Lie Algebra Structures in Yang-Mills and Gravity Amplitudes

Henrik Johansson
IPhT Saclay
June 27, 2011
Strings 2011 Uppsala

Based on work in collaboration with:
Z.Bern, J.J.Carrasco, L.Dixon, R.Roiban

Outline

- Simple double-copy structure of gravity
- Duality between color and kinematics
- Evidence at tree level
- Explicit loop amplitudes with manifest duality
- Amplitude UV behavior from duality
- Kinematic Lie algebra and Lagrangian formulation
- Conclusion

Einstein Gravity Feynman rules

de Donder gauge:

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

 ~ 100 terms !
higher order vertices...

On－shell simplifications

\sim Graviton plane wave：$\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}$
〔 Yang－Mills polarization
On－shell 3－graviton vertex：

$=i \kappa\left(\eta_{\mu_{1} \mu_{2}}\left(k_{1}-k_{2}\right)_{\mu_{3}}+\right.$ cyclic $)\left(\eta_{\nu_{1} \nu_{2}}\left(k_{1}-k_{2}\right)_{\nu_{3}}+\right.$ cyclic $)$〔 Yang－Mills vertex

Gravity scattering amplitude：

$$
\begin{gathered}
M_{4}^{\text {tree }}(1,2,3,4)=-i \frac{s t}{u} A_{4}^{\text {tree }}(1,2,3,4) \tilde{A}_{4}^{\text {tree }}(1,2,3,4) \\
\text { 亿 Yang-Mills amplitude }
\end{gathered}
$$

On－shell gravity objects are＂squares＂of Yang－Mills objects！ －holds for the entire S－matrix Bern，Carrasco，HJ［BCJ］

Kawai-Lewellen-Tye Relations

String theory tree-level identity: closed string \sim (left open string) \times (right open string)

KLT relations emerge after nontrivial world-sheet integral identities
Field theory limit \Rightarrow gravity theory \sim (gauge theory) \times (gauge theory)

$$
\begin{aligned}
M_{4}^{\text {tree }}(1,2,3,4)= & -i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3) \\
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \widetilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \widetilde{A}_{5}^{\text {tree }}(3,1,4,2,5)
\end{aligned}
$$

gravity states are products of gauge theory states:
$|1\rangle_{\text {grav }}=|1\rangle_{\text {gauge }} \otimes|1\rangle_{\text {gauge }}$

Gravity should be cubic

Yang-Mills \rightarrow cubic

schematically: $\mathcal{L}_{\mathrm{YM}} \sim A \square A+\partial A^{3}$

Einstein gravity \rightarrow cubic

schematically: $\quad \mathcal{L}_{\mathrm{G}} \sim h \square h+\partial^{2} h^{3}$

And gravity should be a double copy of a YM theory:

$$
\begin{align*}
h^{\mu \nu} & \sim A^{\mu} A^{\nu} \tag{BCJ}\\
V_{\mathrm{G}}\left(k_{1}, k_{2}, k_{3}\right) & =V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right) V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right)
\end{align*}
$$

Gauge theory is the key

The simplicity of gravity stems from a novel structure in Yang-Mills

- represent amplitudes using cubic graphs only:

$$
\begin{equation*}
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \leftarrow \text { propagators } \tag{BCJ}
\end{equation*}
$$

Diagram numerators satisfy the algebra:

These are the same relations the color factors satisfy (Lie Algebra)
Duality: color \leftrightarrow kinematics

Gravity is a double copy

- Gravity amplitudes are obtained after replacing color by kinematics

$$
\begin{align*}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}-}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{clll}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity }+ \text { axion+ dillaton }
\end{array}
$$

Four-point example

- Usual tree-level decomposition

$$
\mathcal{A}_{n}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\mathcal{P}(2, \ldots, n)} \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right] A_{n}^{\text {tree }}(1,2, \ldots, n)
$$

- Alternative decomposition, 4 pt example

$$
\mathcal{A}_{4}^{\mathrm{tree}}(1,2,3,4)=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)
$$

- Map

$$
\begin{array}{ll}
\tilde{f}^{a b c} \equiv i \sqrt{2} f^{a b c}=\operatorname{Tr}\left(\left[T^{a}, T^{b}\right] T^{c}\right) \quad \text { color structures } \\
A_{4}^{\text {tree }}(1,2,3,4) \equiv \frac{n_{s}}{s}+\frac{n_{t}}{t}, & \\
A_{4}^{\text {tree }}(1,3,4,2) \equiv-\frac{n_{u}}{u}-\frac{n_{s}}{s} & \text { kinematic structures } \\
A_{4}^{\text {tree }}(1,4,2,3) \equiv-\frac{n_{t}}{t}+\frac{n_{u}}{u} &
\end{array}
$$

color factors

$$
c_{u} \equiv \tilde{f}^{a_{4} a_{2} b} \tilde{f}^{b a_{3} a_{1}}
$$

$$
c_{s} \equiv \tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}}
$$

$$
c_{t} \equiv \tilde{f}^{a_{2} a_{3} b} \tilde{f}^{b a_{4} a_{1}}
$$

kinematic numerators

$$
n_{s}, n_{t}, n_{u}
$$

absorbs 4-pt contact terms

4-pt kinematic Jacobi relation

$$
\mathcal{A}_{4}^{\text {tree }}(1,2,3,4)=g^{2}\left(\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}\right)
$$

- Jacobi identity for color and for kinematics

$$
c_{u}=c_{s}-c_{t} \quad \Leftrightarrow \quad n_{u}=n_{s}-n_{t}
$$

color factors
$c_{u} \equiv \tilde{f}^{a_{4} a_{2} b} \tilde{f}^{b_{a} a_{1}}$
$c_{s} \equiv \tilde{f}^{a_{1} a_{2} b} \tilde{f}^{b a_{3} a_{4}}$
$c_{t} \equiv \tilde{f}^{a_{2} a_{3} b} \tilde{f}^{b a_{4} a_{1}}$

- Easy to check using Feynman rules
- Kinematic numerators gauge dependent - but 4pt identity is gauge invariant

$$
-n_{s}^{\prime}+n_{t}^{\prime}+n_{u}^{\prime}=-n_{s}+n_{t}+n_{u}+\Delta\left(k_{j}, \varepsilon_{j}\right)(s+t+u)=0
$$

Generalized gauge transformation...

...explains why this kinematic structure has remained hidden.

$$
\mathcal{A}_{n}^{\text {tree }}=\sum_{i} \frac{c_{i} n_{i}}{\prod_{\alpha} p_{\alpha}^{2}} \quad(2 n-5)!!\text { cubic diagrams }
$$

Define "generalized gauge transformation" on amplitude as

$$
n_{i} \rightarrow n_{i}+\Delta_{i} \quad \text { such that } \quad \sum_{i} \frac{c_{i} \Delta_{i}}{\prod_{\alpha} p_{\alpha}^{2}}=0
$$

Amplitudes invariant under this transformation, but not duality

$$
n_{i}+n_{j}+n_{k} \neq 0 \quad \not \quad c_{i}+c_{j}+c_{k}=0
$$

To see the duality one must find the transformation that makes the numerators obey the algebra - in general a nontrivial task

Tree-Level Evidence

Duality gives new amplitude relations

In color ordered tree amplitudes 3 legs can be fixed: ($n-3$)! basis
4 points:

$$
A_{4}^{\text {tree }}(1,2,\{4\}, 3)=\frac{\boldsymbol{A}_{4}^{\text {tree }}(1,2,3,4) s_{14}}{s_{24}} \quad s_{i j . .}=\left(k_{i}+k_{j}+\ldots\right)^{2}
$$

5 points:

$$
\begin{aligned}
A_{5}^{\text {tree }}(1,2,\{4\}, 3,\{5\}) & =\frac{A_{5}^{\text {tree }}(1,2,3,4,5)\left(s_{14}+s_{45}\right)+A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}}{s_{24}}, \\
A_{5}^{\text {tree }}(1,2,\{4,5\}, 3) & =\frac{-A_{5}^{\text {tree }}(1,2,3,4,5) s_{34} s_{15}-A_{5}^{\text {tree }}(1,2,3,5,4) s_{14}\left(s_{245}+s_{35}\right)}{s_{24} s_{245}}
\end{aligned}
$$

...relations obtained for any multiplicity
These were later found to be equivalent to monodromy relations on the open string worldsheet Bjerrum-Bohr, Damgaard, Vanhove; Stieberger Also field theory proofs through BCFW: Feng, Huang, Jia; Chen, Du, Feng

Tree-level gravity checks

- Original conjecture checked through 8 points Bern, Carrasco, HJ

$$
\mathcal{A}_{n}^{\text {tree }}=\sum_{i} \frac{n_{i} c_{i}}{\prod_{\alpha} p_{\alpha}^{2}} \quad \Leftrightarrow \quad \mathcal{M}_{n}^{\text {tree }}=\sum_{i} \frac{n_{i} \widetilde{n}_{i}}{\prod_{\alpha} p_{\alpha}^{2}}
$$

- All-multiplicity proof assuming gauge theory duality: Bern, Dennen, Huang, Kiermaier

Work by Tye and Zhang connects to heterotic string

$$
\left.\mathcal{A}^{\text {het }}\right|_{\alpha^{\prime} \rightarrow 0}=\sum_{i} \frac{n_{\mathrm{L}, i} \widetilde{n}_{\mathrm{R}, i}}{\prod_{\beta} p_{\beta}^{2}}
$$

Left sector $\quad n_{\mathrm{L}, i} \Leftrightarrow$ modes in spacetime $\quad R^{(1, D-1)}$
Right sector $\widetilde{n}_{\mathrm{R}, i} \Leftrightarrow$ modes in spacetime $R^{(1, D-1)} \times T^{N_{c}}$

Some tree-level solutions

- All-multiplicity solution for non-local tree numerators using KLT Kiermaier; Bjerrum-Bohr, Damgaard, Sondergaard Vanhove
$\mathcal{M}_{n}=i \sum_{\sigma \in S_{n-2}} n_{1, \sigma_{2}, \ldots, \sigma_{n-1}, n} \times \tilde{A}_{n}\left(1, \sigma_{2}, \ldots, \sigma_{n-1}, n\right)$

- Explicit local numerators using pure-spinor methods in $D=10$ Mafra, Schlotterer, Stieberger
- Cubic Feynman rules obeying the duality for MHV sector of YM Monteiro and O'Connell

Loop-Level Evidence

Manifest duality in $\mathcal{N}=4$ SYM 4-pt ampl.

Known cases of duality-satisfying loop amplitudes:

prefactor contains
helicity structure:

$$
K=s t A_{4}^{\text {tree }}
$$

Duality: $\mathcal{N}=8 \mathrm{SG}$ is obtained if $1 \rightarrow 2$ (numerator squaring)

Old form of 3-loop amplitude

Problem: no double copy in 0808.4112 [hep-th] (Bern, Carrasco, Dixon, HJ, Roiban)

N=8 SG

$$
\begin{aligned}
& \left(s\left(\tau_{26}+\tau_{36}\right)+t\left(\tau_{15}+\tau_{25}\right)+s t\right)^{2} \\
& +\left(s^{2}\left(\tau_{26}+\tau_{36}\right)-t^{2}\left(\tau_{15}+\tau_{25}\right)\right)\left(\tau_{17}+\tau_{28}+\tau_{39}+\tau_{4,10}\right) \\
& +s^{2}\left(\tau_{17} \tau_{28}+\tau_{39} \tau_{4,10}\right)+t^{2}\left(\tau_{28} \tau_{39}+\tau_{17} \tau_{4,10}\right) \\
& +u^{2}\left(\tau_{17} \tau_{39}+\tau_{28} \tau_{4,10}\right)
\end{aligned}
$$

$$
\left(s \tau_{45}-t \tau_{46}\right)^{2}-\tau_{27}\left(s^{2} \tau_{45}+t^{2} \tau_{46}\right)
$$

$$
-\tau_{15}\left(s^{2} \tau_{47}+u^{2} \tau_{46}\right)-\tau_{36}\left(t^{2} \tau_{47}+u^{2} \tau_{45}\right)
$$

$$
+l_{5}^{2} s^{2} t+l_{6}^{2} s t^{2}-\frac{1}{3} l_{7}^{2} s t u
$$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

After nontrivial reshuffling

3-loop $\mathcal{N}=4$ SYM admits manifest realization of duality - and $\mathcal{N}=8 \mathrm{SG}$ is simply the square

(d)

Integral $I^{(x)}$	$\mathcal{N}=4$ Super-Yang-Mills $(\sqrt{\mathcal{N}=8 \text { supergravity }) ~ n u m e r a t o r ~}$
(a)-(d)	s^{2}
(e)-(g)	$\left(s\left(-\tau_{35}+\tau_{45}+t\right)-t\left(\tau_{25}+\tau_{45}\right)+u\left(\tau_{25}+\tau_{35}\right)-s^{2}\right) / 3$
(h)	$\left(s\left(2 \tau_{15}-\tau_{16}+2 \tau_{26}-\tau_{27}+2 \tau_{35}+\tau_{36}+\tau_{37}-u\right)\right.$
	$\left.+t\left(\tau_{16}+\tau_{26}-\tau_{37}+2 \tau_{36}-2 \tau_{15}-2 \tau_{27}-2 \tau_{35}-3 \tau_{17}\right)+s^{2}\right) / 3$
(i)	$\left(s\left(-\tau_{25}-\tau_{26}-\tau_{35}+\tau_{36}+\tau_{45}+2 t\right)\right.$
	$\left.+t\left(\tau_{26}+\tau_{35}+2 \tau_{36}+2 \tau_{45}+3 \tau_{46}\right)+u \tau_{25}+s^{2}\right) / 3$
(j)-(l)	$s(t-u) / 3$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

Works for non-susy theories

All-plus-helicity QCD amplitude:
1004.0476 [hep-th]

Bern, Carrasco, HJ

All-plus-helicity Einstein gravity amplitude:

(with dilation and axion in loops)

1-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(P)

Carrasco, HJ 1106.4711 [hep-hh]

$$
\begin{aligned}
& N^{(\mathrm{P})}=\beta_{12345} \equiv \delta^{(8)}(Q) \frac{[12][23][34][45][51]}{4 \varepsilon(1,2,3,4)} \\
& N^{(\mathrm{B})}=\gamma_{12345} \equiv \delta^{(8)}(Q) \frac{[12]^{2}[34][45][35]}{4 \varepsilon(1,2,3,4)}
\end{aligned}
$$

- The five-point amplitude makes the duality manifest!
$\bullet \mathcal{N}=8$ SG is obtained through the numerator double copy
e.g. Jacobi relation:

(P)

(P)

$$
N^{(\mathrm{B})}(1,2,3,4, p)=N^{(\mathrm{P})}(1,2,3,4, p)-N^{(\mathrm{P})}(2,1,3,4, p)
$$

2-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

(a)

(b)

(e)

(c)

Carrasco, HJ
1106.4711 [hep-th]

The 2-loop 5-point amplitude with duality exposed
$\tau_{i p}=2 k_{i} \cdot p$
$\gamma_{12} \equiv \gamma_{12345}$
Strings June 272011 H. Johansson

Duality and UV behavior

UV properties of $\mathcal{N}=8$ supergravity

Quick status:

- Conventional superspace power counting forbids $L=1,2$ divergences Green, Schwarz, Brink (1982), Howe and Stelle (1989), Marcus and Sagnotti (1985)
- Three-loop divergence ruled out by calculation: Bern, Carrasco, Dixon, HJ, Kosower, Roiban, (2007), Bern, Carrasco, Dixon, HJ, Roiban (2008)
- $L<7$ loop divergences ruled out by counterterm analysis, using $E_{7(7)}$ symmetry and other methods, but a $L=7$ divergence is still possible Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove, Kallosh, Ramond

Comparing $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SYM UV behavior for $D>4$
Through four loops the theories diverge in exactly the same dimension:

$$
D_{c}=4+\frac{6}{L} \quad(L>1)
$$

Bern, Carrasco, Dixon, HJ, Kosower, Roiban

Confirmed using duality-satisfying amplitudes: UV behavior is manifest

4-loops $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

Bern, Carrasco, Dixon, HJ, Roiban (to be published)

$$
\begin{aligned}
& N_{6}^{\mathrm{SYM}}=\frac{1}{2} s_{12}^{2}\left(\tau_{45}-\tau_{35}-s_{12}\right) \\
& N_{6}^{\mathrm{SG}}=\left[\frac{1}{2} s_{12}^{2}\left(\tau_{45}-\tau_{35}-s_{12}\right)\right]^{2}
\end{aligned}
$$

(6)
$N_{80}^{\mathrm{SYM}}=16 s_{12}^{2}\left(s_{13}-s_{23}\right)$
$N_{80}^{\mathrm{SG}}=\left[16 s_{12}^{2}\left(s_{13}-s_{23}\right)\right]^{2}$

$$
\begin{aligned}
N_{58}^{\mathrm{SYM}} & =s_{12}\left(2 s_{13}\left(\tau_{45}-3 \tau_{35}\right)-s_{12}\left(s_{13}-s_{23}+4 \tau_{25}+5 \tau_{35}+\tau_{45}\right)\right) \\
N_{58}^{\mathrm{SG}} & =\left[s_{12}\left(2 s_{13}\left(\tau_{45}-3 \tau_{35}\right)-s_{12}\left(s_{13}-s_{23}+4 \tau_{25}+5 \tau_{35}+\tau_{45}\right)\right)\right]^{2}
\end{aligned}
$$

(58)

- 85 diagrams in total
- Duality manifest
- Power counting manifest both $\mathcal{N}=4$ and $\mathcal{N}=8$
- Both diverge in $D=11 / 2$

$$
\left.\mathcal{M}_{4}^{(4)}\right|_{\text {pole }}=-\frac{23}{8}\left(\frac{\kappa}{2}\right)^{10} s_{12} s_{13} s_{23}\left(s_{12}^{2}+s_{13}^{2}+s_{23}^{2}\right)^{2} M_{4}^{\text {tree }}\left(V_{1}+2 V_{2}+V_{8}\right)
$$

Towards a kinematic Lie algebra

All available evidence suggest that exist kinematic numerators of gauge theory amplitudes that satisfy the same general algebra as the color structures of these theories.

Suggest the existence of a Lie algebra for the kinematics!

- In 1103.0312 [hep-th] Bern and Dennen investigate the trace structure of kinematical numerators.
- In 1105.2565 [hep-th] Monteiro and O'Connell identify a diffeomorphism Lie algebra in the self-dual Yang-Mills sector. From this they obtain the kinematic structure constants for MHV tree amplitudes.
- In 1004.0693 [hep-th] Bern, Dennen, Huang, Kiermaier work out the first terms of a duality-satisfying Lagrangian

Lagrangian formulation

- First attempt at Lagrangian with manifest duality $\begin{aligned} & \text { 1004.0693 [hep-th] } \\ & \begin{array}{l}\text { Bern, Dennen, Huang, } \\ \text { Kiermaier }\end{array}\end{aligned}$

YM Lagrangian receives corrections at 5 points and higher
$\mathcal{L}_{Y M}=\mathcal{L}+\mathcal{L}_{5}^{\prime}+\mathcal{L}_{6}^{\prime}+\ldots$
corrections proportional to the Jacobi identity (thus equal to zero)
$\mathcal{L}_{5}^{\prime} \sim \operatorname{Tr}\left[A^{\nu}, A^{\rho}\right] \frac{1}{\square}\left(\left[\left[\partial_{\mu} A_{\nu}, A_{\rho}\right], A^{\mu}\right]+\left[\left[A_{\rho}, A^{\mu}\right], \partial_{\mu} A_{\nu}\right]+\left[\left[A^{\mu}, \partial_{\mu} A_{\nu}\right], A_{\rho}\right]\right)$
Introduction of auxiliary fields gives local cubic Lagrangian
$\mathcal{L}_{Y M}=\frac{1}{2} A^{a \mu} \square A_{\mu}^{a}-B^{a \mu \nu \rho} \square B_{\mu \nu \rho}^{a}-g f^{a b c}\left(\partial_{\mu} A_{\nu}^{a}+\partial^{\rho} B_{\rho \mu \nu}^{a}\right) A^{b \mu} A^{c \nu}+\ldots$
"squaring" gives gravity Lagrangian.

Summary

- Gravity appears to be a double copy of Yang-Mills theory, order by order in the S-matrix.
- The double-copy structure in field theory becomes clear if kinematic numerators are treated on equal footing with color factors. Suggesting that a kinematic Lie algebra should exist.
- Nontrivial evidence at tree and loop level supports the duality.
- Lagrangian formulation, connection to string theory, give hints of future potential. Duality should be a key tool for nonplanar gauge theory and gravity calculations.
- What is the physical interpretation the duality? What is the kinematic Lie algebra? Further understanding of the connection to string theory may help answer these questions.

Extra slides

Summary of checks of duality

Less-SUSY theories:
Tree level: all pure gauge theories have the same tree amplitudes as $\mathcal{N}=4$ SYM \checkmark

Two-loop $\mathcal{N}=0$ YM, 4p all-plus helicity

3-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

Again the D-dimensional amplitude admits a representation with manifest duality

Carrasco, HJ
(to be published)

("ladder-like" diagrams)
$\mathcal{N}=8 \mathrm{SG}$ obtained from
squaring the numerators
$N_{8}=-2 \gamma_{[12]} s_{45}^{2}+\frac{1}{6} s_{12}\left(\gamma_{[13]}\left(2 s_{13}+12 s_{23}-s_{12}\right)-\gamma_{[23]}\left(2 s_{23}+12 s_{13}-s_{12}\right)-\gamma_{[12]}\left(7 s_{12}-11 s_{45}\right)\right)$

3-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

some "Mercedes-like" diagrams...

$N_{14}=\gamma_{[54]}\left(\tau_{1 p}^{2}+\tau_{2 p}^{2}+\tau_{3 p}^{2}+\tau_{4 p}^{2}+\tau_{5 p}^{2}\right)+$ subleading in p

$$
\tau_{i p}^{2}=2 k_{i} \cdot p
$$

3-loop 5-pts $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

...in total 42 diagrams.

Carrasco, HJ
(to be published)

Conveniently the UV divergent diagrams (in $D=6$) are very simple:

(for SG the UV div. comes from the other diagrams as well)

Unitarity

Optical theorem:

$$
\begin{aligned}
& 1=S^{\dagger} S=\left(1-i T^{\dagger}\right)(1+i T) \\
& 2 \operatorname{Im} T=T^{\dagger} T \\
& 2 \operatorname{Im} \underbrace{}_{\text {aIIPS }} \underbrace{Y}_{\text {Onsthell }}
\end{aligned}
$$

The unitarity method reconstructs the amplitudes avoiding dispersion relations Bern, Dixon, Dunbar, Kosower (1994)

Compute a cut: put loop legs on-shell in amplitude $=$ sew trees amplitudes checking every cut channel will fix the loop integrals

Amplitude relations for any number of legs

- General relations for gauge theory partial amplitudes

$$
A_{n}^{\text {tree }}(1,2,\{\alpha\}, 3,\{\beta\})=\sum_{\{\sigma\}_{j} \in \operatorname{POP}(\{\alpha\},\{\beta\})} A_{n}^{\text {tree }}\left(1,2,3,\{\sigma\}_{j}\right) \prod_{k=4}^{m} \frac{\mathcal{F}\left(3,\{\sigma\}_{j}, 1 \mid k\right)}{s_{2,4, \ldots, ., k}}
$$

where

$$
\{\alpha\} \equiv\{4,5, \ldots, m-1, m\}, \quad\{\beta\} \equiv\{m+1, m+2, \ldots, n-1, n\}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { and } \\
\qquad \mathcal{F}\left(3, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-3}, 1 \mid k\right) \equiv \mathcal{F}(\{\rho\} \mid k)=\left\{\begin{array}{ll}
\sum_{l=t_{t}}^{n-1} \mathcal{G}\left(k, \rho_{l}\right) & \text { if } t_{k-1}<t_{k} \\
-\sum_{l=1}^{t_{k}} \mathcal{G}\left(k, \rho_{l}\right) & \text { if } t_{k-1}>t_{k}
\end{array}\right\}+\left\{\begin{array}{ll}
s_{2,4, \ldots, k} & \text { if } t_{k-1}<t_{k}<t_{k+1} \\
-s_{2,4, \ldots, k} & \text { if } t_{k-1}>t_{k}>t_{k+1} \\
0 & \text { else }
\end{array}\right\} \\
\text { and }
\end{array} \\
& \mathcal{G}(i, j)=\left\{\begin{array}{ll}
s_{i, j} \text { if } i<j \text { or } j=1,3 \\
0 & \text { else }
\end{array}\right\} \quad \text { and } t_{k} \text { is the position of leg } k \text { in the set }\{\rho\}
\end{aligned}
$$

$$
A_{\mathrm{n}}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)=\alpha_{1} A_{n}(1,2, \ldots, n)+\alpha_{2} A_{n}(2,1, \ldots, n)+\ldots+\alpha_{(n-3)!} A_{n}(3,2, \ldots, n)
$$

$$
\text { Basis size: }(n-3)!\quad \text { Compare to Kleiss-Kuijf relations (} n-2)!
$$

Recent proofs: Bjerrum-Bohr, Damgaard, Vanhove; Feng, Huang, Jia

Gauge theory amplitude properties

- Tree level, adjoint representation

$$
\mathcal{A}_{n}^{\text {tree }}(1,2, \ldots, n)=g^{n-2} \sum_{\mathcal{P}(2, \ldots, n)} \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} \cdots T^{a_{n}}\right] A_{n}^{\text {tree }}(1,2, \ldots, n)
$$

- Well-known partial amplitude properties

$$
\left.\begin{array}{ll}
\left.\begin{array}{ll}
A_{n}^{\text {tree }}(1,2, \ldots, n)=A_{n}^{\text {tree }}(2, \ldots, n, 1) & \text { cyclic symmetry } \\
A_{n}^{\text {tree }}(1,2, \ldots, n)=(-1)^{n} A_{n}^{\text {tree }}(n, \ldots, 2,1) & \text { reflection symmetry }
\end{array}\right\}(n-1)!/ 2 \\
\sum_{\sigma \in \text { cyclic }} A_{n}^{\text {tree }}(1, \sigma(2,3, \ldots, n))=0 & \text { "photon"-decoupling identity } \\
A_{n}^{\text {tree }}(1,\{\alpha\}, n,\{\beta\})=(-1)^{n_{\beta}} \sum_{\{\sigma\}_{i} \in \operatorname{OP}\left(\{\alpha\},\left\{\beta^{T}\right\}\right)} A_{n}^{\text {tree }}\left(1,\{\sigma\}_{i}, n\right) & \begin{array}{l}
\text { Kleiss-Kuiif } \\
\text { relations }
\end{array}
\end{array}\right\}(n-2)!
$$

- New relations reduce independent basis to ($n-3$)! Bern, Carrasco, HJ

