Challenges of β-deformation

A.Morozov ${ }^{2}$

ITEP, Moscow

June 28, 2011

[^0]
I. β-DEFORMATION

β-deformation is an old subject
in the theory of matrix models and symmetric functions
Dedeking function counts Young diagrams

$$
\prod_{k}\left(1-q^{k}\right)^{-1}
$$

McMahon formula counts 3d partitions

$$
\begin{gathered}
\prod_{k}\left(1-q^{k}\right)^{-k} \\
\stackrel{t=q}{\Leftarrow} \prod_{i, j}\left(1-q^{i} t^{j}\right)^{-1}
\end{gathered}
$$

$S L(N)$ characters (Shur fns) $s_{R}\{p\} \longrightarrow$ MacDonald polynomials $M_{R}\{p\}$ eigenfunctions of cut-and-join operators $W(\Delta)$,

$$
W(\Delta) s_{R}=\varphi_{R}(\Delta) s_{R}
$$

\longleftrightarrow eigenfunctions of Ruijsenaars Hamiltonians

$$
\begin{gathered}
W(\Delta)=: \prod_{i} \operatorname{tr}\left(X \frac{\partial}{\partial X}\right)^{\delta_{i}}: \\
p_{k}=\operatorname{tr} X^{k}=k t_{k}
\end{gathered}
$$

Orthogonal polynomials w.r.t. the measure

$$
\begin{aligned}
& \oint \prod_{1=1}\left(x_{i}-x_{j}\right)^{2} \prod_{1} \frac{d x_{i}}{x_{i}} \\
& \rightarrow \oint \prod_{1 / 1}\left(x_{i}-x_{x}\right)^{28} \prod_{i} \frac{d x_{i}}{x_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { algebra } \\
& \text { (Shur fns) } \\
& \text { quantum algebra } \\
& \text { (Hall - Littlewood pols) } \\
& \text { Ruiijsenaars } \\
& \text { Calogero } \\
& \beta \text { - ensemble } \\
& \text { (Jack pols) } \\
& \text { MacDonald pols } \\
& q, \quad t=q^{\beta} \\
& M_{1}=p_{1}=\operatorname{Tr} X=\sum_{i} x_{i}, \\
& M_{11}=\frac{1}{2}\left(-p_{2}+p_{1}^{2}\right)=\sum_{i<j} x_{i} x_{j} \\
& M_{2}=\frac{1}{2}\left(-\frac{(q+1 / q)(t-1 / t)}{q t-1 / q t} p_{2}+\frac{(q-1 / q)(t+1 / t)}{q t-1 / q t} p_{1}^{2}\right)
\end{aligned}
$$

Quantum dimensions

$$
\begin{gathered}
\text { Quantum dimensions } M_{R}^{*}=M_{R}\left\{p=p^{*}\right\} \\
p_{k}^{*}=\frac{A^{k}-A^{-k}}{t^{k}-t^{-k}}=\frac{\left\{A^{k}\right\}}{\left\{t^{k}\right\}}, \quad A=t^{N} \\
M_{1}^{*}=\frac{A-1 / A}{t-t / t} \quad \xrightarrow{t=q}[N]_{q} \xrightarrow{q=1} N \\
M_{11}^{*}=\frac{\{A / t\}\{A\}}{\{t\}\left\{t^{2}\right\}} \quad \xrightarrow{t=q} \quad \xrightarrow[{[N-1]_{q}[N]_{q}}]{[2]_{q}} \xrightarrow{q=1} \quad \frac{(N-1) N}{2} \\
M_{2}^{*}=\frac{\{A\}\{A q\}}{\{t\}\{q t\}} \quad \xrightarrow{t=q} \quad \frac{[N]_{q}[N+1]_{q}}{[2]_{q}} \xrightarrow{q=1} \frac{N(N+1)}{2}
\end{gathered}
$$

Hook formula for quantum dimensions:

$$
M_{R}^{*}=\prod_{(i, j) \in R} \frac{\left\{A q^{i-1} / t^{j-1}\right\}}{\left\{q^{k} t^{l+1}\right\}}
$$

Familiar for those who know Nekrasov functions or topological vertex formulas

$$
\{z\}=z-z^{-1}
$$

At $\beta \neq 1$ only $M_{11 \ldots 1}^{*}$ are polynomials for $A=t^{N}$

Today β-deformation is finally in the mainstream: it appears naturally in our theories

Just two examples

AGT

6d CFT compactified on a Riemann surface: relates smth $2 d$ with smth $4 d$, e.g.
conformal blocks $=$ LMNS integrals

$$
\begin{gathered}
c=(N-1)\left\{1-N(N+1)\left(\sqrt{\beta}-\frac{1}{\sqrt{\beta}}\right)^{2}\right\} \\
g_{s}=\sqrt{-\epsilon_{1} \epsilon_{2}} \\
\beta=-\epsilon_{2} / \epsilon_{1}=b^{2}
\end{gathered}
$$

LMNS integral $=\sum_{R_{1}, \ldots, R_{N}}$ Nekrasov functions
Nekrasov functions have typical hook-product form, similar to MacDonald dimensions

3d AGT

involves 3d Chern-Simons theory, e.g.
relates S-duality (modular) transformations with knot invariants

Wilson average in CS theory $=$ HOMFLY polynomial of two variables: $q=e^{2 \pi i /(k+N)}$ and $a=q^{N}$
$\operatorname{HOMFLY}(a \mid q) \xrightarrow{\beta \neq 1}$ superpolynomial $P(A|q| t)$

$$
\begin{aligned}
P_{R}[K](A|q| t) & =\sum_{Q \vdash b[K]} c_{R}^{Q}[K] M_{Q}^{*} \\
t & =q^{\beta}
\end{aligned}
$$

only quantum dimension M_{Q}^{*} depend on $A=t^{N}$
Coefficients $c_{R}^{Q}[K]$ depend on the knot, are rational functions of q, t and for toric knots are described by a simple W-representation

What survives under β-deformation?

Everything related to character calculus:

- Seiberg-Witten equations

$$
\left\{\begin{array}{c}
a_{i}=\oint_{A_{i}} \Omega \\
\frac{\partial \log Z}{\partial a_{i}}=\oint_{B_{i}} \Omega
\end{array}\right.
$$

(\Longrightarrow quasiclassical integrability, WDVV equations)

- Virasoro constraints \longrightarrow AMM/EO topological recursion
- W-representations
- AGT relations
- knot invariants

What is lost after β-deformation?

Everything related to KP-integrability:

- $Z=\tau$-function
- determinantal representations
- Harer-Zagier recursion
- Kontsevich matrix models

Nice and natural decompositions:

- AGT could be a Hubbard-Stratanovich duality, but Nekrasov fns have extra poles
- Naive link invariants for $R \neq\left[1^{|R|}\right]$ are not superpolynomials

	natural quantities	factorizable constituents
DF integral	Selberg correlators	Nekrasov functions
link invariants	superpolynomials	MacDonald dimensions

II. MATRIX MODELS

Matrix models

- multiple integrals (over eigenvalues)

$$
Z=\left(\prod_{i=1}^{N} \int e^{V\left(x_{i}\right) / g_{s}} d x_{i}\right) \Delta\{x\}
$$

Exact evaluation will one day be possible in the context of non-linear algebra [hep-th/0609022]

Integral discriminants [0911.5278]

$$
\begin{gathered}
\iint d x d y e^{a x^{2}+b x y+d y^{2}} \sim \frac{1}{\sqrt{4 a d-b^{2}}}=D_{2 \mid 2}^{-1 / 2} \\
\iint d x d y e^{a x^{3}+b x^{2} y+c x y^{2}+d y^{3}} \sim D_{2 \mid 3}^{-1 / 6} \\
D_{2 \mid 3}=27 a^{2} d^{2}-b^{2} c^{2}-18 a b c d+4 a c^{3}+4 b^{3} d \\
\text { In general ordinary discriminants control } \\
\text { singularities of integral discriminants }
\end{gathered}
$$

Meanwhile - other approaches, which reveal a lot of hidden structures

- Ward identities (Virasoro constraints; loop equations) $=$ recursion relations for correlators

$$
\left(\sum_{k} k t_{k} \frac{\partial}{\partial t_{k+n}}+\sum_{a+b=n} \frac{\partial^{2}}{\partial t_{a} \partial t_{b}}\right) Z=0
$$

- preserved (slightly modified) by β-deformation
- Integrable structure:
as a function of t_{k} in $V(x)=\sum_{k} t_{k} x^{k}$ Z is a $\mathrm{KP} /$ Toda τ-function

$$
\frac{\partial^{2}}{\partial t_{1}^{2}} \log Z_{N}=\frac{Z_{N+1} Z_{N-1}}{Z_{N}^{2}}
$$

- broken (essentially modified) by the β-deformation
- genus expansion (t'Hooft coupling $a=N g_{s}$ fixed)

$$
\begin{gathered}
\Delta=\prod_{i \neq j}\left(x_{i}-x_{j}\right)^{\beta} \\
\log \Delta+\sum_{i} \frac{1}{g_{s}} V\left(x_{i}\right) \sim N^{2} \oplus N / g_{s} \\
F=g_{s}^{2} \log Z=\sum_{p=0}^{\infty} g_{s}^{2 p} F_{p}(a)
\end{gathered}
$$

In perturbation theory F_{0} is a sum of planar diagrams and so on.
Many integration contours \longrightarrow many a_{I}

Spectral curve

- Spectral curve Σ
Σ is defined at the genus-zero level $\left(F_{0}\right)$
Σ plays prominent role in two places:
resolvents \& SW equations

Resolvents, are peculiar generating functions of correlators

$$
\rho^{(p \mid m)}\left(z_{1}, \ldots, z_{m}\right)=\left\langle\prod_{i=1}^{m} \operatorname{Tr} \frac{d z_{i}}{z_{i}-X}\right\rangle_{p}=\sum_{\left\{k_{i}\right\}} \frac{1}{z_{i}^{k+1}}\left\langle\prod_{i} \operatorname{Tr} X^{k_{i}}\right\rangle_{p}
$$

Advantages:

- Resolvents are meromorphic poly-differentials on Σ
- As a consequence of Virasoro constraints they can be recursively reconstructed for a given Σ
+ SW differential $\Omega^{(0)}=\rho^{(0 \mid 1)} \sim y(z) d z$ and Bergmann kernel $\rho^{(2 \mid 0)}$ (AMM/EO recursion)

Drawback:

- sum over genera diverges, in particular

$$
\Omega(z)=\rho^{(\cdot \mid 1)}(z)=\sum_{p} g_{s}^{2 p} \rho^{(p \mid 1)}(z)
$$

can not be restored from the $\mathrm{AMM} / \mathrm{EO}$ recursion

$\rho^{(\cdot 11)}$ as the universal SW differential

$\Omega(z)$ is important:
it is the SW differential for the free energy $F(a)=\sum_{p} g_{s}^{2 p} F_{p}(a)$

$$
\left\{\begin{array}{c}
a_{i}=\oint_{A_{i}} \Omega \\
\frac{\partial \log Z}{\partial a_{i}}=\oint_{B_{i}} \Omega
\end{array}\right.
$$

Always in matrix models and β-ensembles

$$
\Omega(z)=\rho^{(\cdot \mid 1)}(z)=\sum_{p} g_{s}^{2 p} \rho^{(p \mid 1)}(z)
$$

(generally believed, but not proved)

Gaussian example: $\Sigma: \quad y(z)^{2}=z^{2}-4 g_{s} N$

$$
\begin{gathered}
Z_{N}=\frac{1}{N!} \int\left(x_{i}-x_{j}\right)^{2} e^{-x_{i}^{2} / 2 g_{s}} d x_{i} \sim g_{s}^{N^{2} / 2} \prod_{k=1}^{N-1} k! \\
\frac{\partial}{\partial N} \sum_{k=0}^{N-1} f(k)=\sum_{k} \frac{B_{k}}{k!} \partial^{k} f(N) \\
\frac{\partial}{\partial N} \log Z_{N}=N\left(\log g_{s} N-1\right)+\sum_{k} \frac{B_{2 k}}{k} \frac{1}{N^{2 k-1}}
\end{gathered}
$$

$$
\Omega(z)=-\frac{y(z)}{2}+\frac{g_{s}^{2}}{y(z)^{5}}+\frac{21 g_{s}^{4}\left(z^{2}+g_{s} N\right)}{y(z)^{11}}+\ldots
$$

$$
\oint_{A} \Omega(z)=N, \quad \oint_{B} \Omega(z)=\frac{\partial}{\partial N} \log Z_{N}
$$

General proof \Longleftarrow integrability [1011.5629]
Generalization - theory of DV phases in matrix models

HZ recursion. Alternatives to resolvent

How to define $\rho^{(\cdot \mid 1)}$?
Harer-Zagier recursion \Longleftarrow integrability [1007.4100]
Gaussian model $\left(V(x)=x^{2} / 2\right)$:

$$
\begin{gathered}
\rho(z)=\sum_{k} \frac{1}{z^{2 k+1}}\left\langle\operatorname{Tr} X^{2 k}\right\rangle \\
\phi(t)=\sum_{k} \frac{t^{2 k}}{(2 k-1)!!}\left\langle\operatorname{Tr} X^{2 k}\right\rangle \\
e(s)=\sum_{k} \frac{s^{2 k}}{(2 k)!}\left\langle\operatorname{Tr} X^{2 k}\right\rangle
\end{gathered}
$$

$\left\langle\operatorname{Tr} X^{2 k}\right\rangle^{N=1} \sim(2 k-1)!!\longrightarrow\left\langle\operatorname{Tr} X^{2 k}\right\rangle_{0} \sim \frac{(2 k-1)!!}{(k+1)!} \quad$ (Catalan numbers)

HZ functions for Gaussian model

$$
\phi(t \mid N)=\frac{1}{2 t^{2}}\left(\left(\frac{1+t^{2}}{1-t^{2}}\right)^{N}-1\right)
$$

- $N \longrightarrow \lambda$:

$$
\hat{\phi}(t \mid \lambda)=\sum_{N=0}^{\infty} \phi(t \mid N) \lambda^{N}=\frac{\lambda}{\lambda-1} \cdot \frac{1}{1-\lambda-(1+\lambda) t^{2}}
$$

- multi-point correlators:

$$
\hat{\phi}_{\text {odd }}\left(t_{1}, t_{2} \mid \lambda\right)=\frac{\lambda}{(1-\lambda)^{3 / 2}} \frac{\arctan \frac{t_{1} t_{2} \sqrt{1-\lambda}}{\sqrt{1-\lambda+(1+\lambda)\left(t_{1}^{2}+t_{2}^{2}\right)}}}{\sqrt{1-\lambda+(1+\lambda)\left(t_{1}^{2}+t_{2}^{2}\right)}}
$$

HZ: back to reolvents

- other generating functions:

$$
\begin{gathered}
\hat{e}(s \mid \lambda)=\frac{\lambda}{(1-\lambda)^{2}} e^{\frac{1+\lambda}{1-\lambda} s^{2}} \\
\hat{\rho}(z \mid \lambda)=\frac{i \lambda}{(1-\lambda) \sqrt{1-\lambda^{2}}} \operatorname{erf}\left(i z \sqrt{\frac{1-\lambda}{1+\lambda}}\right)= \\
=\sum_{k=0}^{\infty} \frac{\lambda(1+\lambda)^{k}}{(1-\lambda)^{k+2}} \frac{(2 k-1)!!}{z^{2 k+1}} \\
\Longrightarrow \rho(z)= \\
\frac{z-y(z)}{2}+\frac{N}{y^{5}(z)}+\frac{21 N\left(z^{2}+N\right)}{y^{11}(z)}+\ldots
\end{gathered}
$$

- β-deformation:
$\beta=2,1 / 2$ - 1-point fns through arctan $\beta=3$ - diff.eq.

W-representation

W-representations

Partition functions can be considered as

 a result of "evolution", driven by cut-and-join (W) operators from very simple "initial conditions" [0902.2627]$$
Z\{p\}=e^{g \hat{W}} \tau_{0}\{p\}
$$

If $W \in U G L(\infty)$, then KP/Toda-integrability is preserved

$$
\hat{W}_{n}=\frac{1}{2} \sum_{a, b}\left((a+b+n) p_{a} p_{b} \frac{\partial}{\partial p_{a+b+n}}+a b p_{a+b-n} \frac{\partial^{2}}{\partial p_{a} \partial p_{b}}\right)
$$

W-representation. Examples

- Hermitian matrix model $Z_{N}=\int d X^{\sum_{k} \frac{p_{k}}{k} \operatorname{Tr} X^{k}}$

$$
Z_{N}=e^{\hat{W}_{-2}} e^{N p_{0}}
$$

- Kontsevich model $Z=\int d X e^{\operatorname{Tr}\left(\frac{1}{3} X^{3}-L^{2} X\right)}, p_{k}=\operatorname{Tr} L^{-k}$

$$
Z=e^{\hat{W}_{-1}^{K}} \cdot 1
$$

$\hat{W}_{-1}^{K}=\frac{2}{3} \sum\left(k+\frac{1}{2}\right) \tau_{k} L_{k-1}^{K} \quad$ [A.Alexandrov, 1009.4887]

- Hurwitz model [V.Bouchard \& M.Marino, 0708.1458]

$$
Z=e^{t \hat{W}_{0}} e^{p_{1}}
$$

- Toric knots and links

$$
Z=e^{\frac{n}{m} \hat{W}_{0}} \prod_{\text {link comps }} \tilde{\chi}_{R}
$$

III. AGT RELATIONS

AGT relations: main points of interest

AGT relation

- Dotsenko-Fateev matrix model
- Hubbard-Stratanovich duality
- Relation to integrable systems
- Bohr-Sommerfeld integrals

Universality classes are labeled by integrable systems

$\mathcal{N}=2$ SYM models $\quad \stackrel{\text { AGT }}{\longleftrightarrow}$
$\downarrow \quad$ dictionary [1995-97]
2d CFT conformalblocks
1d integrable systems $\stackrel{?}{\longleftrightarrow}$
DF/Penner matrix model
quantization of integrable systems Shroedinger-like equations (Fourier tr. of Baxter eqs.) insertions of degenerate states
SW description through BS integrals

$$
\begin{gathered}
\Psi(z)=\exp \int^{z} \Omega, \quad \Omega=P d z \\
\partial F / \partial a=\oint_{B} \Omega, \quad a=\oint_{A} \Omega \\
\text { NS limit } \epsilon_{1} \rightarrow 0, \beta \rightarrow \infty
\end{gathered}
$$

DF/Penner/Selberg matrix model []

$$
\begin{gathered}
V_{\alpha_{2}}(q) \\
\left\langle e^{\alpha_{1} \phi(0)} e^{\alpha_{2} \phi(q)} e^{\alpha_{3} \phi(1)} e^{\alpha_{4} \phi(\infty)} \prod_{i=1}^{N_{1}} \int_{0}^{q} e^{b \phi\left(x_{i}\right)} \prod_{j=1}^{N_{2}} \int_{0}^{1} e^{b \phi\left(y_{j}\right)}\right\rangle \\
\alpha_{1}+\alpha_{2}+b N_{1}=\alpha \\
\alpha+\alpha_{3}+\alpha_{4}+b N_{2}=0 \\
=\int d x_{\alpha_{i}} \int d y_{j}\left(x_{i}-x_{i^{\prime}}\right)^{2 \beta}\left(y_{j}-y_{j^{\prime}}\right)^{2 \beta} \underline{\left(x_{i}-y_{j}\right)^{2 \beta}\left(x_{i} y_{j}\right)^{2 \alpha_{1} b}\left(\left(q-x_{i}\right)\left(q-y_{j}\right)\right)^{2 \alpha_{2} b}\left(\left(1-x_{i}\right)\left(1-y_{j}\right)\right)^{2 \alpha_{3} b}} \\
=\int_{d \mu(x)} \int_{d \mu(y)}(\operatorname{Mixing} \operatorname{term}(x \mid y))^{2}
\end{gathered}
$$

Selberg measure

$$
\begin{gathered}
\text { for } \beta=1 \\
d \mu(x)=\prod_{i<i^{\prime}}\left(x_{i}-x_{i}^{\prime}\right)^{2} \prod_{i} x_{i}^{a}\left(1-x_{i}\right)^{c} d x_{i}
\end{gathered}
$$

is Selberg measure
Natural are Selberg averages of Shur functions, they are nicely factorized $=$ Nekrasov functions
β and MacDonald deformations:

$$
\begin{gathered}
\int_{\text {Jackson }} \prod_{k=0}^{\beta-1} \prod_{i \neq i^{\prime}}\left(x_{i}-q^{k} x_{i^{\prime}}\right) \\
q^{\beta}=t
\end{gathered}
$$

Averages of Jack and MacDonald polynomials are often not factorized linearly decompose into factorizable quantities (Nekrasov functions)

Pure gauge limit and BGW model

Pure-gauge limit \longrightarrow BGW model (unitary matrices!) [1011.3481]

Elliptic case (toric conformal blocks) $\xrightarrow{?}$ double-cut BGW [R.Dijkgraaf and C.Vafa, hep-th/0207106]

BGW model is an important building block in M-theory of matrix models [hep-th/0605171]

AGT as HS duality [1012.3137]

$$
\begin{gathered}
\approx \int_{d \mu(x)} \int_{d \mu(y)} \exp \left(2 \beta \sum_{i, j} \log \left(1-x_{i} y_{j}\right)\right)= \\
=\int_{d \mu(x)} \int_{d \mu(y)} \exp \left(\underline{2} \beta \sum_{k} p_{k} \bar{p}_{k} / k\right) \\
=\int_{d \mu(x)} \int_{d \mu(y)}\left(\sum_{A} \chi_{A}(X) \chi_{A}(Y)\right)\left(\sum_{B} \chi_{B}(X) \chi_{B}(Y)\right) \\
=\sum_{A, B}\left(\int_{d \mu(x)} \chi_{A}(X) \chi_{B}(X)\right)\left(\int_{d \mu(y)} \chi_{A}(Y) \chi_{B}(Y)\right)
\end{gathered}
$$

$$
p_{k}=\operatorname{Tr} X^{k}, \quad \bar{p}_{k}=\operatorname{Tr} Y^{k} \quad \text { [H.Itoyama \& T.Oota 1003.2929] }
$$

$$
\exp \sum_{k} \frac{[\beta]_{q^{k}} p_{k} \bar{p}_{k}}{k}=\sum_{A} \frac{C_{A}}{C_{A^{\prime}}} M_{A}(X) M_{A}(Y)
$$

AGT as Hubbard-Stratanovich duality [1012.2137]

$$
\begin{aligned}
& \sum_{X, Y}\left(\sum_{A} \chi_{A}(X) \chi_{A}(Y)\right)\left(\sum_{B} \chi_{B}(X) \chi_{B}(Y)\right)= \\
&= \sum_{A, B}\left(\sum_{X} \chi_{A}(X) \chi_{B}(X)\right)\left(\sum_{Y} \chi_{A}(Y) \chi_{B}(Y)\right)
\end{aligned}
$$

Conformal block $=\sum_{A, B} N_{A, B}$

Decomposition problem for $\beta \neq 1$

$$
\int_{d \mu(X)} \chi_{A}(X) \chi_{B}(X) \int_{d \mu(Y)} \chi_{A}(Y) \chi_{B}(Y) \stackrel{?}{=} N_{A, B}
$$

TRUE for $\beta=1$
NOT so simple for $\beta \neq 1$

$$
\begin{gathered}
<\chi_{[1]} \chi_{\bullet}><\chi_{[1]} \chi_{\bullet}>+<\chi_{\bullet} \chi_{[1]}><\chi_{\bullet} \chi_{[1]}>= \\
=\frac{1}{(z-\epsilon)} \frac{1}{(z+\epsilon)}+\frac{1}{(z+\epsilon)} \frac{1}{(z-\epsilon)}= \\
=\frac{2}{z^{2}-\epsilon^{2}}=\frac{1}{z(z-\epsilon)}+\frac{1}{z(z+\epsilon)}=N_{[1], \bullet}+N_{\bullet,[1]}
\end{gathered}
$$

For $\epsilon \neq 0(\beta \neq 1)$ particular Nekrasov functions
have extra zeroes (at $z=0$), not present in Kac determinant

Decomposition problem

Instead Nekrasov functions are nicely factorized, while Selberg correlators for $\beta \neq 1$ are not:

$$
\begin{gathered}
<\chi_{[3]} \chi_{\bullet}>_{B G W} \sim z^{2}-\left(5 \epsilon_{1}+8 \epsilon_{2}\right) z+6 \epsilon_{1}^{2}+23 \epsilon_{1} \epsilon_{2}+19 \epsilon_{2}^{2} \\
\xrightarrow{\epsilon_{2}=-\epsilon_{1}} z^{2}+3 \epsilon_{1} z+2 \epsilon_{1}^{2}=\left(z+\epsilon_{1}\right)\left(z+2 \epsilon_{1}\right)
\end{gathered}
$$

Decomposition problem

Natural quantities, e.g. Selberg correlators (involved into duality relations) are linear combinations of the nicely factorized functions (Nekrasov functions), which possess extra singularities

> Similar is the situation with knot invariants: superpolynomials for unknots (natural quantitites) are linear combinations of
> MacDonald dimensions (nicely factorized quantities)

IV. KNOTS

Knot theory

Not so much about knots rather about averages of characters knot \longrightarrow Wilson average $K=\left\langle\operatorname{Pexp} \oint_{\text {knot }} \mathcal{A}\right\rangle_{C S}$

$$
\longrightarrow K\{p \mid \operatorname{knot}\}=\sum_{R} K_{R}(\text { knot }) \chi_{R}\{p\} \longleftrightarrow \tau\{p \mid G\}
$$

G - point of the universal moduli space (universal Grassmannian)
different matrix models - different G different knots - different G ? modification of τ

A simple example of integrable knot invariants

"Special" polynomials

$$
S_{R}(A)=\left(S_{[1]}(A)\right)^{|R|}
$$

are obtained from HOMFLY at $q=1$
Coefficients are Catalan-like numbers, counting the numbers of certain paths on $2 d$ lattices

Satisfy Plücker relations and thus provide KP τ-functions

$$
\tau\{p\}=\sum_{R} S_{R}(A) \chi_{R}\{p\}
$$

Hierarchy of knot invariants for the $S L(N)$ family

For a given knot K and representation (Young diagram) R

$$
\begin{aligned}
& \text { Superpolynomial } P_{R}(A|q| t) \\
& \swarrow t \approx q \quad \searrow A \approx 1
\end{aligned}
$$

$C S \longrightarrow \quad$ HOMFLY $H_{R}(A \mid q)$
$q=1 \swarrow \quad N=2 \searrow N=0$
Heegard - Floer $H F_{R}(q \mid t)$

Special $S_{R}(A)$ Jones $J_{R}(q) \quad$ Alexander $\mathcal{A}_{R}(q)$

$$
A=t^{N}=q^{\beta N}
$$

$q=\exp \frac{2 \pi i}{k+N}, \quad A \sim \exp \left(\mathrm{t}^{\prime}\right.$ Hooft coupling $)$, finite in the loop expansion

Avatars of the knots

Braid representation of knot average

In the gauge $A_{0}=0$
knot invariants are described in terms of knot diagrams
Can be represented as a braid
Element of a braid group is a product of quantum R-matrices
(some generalization after the β-deformation)
$\mathrm{K}=$ "trace" of an element a braid group
Toric knots and links are made from a special braid element

Toric links and knots $T[m . n]$:

$$
H_{R}^{[m, n]}=\operatorname{Tr}\left(\mathcal{R}_{m}\right)^{n}
$$

$$
\operatorname{Tr}_{Q} I^{\otimes m}=\operatorname{tr}_{Q} q^{\rho}=\sum_{\vec{\alpha} \in Q} q^{\vec{\rho} \vec{\alpha}}=\chi_{Q}^{*}
$$

$=$ quantum dimension of representation Q

$$
R_{1} \otimes \ldots \otimes R_{m}=\oplus_{Q \vdash\left(\left|R_{1}\right|+\ldots+\left|R_{m}\right|\right)} c_{R}^{Q} \cdot Q
$$

Q - eigenspaces of \mathcal{R}_{m} with the eigenvalues λ_{Q}.

$$
H_{R}^{[m, n]}(A \mid q)=\sum_{Q} c_{R}^{Q} \lambda_{Q}^{n} \chi_{Q}^{*}=e^{n \hat{W}} \sum_{Q} c_{R}^{Q} \chi_{Q}\{p\}
$$

$p \equiv p^{*}$ 三

MacDonald dimensions, repeated

Quantum dimensions $M_{R}^{*}=M_{R}\left\{p=p^{*}\right\}$

$$
\begin{gathered}
p_{k}^{*}=\frac{A^{k}-A^{-k}}{t^{k}-t^{-k}}=\frac{\left\{A^{k}\right\}}{\left\{t^{k}\right\}}, \quad A=t^{N} \quad\{z\}=z-1 / z \\
M_{1}^{*}=\frac{A-1 / A}{t-t / t} \quad \stackrel{t=q}{\longrightarrow}[N]_{q} \xrightarrow{q=1} N \\
M_{11}^{*}=\frac{\{A / t\}\{A\}}{\{t\}\left\{t^{2}\right\}} \quad \stackrel{t=q}{\longrightarrow} \quad \frac{[N-1]_{q}[N]_{q}}{[2]_{q}} \xrightarrow{q=1} \quad \frac{(N-1) N}{2} \\
M_{2}^{*}=\frac{\{A\}\{A q\}}{\{t\}\{q t\}} \quad \xrightarrow{t=q} \quad \frac{[N]_{q}[N+1]_{q}}{[2]_{q}} \xrightarrow{q=1} \quad \frac{N(N+1)}{2}
\end{gathered}
$$

HOMFLY case [X.-S.Lin and H.Zheng, math.QA/0601267]:

$$
\begin{gathered}
\hat{W}=\frac{1}{m} \hat{W}[2]=\frac{1}{m} \sum_{a, b \geq 1}\left((a+b) p_{a} p_{b} \frac{\partial}{\partial p_{a+b}}+a b p_{a+b} \frac{\partial^{2}}{\partial p_{a} \partial p_{b}}\right) \\
\hat{W}[2] s_{Q}\{p\}=\varkappa_{Q} s_{Q}\{p\}, \quad \lambda_{Q}=q^{\varkappa_{Q} / m} \\
s_{1}\{p\}=p_{1}, \quad s_{2}\{p\}=\frac{1}{2}\left(p_{2}+p_{1}^{2}\right), \quad s_{11}\{p\}=\frac{1}{2}\left(-p_{2}+p_{1}^{2}\right), \ldots \\
\varkappa_{Q}=\sum_{i} q_{i}\left(q_{i}-2 i+1\right)=\nu_{Q}-\nu_{Q^{\prime}} \\
\nu_{Q}=\sum_{i}(i-1) q_{i}
\end{gathered}
$$

For general theory of cut-and-join operators see [0904.4227]

Moreover, "initial conditions" for n-evolution are very simple, e.g.

$$
\begin{gathered}
H_{1}^{[m, n]}=\left.q^{\frac{n}{m} \hat{W}[2]} p_{m}\right|_{p=p^{*}} \\
H_{R}^{[m, n]}=\left.q^{\frac{n}{m} \hat{W}[2]} s_{R}\left\{p_{m k}\right\}\right|_{p=p^{*}}
\end{gathered}
$$

for mutually prime n and m, and

$$
H_{R_{1} \ldots R_{m}}^{[m, m k]}=\left.q^{k \hat{W}[2]} s_{R_{1}}\left\{p_{m k}\right\} \ldots s_{R_{m}}\left\{p_{m k}\right\}\right|_{p=p^{*}}
$$

In the last case they simply follow from the fact that $T[m, n]$ for $n=0$ is a set of m unknots.

In the first case for $n=1$ there is a single unknot,

$$
\text { i.e. } H_{R}^{[m, 1]} \sim s_{R}^{*} \text {. }
$$

Matrix-model representation

$$
H_{R}^{[m, n]}(A \mid q)=\left.e^{n \hat{W}} \sum_{Q} c_{R}^{Q} \chi_{Q}\{p\}\right|_{p=p^{*}}=\sum_{Q} c_{R}^{Q} q^{\frac{n}{m} \varkappa_{Q}} \chi_{Q}^{*}
$$

Reformulation in terms of Frobenius algebra (linear space + multiplication + linear form):

$$
\begin{gathered}
H_{R}^{[m, n]}\left(A=q^{N} \mid q\right)=\left\langle s_{R}\left[U^{m}\right]\right\rangle=\sum_{Q} c_{R}^{Q}\left\langle s_{Q}[U]\right\rangle \\
\left\langle s_{Q}[U]\right\rangle \sim q^{\frac{n}{m} \varkappa Q} s_{Q}^{*}
\end{gathered}
$$

Matrix-model realization of this linear form $\left(q=e^{\hbar}\right)$:

$$
\langle F[U]\rangle=\int d u_{i} e^{u_{i}^{2} / \hbar} \sinh \sqrt{\frac{n}{m}} \frac{u_{i}-u_{j}}{2} \sinh \sqrt{\frac{m}{n}} \frac{u_{i}-u_{j}}{2} F\left[\exp \left(\sqrt{\frac{n}{m}} u_{i}\right)\right]
$$

[M.Tierz]; [A.Brini, B.Eynard \& M.Marino, 1105.2012]

Split W-representation for toric superpolynomials [1106.4305]

Deformation from Shur to MacDonald:

$$
\begin{gathered}
H_{R}^{[m, n]}(A \mid q)=\sum_{Q} c_{R}^{Q} q^{-\frac{n}{m}\left(\nu_{Q}-\nu_{Q^{\prime}}\right)} s_{Q}^{*} \longrightarrow \\
P_{R}^{[m, n]}(A|q| t)=\sum_{Q} c_{R}^{Q} q^{-\frac{n}{m} \nu_{Q}} t^{\frac{n}{m} \nu_{Q^{\prime}}} M_{Q}^{*} \\
\text { split (refined) W-representation } \\
\text { (discrete evolution) }
\end{gathered}
$$

How to choose the coefficients c ?

Properties of c_{R}^{Q} for toric knots

- They depend on the series $T[m, m k+p], p=0,1, \ldots, m-1$
- They satisfy "initial conditions" at $k=0: T[m, p]=T[p, m], p<m$
- They are such, that $P_{R}^{[m, m k+p]}(A|q| t)$ is a polynomial in all its variables with positive coefficients

$$
\text { for all } k \text { at once }
$$

Initial condition would be sufficient, if imposed for all values of time-variables p_{k}

Actually it is imposed only on the subspace $p_{k}=p_{k}^{*}=\frac{A^{k}-A^{-k}}{t^{k}-t^{-k}}$, and this is not sufficient for $|Q| \geq 4$

The third condition should be used

Example of $P_{[1]}^{[m, m k+1]}$

It is tedious, but it works:

$$
\begin{gathered}
p_{m}=\sum_{Q \vdash m} \bar{c}_{[1]}^{Q} M_{Q}\{p\} \\
c_{[1]}^{Q}=\bar{c}_{[1]}^{Q} \cdot \gamma_{[1]}^{Q} \\
\gamma^{[2]}=\frac{1+q^{2}}{1+q^{2}}=1, \quad \gamma^{[11]}=\frac{1+t^{2}}{1+q^{2}} \\
\gamma^{[3]}=\frac{1+q^{2}+q^{2} q^{2}}{1+q^{2}+q^{2} q^{2}}=1, \quad \gamma^{[21]}=\frac{1+q^{2}+q^{2} t^{2}}{1+q^{2}+q^{2} q^{2}}, \quad \gamma^{[111]}=\frac{1+t^{2}+t^{2} t^{2}}{1+q^{2}+q^{2} q^{2}}
\end{gathered}
$$

General formula can be easily written down, also for other series

Verification

- Consistent with all known superpolynomials in all fundamental representations $R=\left[1^{|R|}\right]$
- Consistent with HOMFLY - Jones $(N=2)$ - Alexander $(N=0)$ (by definition)
- Consistent with Heegard-Floer polynomials $H F_{R}(q \mid t)$
- Consistent with superpolynomials, evaluated by the sums of paths on $2 d$ lattices (q, t-Catalan numbers)
- Reproduce $P_{[2]}^{[2,3]}$ of M.Aganagic \& Sh.Shakirov, but does not reproduce Hopf link superpols $P_{[2],\left[1^{s}\right]}^{[2,2]}$ of GIKV and AK (because of the different choice of unknot superpolynomial)

Open problems

- Higher non-fundamental representations $R \neq\left[1^{|R|}\right]$

Choice of unknots:
$\frac{A q-(A q)^{-1}}{t q-(t q)^{-1}}$ is not a polynomial, even if $A=t^{N}$

- Link invariants

Do superpolynomials exist at all for toric links?
Weaker polynomiality condition
Weaker positivity condition [Awata \& Kanno]
Split W-evolution, starting from modified unknots does not quite reproduce the known answers

- Non-toric knots

Potentially successful example of $5_{2} \longrightarrow 10_{139}$
Breakdown of positivity for evolution of 4_{1}

MANY THANKS FOR YOUR ATTENTION!

[^0]: ${ }^{2}$ A.Alexandrov, V.Dolotin, P.Dunin-Barkovsky, D.Galakhov, A.Marshakov, A.Mironov, And.Morozov, S.Natanzon, A.Popolitov, Sh.Shakirov, A.Sleptsov, A.Smirnov, E.Zenkevich

