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Outline

e The wavefunction of the universe in EAdS and
dS

* 4d de Sitter or EAdS and conformal gravity.

e The wavefunction for 5d de Sitter



De Sitter space

* Expanding universe (Poincare patch)
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Comoving vs Physical distances.

* Xis comoving position”. Physical distance is exponentially
growing. (x = constant, geodesic of a particle “at rest”.)

* Fixed comoving distance Ax , gives an exponentially
growing physical distance.
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* Translation symmetry = momentum is conserved. e

* Fixed coming momentum k, gives a physical momentum
that increases to the past and decreases to the future.
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Horizon

Crossedat n=x, or kn =1

Follow a fixed k mode
Early times, large physical momentum, like plane waves in flat
space = Bunch Davies vacuum.

Looking at a fixed k mode at late times = looking at superhorizon
distances.



Pure gravity = Look at metric fluctuations.
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Gravity wave fluctuations become constant at late times 2>
Wavefunction becomes "'scale independent” for large scale factors:

( ) —W(h)

For length scales >> n

For each physical mode, the leading approximation to the wavefunction is a gaussian

kS h2 For superhorizon distances
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Consider computing corrections to the gaussian approximation.

Simplest 2 Three point function.

Can be computed directly by expanding the Einstein action to cubic order.
Conformal symmetry restricts its form = Only 3 possible shapes

Einstein gravity produces only one of these shapes.

JM & Pimentel




Imagine computing all tree diagrams = Leading contribution to higher point functions.

Contained in a classical solution of Einstein’s equation with fixed future (and
past BD) boundary conditions.



Fix the boundary conditions for the metric in the future to an arbitrary shape.

Impose (interacting) Bunch Davies boundary conditions in the past.
- Solution decays whenn 2> -(1+ i€) e . Feynman boundary conditions in
flat space. This prescription works to any order in perturbation theory.

2
iM—szE(R +12) Focus on one of the oscillating
e H Factors in the Hartle Hawking picture
(as we usually do when looking at
the Klein Gordon equation).
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Evaluate the classical action on a classical solution
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Late time behavior

M? .const
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s eszfJE(R+12) Y

WU=e =e Y. (h)

Interesting
Divergent “counterterms” = Pure phases, drop out from |W |? part

Klein Gordon norm - gives |\If|2



EAdS vs. dS

 The computation of the dS wavefunction is very similar
to the computation of the EAdS wavefunction.

* |In EAdS: Also evaluate the "wavefunction”, as in
Hartle-Hawking. We focus on the exponentially
increasing wavefunction in this case. S 7

(Generating function of correlation functions)

* |n perturbation theory, they are related in a very
simple way.



EAdS - dS analytic continuation
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The boundary conditions also transform properly:
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Decaying > oscillating with one frequency

In flat space = continuation from Euclidean space

In de Sitter 2 continuation from EAdS.



* This works also at loop level.

* Expectation values vs. Wavefunctions:

<BD ’ ¢Q§‘BD> Analytic continuation from Sphere
\If[gb] = <gb|BD> Analytic continuation from EAdS.
JM

Harlow, Stanford



Turning EAdS computations into dS
ones

 We could consider the action for an S3

boundary in EAdS. (The CFT partition function
on S3) = Gives usual Hartle-Hawking factor for
S3

‘\IJ‘Q ~ esds <« De Sittter entropy

* Black hole free energies in EAdS = Give
Hartle-Hawking factors for SzxslB . Metrics are

complex .
IM

Similar to Hartle, Hawking, Hertog



dS/CFT

Strominger
Witten

The wavefunction W[g,] = Z[g, ] ¢ (Im)

At one loop we start getting exponential suppressions

U o s I [ A

Suppression of ﬂuctuatlons at short dlstances.

Like an exclusive amplitude in a massless gauge theory.

Objections to dS/CFT go away. (Bubble decays =2 field
theories with boundaries, etc..)

-



EAdS, or dS, gravity wavefunction

* Can be evaluated at tree level using the
classical solution.

* We will show that the whole computation
could also be viewed as a problem in
conformal gravity.



Conformal Gravity

* Gravity that involves only the “conformal
class” of the metric.

e Overall rescalings of the metric (or Weyl
transformations of the metric) do not matter.

2
8 828,
e Action depends only on the Weyl tensor

§=[w?



* Equations of motion = 4% order in derivatives

- Leads to ghosts.
* Around flat space, the solutions go like

ikt 1Bt
€

,t and complex conjugates.

Flat space hamiltonian = non diagonalizable



Two properties:

e Solutions of pure gravity Einstein’s equations
with a cosmological constant are also
solutions of the equations of motion of
conformal gravity.

* Renormalized action on dS = Same as action
of conformal gravity on a solution of Einstein’s
equaﬁOnS. Anderson

Miskovic Olea
Aros Contreras Olea
Troncoso, Zanelli



Useful identity:

[ Euler = [W? +2 [ Ricci® —%RZ

Equations of motion of Weyl gravity = Involves Ricci tensor.

For Einstein spaces: ij X Guv

5Sconformal
dgHv

X — 0
YGuv Conformal gravity lagrangian ~ (Einstein equations )"2

Evaluating the Einstein action on an Einstein space = Same as evaluating the 4 volume.

SEocffgoc/WQ—E)

SE Renormalized = / d4x\/§ — Boundary = / d4:c\/§W2 — (Euler Number)



* |f we can select the Einstein solutions from the
more numerous solutions of conformal
gravity—> we can forget about the Einstein
action and compute everything in terms of the

conformal gravity action.
* We get an explicitly IR finite computation.



* A simple boundary condition on the fields of

conformal gravity selects the Einstein gravity
solutions.

e Conformal gravity equations: 4t order. 2
boundary conditions in the past from Bunch
Davies (or EAdS conditions). Two in the future:

gij(n=0) = g?j ,  Opgij(n=0)=0

ds? — _d772 + (90 'y 77292 + 77393 T )d:L'da;' Einstein solutions.
772

Starobinski
Fefferman Graham
No time derivative



qjC [h’h = O] = quinstein,Renormalized [h ]

onformal

S

€C f W2 —k p— GSE,Renormalized C =——

T

-We get the “‘right”’ sign for the conformal gravity action for dS and the “wrong”’
one for EAdS

III

-The overall constant is simply the ““central”’ charge, or the de Sitter entropy, which

is given by M?/H?

-This is also the only dimensionless coupling constant for pure gravity in dS (or AdS)
...(at tree level).



Ordinary de-Sitter wavefunctions:

h = -ikn)e™

Can be viewed as the combination
of conformal gravity wavefunctions
obeying the Neumann boundary
condition.

We can use the propagators of conformal gravity with a Neumann condition +
the vertices of conformal gravity

Or

The usual propagators of Einstein gravity



Ghosts?

* With a boundary condition, conformal gravity
gave the same results as ordinary gravity. Thus
we got rid of the ghosts.

* All we did, was to evaluate the ghost
wavefunctions at zero values for the ghost fields.

e A quartic action + conformal couplings to
background curvature = to an action in dS or
AdS, which is the sum of two quadratic fields, one
with positive norm one with negative norm. We
are simply putting zero boundary conditions for
the negative norm one.



Quartic Scalar field
1
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Massive (tachyonic in AdS) field

Massless field |
(setting this to zero at the boundary)



Quantum Questions

e Some versions Of N=4 Conformal SUgra appear
to be ﬁn|te Fradkin Tseytlin

e (one of these appears from the twistor string
th eo ry) Berkovits Witten

e Can this truncation be extended to the N=4
theory? Do we get an ordinary O(4) gauged

SUugra ? (suggested by Berkovits)

c 5 A In N=4 conformal supergravity, the coupling
fe W +CV'0O) Constant is the vev of a field = sets the ratio
of the Planck scale to the cosmological constant scale
We can get large hierarchies from a not so large C.



Quantum questions...

* Can the quantum theory with a Neumann
boundary condition be interpreted as the result
of a Unitary bulk theory ?

- Note that we would only get the wavefunction at
one time. Only superhorizon wavefunction.

- We expect problems with unitarity=> how do
these appear.

- Gravity + Pauli-Villars ghost field = Making mass
comparable to AdS (or dS) scale = gives
conformal gravity.



Conclusions

Conformal gravity with Neumann boundary conditions is
equivalent (at tree level) to ordinary gravity on
superhorizon distances.

In AdS: The partition function of conformal gravity with
Neumann boundary conditions is the same as that of
ordinary gravity

Gives a different way to compute AdS gravity correlation
functions. Connections with Twistor string?

This is non-linear, but classical (or semiclassical) relation

It would be interesting to see what happens in the
guantum case. One probably needs to do it for N=4
conformal sugra, which is finite.



Side remark



Einstein gravity in flat space

Limit from dS (or EAdS) gravity
Compute correlation functions of stress roichinsk

tensors

In progress

JM, Pimentel, Raju,...

Giddings
Penedones....

We do not have energy’” conservation

Singularity of the AdS (or dS) tree amplitude is
the flat space tree amplitude.

(r'(1)--

T(n)) ~

[T

(Both delta
Function stripped)

(o] + -

)n—l An,Flat



Another application of conformal
gravity

Solution of the tree level 5d measure for pure 5d
gravity.

Finding the probability for different shapes for
the spatial sections.



5d pure gravity in de Sitter

* Gravity with positive cosmological constant

* Consider the BD vacuum in the weakly

coupled regime, R

> 1
GnN

_ An? o drtdrd

772

\If (ng ) Wavefunction of the universe



* Similar to 4d case.
* Use the EAdS = dS analytic continuation.
* One crucial difference:



Starobinski,
In Euclidean space, we have a real answer: Fefferman-Graham
Heningson-Skenderis

\Ij(lzgzg) _ eCAdS[e%l f\/§—|—€i2 f\/§R+logefW2—E—|—Finite(g)]
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CAdS = > 1
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All terms become purely imaginary, including the finite term. The only

real part arises via
T

(Depends on the metric

‘\I}‘Q — e_cdSWfd4CB\/§(W2—E) of the four dimensional

/ N

Action of conformal gravity Gives a topological term,
the Euler number.

loge — log |ng| + 1



It is completely local

It was non-local in even bulk dimensions.

In three bulk dimensions, or dS; gravity, we get only the Euler number = only
the topology of the space matters.



Conclusions, 5d

* |n five dimensional de-Sitter there is a huge
simplification if we compute the

wavefunction.

 We simply get the action of conformal gravity
in 4d. This is the 4d spatial slice of the 5d
geometry at superhorizon distances.



Strings and Rigid strings  ointedou

by Polyakov)
/ \/§
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Induced metric

Susual

Polyakov

ngZd Weyl invariant in
target space.

The problem of computing a Wilson loop in AdS is equivalent to computing
a Wilson loop in flat space with the rigid string action, with an extra Neuman boundary
condition on the fields. X*(c=0)=f*(r), 09,X"(c=0)=0

Alexakis
Value of the Wilson loop - counterterm = Value of the rigid string action.



Membranes in dS and rigid strings

v (0%)2

Membrane (domain wall in 4d) is created in the probe approximation. (Or connecting
same energy vacua). Its dS boundary is a two dimensional surface. The tree level probability
that this surface has a given shape = Given by the rigid string action.

‘\IJ(X)‘Q _ e—RSTw(Smgid—Euler)

Berenstein, Corrado, JM

Same argument using the conformal anomaly for the membrane action  Fischler
Graham, Witten



The End









