}$
(partial topological twist along M)
(Ω-deformation along \mathbb{R}^{2})

SL(2) Chern-Simons on 3-manifold M

$$
\begin{gathered}
3 \mathrm{~d} \mathcal{N}=2 \text { theory } T(M) \\
\text { on } \mathbb{R}^{2} \times S^{1}
\end{gathered}
$$

classical solutions:

SUSY vacua
$d \mathcal{A}+\mathcal{A} \wedge \mathcal{A}=0$

T1
 charged chiral

$$
U(1) k=-1 / 2
$$

3d $\mathcal{N}=2$ theory $T(M):$
3-manifold M:

3-manifold M :

3d $\mathcal{N}=2$ theory $T(M):$

T1
charged chiral $U(1) \mathrm{k}=-1 / 2$

T[SU(2)]

$U(1)$
$k=-1$

U(1)
$\mathrm{k}=+1$

- Notice, in all these examples $T(M)$ is an Abelian quiver gauge theory

charged chiral

$$
U(1) k=-1 / 2
$$

T[SU(2)]

- Notice, in all these examples $T(M)$ is an Abelian quiver gauge theory
- Twisted superpotential has the following general form, cf. 2d $\mathcal{N}=2$ SQED:

$$
\mathcal{W}=\sum\left(\sigma_{i}-m_{k}\right)\left(\log \frac{\sigma_{i}-m_{k}}{\mu}-1\right)
$$

U(1)
$k=+1$

- Notice, in all these examples $T(M)$ is an Abelian quiver gauge theory
- Twisted superpotential has the following general form, cf. 2d $\mathcal{N}=2$ SQED:

$$
\mathcal{W}=\sum\left(\sigma_{i}-m_{k}\right)\left(\log \frac{\sigma_{i}-m_{k}}{\mu}-1\right)
$$

- Twisted superpotential in a theory on $\mathbb{R}^{2} \times S_{R}^{1}$:

$$
\mathcal{W}=\frac{i}{R} \sum \operatorname{Li}_{2}\left(e^{i R\left(\sigma_{i}-m_{k}\right)}\right)
$$

Algebraic curves from 3d $\mathcal{N}=2$ theories

$$
W\left(\sigma_{i}, v_{k}\right)
$$

[T.Dimofte, S.G.]

1. Extremize w.r.t all dynamical fields σ_{i}

$$
\frac{\partial \mathcal{W}}{\partial \sigma_{i}}=0
$$

2. Introduce "duals" of all non-dynamical parameters ν_{k} (twisted masses, FI terms, etc.)

$$
u_{k}:=\frac{\partial \mathcal{W}}{\partial v_{k}}
$$

3. Expect something nice to happen ...

Algebraic curves from $3 \mathrm{~d} \mathcal{N}=2$ theories

$$
C=T^{2} \backslash\{p\}
$$

$\mathcal{V}=$ eigenvalue of
SL(2) holonomy around the puncture

4d $\mathcal{N}=2^{*}$ theory duality group:
$\Gamma(C)=\operatorname{PSL}(2, \mathbb{Z})$
[R.Donagi, E.Witten]
mass of the adjoint matter multiplet $m_{\text {adj }}$

Algebraic curves from 3d $\mathcal{N}=2$ theories

 mapping cylinder

Duality wall in 4d $\mathcal{N}=2^{*}$ theory

$$
\boldsymbol{\Gamma}(C)=\operatorname{PSL}(2, \mathbb{Z})
$$

[N.Drukker, D.Gaiotto, J.Gomis] [K.Hosomichi, S.Lee, J.Park]
$\mathcal{V}=$ eigenvalue of

SL(2) holonomy around the puncture
mass of the adjoint matter multiple $m_{\text {adj }}$
punctured torus bundle M

$$
A(x, y)=0
$$

In Chern-Simons theory with a
Wilson loop, the polynomial $A(x, y)$ is a topological invariant called the Apolynomial and plays a role similar to that of the Seiberg-Witten curve in $\mathcal{N}=2$ gauge theory.
[S.G.] Strings'03
punctured torus
$\longleftrightarrow 3 \mathrm{~d} \mathcal{N}=2$ theory $T(M)$

Example:

$$
\varphi=T S T^{-1} S^{-1}
$$

$$
\begin{aligned}
u & :=\frac{\partial \mathcal{W}_{\mathrm{eff}}(v)}{\partial v} \\
x & =e^{u} \quad y=e^{v}
\end{aligned}
$$

$$
A(x, y)=0
$$

punctured torus $\longleftrightarrow 3 \mathrm{~d} \mathcal{N}=2$ theory $T(M)$

$$
\begin{aligned}
u & :=\frac{\partial \mathcal{W}_{\text {eff }}(v)}{\partial v} \\
x & =e^{u} \quad y=e^{v}
\end{aligned}
$$

Example:

$$
A(x, y)=0
$$

$$
\varphi=T S T^{-1} S^{-1}
$$

$$
A(x, y) \equiv x^{4}-\left(1-x^{2}-2 x^{4}-x^{6}+x^{6}\right) y+x^{4} y^{2}
$$

One more example

$Z^{3 d}\left(\epsilon_{1} / \epsilon_{2}\right)=s_{b}=\Phi_{\hbar}$
"quantum dilogarithm"

Computing SL(2) partition functions

[T.Dimofte, S.G., J.Lenells, D.Zagier]
[T.Dimofte]

$$
\begin{aligned}
Z^{C S}(M ; \hbar) & =\int_{C_{\rho}} \prod_{j=1}^{N} \Phi_{\hbar}\left(\Delta_{j}\right)^{ \pm 1} \prod_{i=1}^{N-b_{0}(\Sigma)} \frac{d p_{i}}{\sqrt{4 \pi \hbar}} \\
& \stackrel{\hbar \rightarrow 0}{\sim} \exp \left(\frac{1}{\hbar} \mathcal{W}+\mathcal{O}(\log \hbar)\right)
\end{aligned}
$$

Computing SL(2) partition functions

[T.Dimofte, S.G., J.Lenells, D.Zagier]
[T.Dimofte]
$Z^{C S}(M ; \hbar)=\int_{C_{\alpha}} d p \frac{\Phi_{\hbar}(p-u)}{\Phi_{\hbar}(-p-u)} e^{-\frac{2 p u}{\hbar}}$

$$
\stackrel{\hbar \rightarrow 0}{\sim} \exp \left(\frac{1}{\hbar} \mathcal{W}+\mathcal{O}(\log \hbar)\right)
$$

Standard Model of 3-manifolds?

- We can build 3-manifolds from basic building blocks (tetrahedra, etc.)

- What are the corresponding building blocks of $3 \mathrm{~d} \mathcal{N}=2$ SUSY theories?

The Generations of Matter Is there a simple dictionary?

- YES! Work in progress with T.Dimofte and D.Gaiotto

