Challenges of β -deformation

A.Morozov²

ITEP, Moscow

June 28, 2011

²A.Alexandrov, V.Dolotin, P.Dunin-Barkovsky, D.Galakhov, A.Marshakov, A.Mironov, And.Morozov, S.Natanzon, A.Popolitov, Sh.Shakirov, A.Sleptsov, A.Smirnov, E.Zenkevich

A.Morozov³ (ITEP)

I. β -DEFORMATION

$\beta\mbox{-deformation}$ is an old subject in the theory of matrix models and symmetric functions

Dedeking function counts Young diagrams

$$\prod_k \; (1-q^k)^{-1}$$

McMahon formula counts 3d partitions

$$\prod_k \ (1-q^k)^{-k} \ \stackrel{t=q}{\longleftarrow} \ \prod_{i,j} \ (1-q^it^j)^{-1}$$

A.Morozov⁵ (ITEP)

イロト 不得下 イヨト イヨト 二日

SL(N) characters (Shur fns) $s_R\{p\} \longrightarrow$ MacDonald polynomials $M_R\{p\}$

eigenfunctions of cut-and-join operators $W(\Delta)$,

$$W(\Delta)s_R = arphi_R(\Delta)s_R$$

 \longleftrightarrow eigenfunctions of Ruijsenaars Hamiltonians

$$egin{aligned} \mathcal{W}(\Delta) &=: \prod_i \operatorname{tr} \left(X rac{\partial}{\partial X}
ight)^{\delta_i} : & \ p_k &= \operatorname{tr} X^k = k t_k \end{aligned}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Orthogonal polynomials w.r.t. the measure

$$\oint \prod_{i < j} (x_i - x_j)^2 \prod_i \frac{dx_i}{x_i}$$

$$\longrightarrow \oint \prod_{i < j} (x_i - x_j)^{2\beta} \prod_i \frac{dx_i}{x_i}$$

$$\longrightarrow \oint \prod_{i \neq j} \prod_{k=0}^{\beta-1} (x_i - q^k x_j) \prod_i \frac{dx_i}{x_i}$$

A.Morozov⁷ (ITEP)

불▶ ◀ 불▶ 불 ∽ ९. June 28, 2011 5 / 55

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Quantum dimensions

Quantum dimensions
$$M_R^* = M_R \{p = p^*\}$$

$$p_k^* = rac{A^k - A^{-k}}{t^k - t^{-k}} = rac{\{A^k\}}{\{t^k\}}, \qquad A = t^N$$

$$M_1^* = rac{A-1/A}{t-t/t} \quad \stackrel{t=q}{
ightarrow} \ [N]_q \; \stackrel{q=1}{
ightarrow} \; N$$

$$M_{11}^{*} = \frac{\{A/t\}\{A\}}{\{t\}\{t^{2}\}} \xrightarrow{t=q} \frac{[N-1]_{q}[N]_{q}}{[2]_{q}} \xrightarrow{q=1} \frac{(N-1)N}{2}$$
$$M_{2}^{*} = \frac{\{A\}\{Aq\}}{\{t\}\{qt\}} \xrightarrow{t=q} \frac{[N]_{q}[N+1]_{q}}{[2]_{q}} \xrightarrow{q=1} \frac{N(N+1)}{2}$$

A.Morozov⁹ (ITEP)

. . .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Hook formula for quantum dimensions:

$$M_{R}^{*} = \prod_{(i,j)\in R} \frac{\{Aq^{i-1}/t^{j-1}\}}{\{q^{k}t^{l+1}\}}$$

Familiar for those who know Nekrasov functions or topological vertex formulas

$$\{z\}=z-z^{-1}$$

At $\beta \neq 1$ only $M^*_{11...1}$ are polynomials for $A = t^N$

A.Morozov¹⁰ (ITEP)

June 28, 2011 8 / 55

Today β -deformation is finally in the mainstream: it *appears* naturally in our theories

Just two examples

• • • • • • • • • • • •

AGT

6*d* CFT compactified on a Riemann surface: relates smth 2*d* with smth 4*d*, e.g.

conformal blocks = LMNS integrals

$$c = (N-1)\left\{1 - N(N+1)\left(\sqrt{\beta} - \frac{1}{\sqrt{\beta}}\right)^2\right\}$$

$$g_s = \sqrt{-\epsilon_1 \epsilon_2}$$

 $eta = -\epsilon_2/\epsilon_1 = b^2$

LMNS integral = $\sum_{R_1,...,R_N}$ Nekrasov functions Nekrasov functions have typical hook-product form, similar to MacDonald dimensions

A.Morozov¹² (ITEP)

Challenges of β -deformation

June 28, 2011 10 / 55

イロト イポト イヨト イヨト 二日

3d AGT

involves 3*d* Chern-Simons theory, e.g. relates S-duality (modular) transformations with **knot invariants**

Wilson average in CS theory = HOMFLY polynomial of two variables: $q = e^{2\pi i/(k+N)}$ and $a = q^N$

 $\operatorname{HOMFLY}(a|q) \xrightarrow{\beta \neq 1} \operatorname{superpolynomial} P(A|q|t)$

$$\mathcal{P}_R[\mathcal{K}](A|q|t) = \sum_{Qdash b[\mathcal{K}]} c^Q_R[\mathcal{K}] M^*_Q$$

$$t = q^{\beta}$$

only quantum dimension M_Q^* depend on $A = t^N$

Coefficients $c_R^Q[K]$ depend on the knot, are rational functions of q, tand for toric knots are described by a simple *W*-representation

A.Morozov¹³ (ITEP)

Challenges of β -deformation

June 28, 2011

11 / 55

What survives under β -deformation? Everything related to character calculus:

• Seiberg-Witten equations

$$\begin{cases} a_i = \oint_{A_i} \Omega \\ \\ \frac{\partial \log Z}{\partial a_i} = \oint_{B_i} \Omega \end{cases}$$

(⇒ quasiclassical integrability, WDVV equations)
 Virasoro constraints → AMM/EO topological recursion

- W-representations
 - AGT relations
 - knot invariants

What is lost after β -deformation?

Everything related to KP-integrability:

• $Z = \tau$ -function

- determinantal representations
 - Harer-Zagier recursion
 - Kontsevich matrix models

Nice and natural decompositions:

- AGT could be a Hubbard-Stratanovich duality, but Nekrasov fns have extra poles
- Naive link invariants for $R \neq [1^{|R|}]$ are not superpolynomials

	natural quantities	factorizable constituents
DF integral	Selberg correlators	Nekrasov functions
link invariants	superpolynomials	MacDonald dimensions

II. MATRIX MODELS

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Matrix models

• multiple integrals (over eigenvalues)

$$Z = \left(\prod_{i=1}^{N} \int e^{V(x_i)/g_s} dx_i\right) \Delta\{x\}$$

(日) (四) (三) (三) (三)

Exact evaluation will one day be possible in the context of **non-linear algebra** [hep-th/0609022]

Integral discriminants [0911.5278]

$$\iint dxdy \ e^{ax^2 + bxy + dy^2} \sim \frac{1}{\sqrt{4ad - b^2}} = D_{2|2}^{-1/2}$$
$$\iint dxdy \ e^{ax^3 + bx^2y + cxy^2 + dy^3} \sim D_{2|3}^{-1/6}$$
$$D_{2|3} = 27a^2d^2 - b^2c^2 - 18abcd + 4ac^3 + 4b^3d$$

In general ordinary discriminants control singularities of integral discriminants

Meanwhile – other approaches, which reveal a lot of hidden structures

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Ward identities (Virasoro constraints; loop equations) = recursion relations for correlators

$$\left(\sum_{k} kt_{k} \frac{\partial}{\partial t_{k+n}} + \sum_{a+b=n} \frac{\partial^{2}}{\partial t_{a} \partial t_{b}}\right) Z = 0$$

– preserved (slightly modified) by β -deformation

Integrable structure:

as a function of t_k in $V(x) = \sum_k t_k x^k$ Z is a KP/Toda τ -function

$$\frac{\partial^2}{\partial t_1^2} \log Z_N = \frac{Z_{N+1} Z_{N-1}}{Z_N^2}$$

- broken (essentially modified) by the β -deformation

A.Morozov¹⁹ (ITEP)

June 28, 2011 17 / 55

• genus expansion (t'Hooft coupling $a = Ng_s$ fixed)

$$\Delta = \prod_{i \neq j} (x_i - x_j)^{\beta}$$

$$\log \Delta + \sum_i \frac{1}{g_s} V(x_i) \sim N^2 \oplus N/g_s$$

$$F = g_s^2 \log Z = \sum_{p=0}^{\infty} g_s^{2p} F_p(a)$$

In perturbation theory F_0 is a sum of planar diagrams and so on.

Many integration contours \longrightarrow many a_I

A.Morozov²⁰ (ITEP)

June 28, 2011 18 / 55

\bullet Spectral curve Σ

Σ is defined at the genus-zero level (F_0)

 Σ plays prominent role in two places: resolvents & SW equations

Resolvents, are peculiar generating functions of correlators

$$\rho^{(p|m)}(z_1,\ldots,z_m) = \left\langle \prod_{i=1}^m \operatorname{Tr} \frac{dz_i}{z_i - X} \right\rangle_p = \sum_{\{k_i\}} \frac{1}{z_i^{k+1}} \left\langle \prod_i \operatorname{Tr} X^{k_i} \right\rangle_p$$

Advantages:

• Resolvents are meromorphic poly-differentials on Σ

• As a consequence of Virasoro constraints

they can be recursively reconstructed for a given Σ + SW differential $\Omega^{(0)} = \rho^{(0|1)} \sim y(z)dz$ and Bergmann kernel $\rho^{(2|0)}$ (AMM/EO recursion)

Drawback:

• sum over genera diverges, in particular

$$\Omega(z) = \rho^{(\cdot|1)}(z) = \sum_{p} g_s^{2p} \rho^{(p|1)}(z)$$

can not be restored from the AMM/EO recursion

A.Morozov²² (ITEP)

 $\Omega(z)$ is important: it is the SW differential for the free energy $F(a) = \sum_{p} g_s^{2p} F_p(a)$

$$\begin{cases} a_i = \oint_{A_i} \Omega \\ \\ \frac{\partial \log Z}{\partial a_i} = \oint_{B_i} \Omega \end{cases}$$

Always in matrix models and β -ensembles

$$\Omega(z) =
ho^{(\cdot|1)}(z) = \sum_{p} g_s^{2p}
ho^{(p|1)}(z)$$

(generally believed, but not proved)

Gaussian example:
$$\Sigma$$
: $y(z)^2 = z^2 - 4g_s N$
 $Z_N = \frac{1}{N!} \int (x_i - x_j)^2 e^{-x_i^2/2g_s} dx_i \sim g_s^{N^2/2} \prod_{k=1}^{N-1} k!$
 $\frac{\partial}{\partial N} \sum_{k=0}^{N-1} f(k) = \sum_k \frac{B_k}{k!} \partial^k f(N)$
 $\frac{\partial}{\partial N} \log Z_N = N(\log g_s N - 1) + \sum_k \frac{B_{2k}}{k} \frac{1}{N^{2k-1}}$

 $\Omega(z) = -\frac{y(z)}{2} + \frac{g_s^2}{y(z)^5} + \frac{21g_s^4(z^2 + g_s N)}{y(z)^{11}} + \dots$ $\oint_A \Omega(z) = N, \qquad \oint_B \Omega(z) = \frac{\partial}{\partial N} \log Z_N$ General proof \iff integrability [1011.5629] Generalization – theory of DV phases in matrix models

A.Morozov²⁴ (ITEP)

June 28, 2011 22 / 55

HZ recursion. Alternatives to resolvent

How to define $\rho^{(\cdot|1)}$?

Harer-Zagier recursion \Leftarrow integrability [1007.4100]

Gaussian model (
$$V(x) = x^2/2$$
):

$$\rho(z) = \sum_{k} \frac{1}{z^{2k+1}} \left\langle \operatorname{Tr} X^{2k} \right\rangle$$

$$\phi(t) = \sum_{k} \frac{t^{2k}}{(2k-1)!!} \left\langle \operatorname{Tr} X^{2k} \right\rangle$$

$$e(s) = \sum_{k} \frac{s^{2k}}{(2k)!} \left\langle \operatorname{Tr} X^{2k} \right\rangle$$

$$\left\langle \operatorname{Tr} X^{2k} \right\rangle^{N=1} \sim (2k-1)!! \longrightarrow \left\langle \operatorname{Tr} X^{2k} \right\rangle_0 \sim \frac{(2k-1)!!}{(k+1)!}$$
 (Catalan numbers)

HZ functions for Gaussian model

$$\phi(t|N) = \frac{1}{2t^2} \left(\left(\frac{1+t^2}{1-t^2}\right)^N - 1 \right)$$

•
$$N \longrightarrow \lambda$$
:

$$\hat{\phi}(t|\lambda) = \sum_{N=0}^{\infty} \phi(t|N)\lambda^N = \frac{\lambda}{\lambda-1} \cdot \frac{1}{1-\lambda-(1+\lambda)t^2}$$

• multi-point correlators:

$$\hat{\phi}_{odd}(t_1, t_2 | \lambda) = \frac{\lambda}{(1 - \lambda)^{3/2}} \frac{\arctan \frac{t_1 t_2 \sqrt{1 - \lambda}}{\sqrt{1 - \lambda + (1 + \lambda)(t_1^2 + t_2^2)}}}{\sqrt{1 - \lambda + (1 + \lambda)(t_1^2 + t_2^2)}}$$

3

(日) (周) (三) (三)

HZ: back to reolvents

• other generating functions:

$$\hat{e}(s|\lambda) = \frac{\lambda}{(1-\lambda)^2} e^{\frac{1+\lambda}{1-\lambda}s^2}$$

$$\hat{\rho}(z|\lambda) = \frac{i\lambda}{(1-\lambda)\sqrt{1-\lambda^2}} \operatorname{erf}\left(iz\sqrt{\frac{1-\lambda}{1+\lambda}}\right) =$$

$$= \sum_{k=0}^{\infty} \frac{\lambda(1+\lambda)^k}{(1-\lambda)^{k+2}} \frac{(2k-1)!!}{z^{2k+1}}$$

$$\implies \rho(z) = \frac{z-y(z)}{2} + \frac{N}{y^5(z)} + \frac{21N(z^2+N)}{y^{11}(z)} + \dots$$

$$\bullet \beta \text{-deformation:}$$

$$\beta = 2, 1/2 - 1 \text{-point fns through arctan}$$

$$\beta = 3 - \operatorname{diff.eq.}$$

A.Morozov²⁷ (ITEP)

Challenges of β -deformation

June 28, 2011 25 / 55

W-representations

Partition functions can be considered as a result of "evolution", driven by cut-and-join (W) operators from very simple "initial conditions" [0902.2627]

$$Z\{p\} = e^{g\hat{W}}\tau_0\{p\}$$

If $W \in UGL(\infty)$, then KP/Toda-integrability is preserved

$$\hat{W}_n = \frac{1}{2} \sum_{a,b} \left((a+b+n) p_a p_b \frac{\partial}{\partial p_{a+b+n}} + ab p_{a+b-n} \frac{\partial^2}{\partial p_a \partial p_b} \right)$$

W-representation. Examples

• Hermitian matrix model $Z_N = \int dX e^{\sum_k \frac{P_k}{k} \operatorname{Tr} X^k}$

$$Z_N = e^{\hat{W}_{-2}} e^{Np_0}$$

• Kontsevich model $Z = \int dX e^{\operatorname{Tr}(\frac{1}{3}X^3 - L^2X)}$, $p_k = \operatorname{Tr}L^{-k}$

$$Z = e^{\hat{W}_{-1}^{K}} \cdot 1$$

 $\hat{W}_{-1}^{K} = \frac{2}{3} \sum \left(k + \frac{1}{2} \right) \tau_{k} L_{k-1}^{K}$ [A.Alexandrov, 1009.4887] • Hurwitz model [V.Bouchard & M.Marino, 0708.1458]

$$Z = e^{t\hat{W}_0}e^{p_1}$$

• Toric knots and links

$$Z = e^{\frac{n}{m}\hat{W}_0} \prod_{\text{link comps}} \tilde{\chi}_R$$

A.Morozov²⁹ (ITEP)

June 28, 2011 27 / 55

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 二 ヨー わえの

III. AGT RELATIONS

3

・ロト ・四ト ・ヨト ・ヨト

AGT relations: main points of interest

AGT relation

- Dotsenko-Fateev matrix model
- Hubbard-Stratanovich duality
- Relation to integrable systems
 - Bohr-Sommerfeld integrals

Universality classes are labeled by integrable systems hep-th/9505035

 $\mathcal{N} = 2 \text{ SYM models} \qquad \stackrel{\text{AGT}}{\longleftrightarrow} \qquad 2d \text{ CFT conformalblocks}$

 $\uparrow \qquad \text{dictionary [1995 - 97]} \qquad \uparrow \\ 1d \text{ integrable systems} \qquad \stackrel{?}{\longleftrightarrow} \qquad \text{DF/Penner matrix model} \end{cases}$

quantization of integrable systems Shroedinger-like equations (Fourier tr. of Baxter eqs.) insertions of degenerate states SW description through BS integrals $\Psi(z) = \exp \int^z \Omega, \quad \Omega = Pdz$ $\partial F/\partial a = \oint_B \Omega, \quad a = \oint_A \Omega$ NS limit $\epsilon_1 \to 0, \ \beta \to \infty$

A.Morozov ³² (ITEP)

DF/Penner/Selberg matrix model []

$$= \int dx_i \int dy_j (x_i - x_{i'})^{2\beta} (y_j - y_{j'})^{2\beta} \underline{(x_i - y_j)}^{2\beta} (x_i y_j)^{2\alpha_1 b} ((q - x_i)(q - y_j))^{2\alpha_2 b} ((1 - x_i)(1 - y_j))^{2\alpha_3 b}$$

$$= \int_{d\mu(x)} \int_{d\mu(y)} \left(\text{Mixing term}(x|y) \right)^2$$

A.Morozov 33 (ITEP)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Selberg measure

for
$$\beta = 1$$

$$d\mu(x) = \prod_{i < i'} (x_i - x_i')^2 \prod_i x_i^a (1 - x_i)^c dx_i$$

is Selberg measure Natural are Selberg averages of Shur functions, they are nicely factorized = Nekrasov functions

 β and MacDonald deformations:

$$\int_{Jackson} \prod_{k=0}^{eta-1} \prod_{i
eq i'} (x_i - q^k x_{i'})
onumber \ a^eta = t$$

Averages of Jack and MacDonald polynomials are often *not* factorized linearly decompose into factorizable quantities (Nekrasov functions)

A.Morozov³⁴ (ITEP)

Pure-gauge limit \longrightarrow BGW model (unitary matrices!) [1011.3481]

Elliptic case (toric conformal blocks) $\stackrel{?}{\longrightarrow}$ double-cut BGW [R.Dijkgraaf and C.Vafa, hep-th/0207106]

BGW model is an important building block in M-theory of matrix models [hep-th/0605171]

AGT as HS duality [1012.3137]

$$\approx \int_{d\mu(x)} \int_{d\mu(y)} \exp\left(2\beta \sum_{i,j} \log(1 - x_i y_j)\right) =$$
$$= \int_{d\mu(x)} \int_{d\mu(y)} \exp\left(\frac{2\beta}{k} \sum_{k} p_k \bar{p}_k / k\right)$$
$$= \int_{d\mu(x)} \int_{d\mu(y)} \left(\sum_{A} \chi_A(X) \chi_A(Y)\right) \left(\sum_{B} \chi_B(X) \chi_B(Y)\right)$$
$$= \sum_{A,B} \left(\int_{d\mu(x)} \chi_A(X) \chi_B(X)\right) \left(\int_{d\mu(y)} \chi_A(Y) \chi_B(Y)\right)$$

 $p_{k} = \operatorname{Tr} X^{k}, \quad \bar{p}_{k} = \operatorname{Tr} Y^{k} \quad [H. Itoyama \& T. Oota 1003.2929]$ $\exp \sum_{k} \frac{[\beta]_{q^{k}} p_{k} \bar{p}_{k}}{k} = \sum_{A} \frac{C_{A}}{C_{A'}} M_{A}(X) M_{A}(Y)$

A.Morozov ³⁶ (ITEP)

June 28, 2011 34 / 55

AGT as Hubbard-Stratanovich duality [1012.2137]

$$\sum_{X,Y} \left(\sum_{A} \chi_{A}(X) \chi_{A}(Y) \right) \left(\sum_{B} \chi_{B}(X) \chi_{B}(Y) \right) =$$
$$= \sum_{A,B} \left(\sum_{X} \chi_{A}(X) \chi_{B}(X) \right) \left(\sum_{Y} \chi_{A}(Y) \chi_{B}(Y) \right)$$

Conformal block =
$$\sum_{A,B} N_{A,B}$$

A.Morozov ³⁷ (ITEP)

June 28, 2011 35 / 55

< A >

Decomposition problem for $\beta \neq 1$

$$\int_{d\mu(X)} \chi_A(X) \chi_B(X) \int_{d\mu(Y)} \chi_A(Y) \chi_B(Y) \stackrel{?}{=} N_{A,B}$$

TRUE for $\beta = 1$ NOT so simple for $\beta \neq 1$

$$<\chi_{[1]} \chi_{\bullet} >< \chi_{[1]} \chi_{\bullet} > + <\chi_{\bullet} \chi_{[1]} >< \chi_{\bullet} \chi_{[1]} > =$$
$$= \frac{1}{(z-\epsilon)} \frac{1}{(z+\epsilon)} + \frac{1}{(z+\epsilon)} \frac{1}{(z-\epsilon)} =$$
$$= \frac{2}{z^2 - \epsilon^2} = \frac{1}{z(z-\epsilon)} + \frac{1}{z(z+\epsilon)} = N_{[1],\bullet} + N_{\bullet,[1]}$$

For $\epsilon \neq 0$ ($\beta \neq 1$) particular Nekrasov functions have extra zeroes (at z = 0), not present in Kac determinant

A.Morozov ³⁸ (ITEP)

June 28, 2011

イロト 不得下 イヨト イヨト 二日

36 / 55

Instead Nekrasov functions are nicely factorized, while Selberg correlators for $\beta \neq 1$ are not:

$$\langle \chi_{[3]} | \chi_{\bullet} \rangle_{BGW} \sim z^2 - (5\epsilon_1 + 8\epsilon_2)z + 6\epsilon_1^2 + 23\epsilon_1\epsilon_2 + 19\epsilon_2^2$$

 $\stackrel{\epsilon_2 = -\epsilon_1}{\longrightarrow} z^2 + 3\epsilon_1 z + 2\epsilon_1^2 = (z + \epsilon_1)(z + 2\epsilon_1)$

A.Morozov³⁹ (ITEP)

June 28, 2011 37 / 55

3

イロト イポト イヨト イヨト

Natural quantities, e.g. Selberg correlators (involved into duality relations) are linear combinations of the nicely factorized functions (Nekrasov functions), which possess extra singularities

Similar is the situation with knot invariants: superpolynomials for unknots (natural quantitites) are linear combinations of MacDonald dimensions (nicely factorized quantities)

IV. KNOTS

3

・ロト ・四ト ・ヨト ・ヨト

Not so much about knots rather about averages of characters knot \longrightarrow Wilson average $\mathcal{K} = \langle \operatorname{Pexp} \oint_{\operatorname{knot}} \mathcal{A} \rangle_{CS}$

$$\longrightarrow \mathcal{K}\{p|\operatorname{knot}\} = \sum_{R} \mathcal{K}_{R}(\operatorname{knot})\chi_{R}\{p\} \iff \tau\{p|G\}$$

G – point of the universal moduli space (universal Grassmannian) different matrix models – different Gdifferent knots – different G? modification of τ

(日) (周) (三) (三) (三) (000

A simple example of integrable knot invariants

"Special" polynomials

$$S_R(A) = \left(S_{[1]}(A)\right)^{|R|}$$

are obtained from HOMFLY at q = 1

Coefficients are Catalan-like numbers, counting the numbers of certain paths on 2d lattices

Satisfy Plücker relations and thus provide KP au-functions

$$\tau\{p\} = \sum_{R} S_{R}(A)\chi_{R}\{p\}$$

Hierarchy of knot invariants for the SL(N) family

For a given knot K and representation (Young diagram) R

Superpolynomial $P_R(A|\boldsymbol{q}|t)$

 $\checkmark t \approx q$ $\searrow A \approx 1$

 $CS \longrightarrow HOMFLY H_R(A|q) \qquad \text{Heegard} - \text{Floer } HF_R(q|t)$ $q = 1 \swarrow \qquad N = 2 \searrow N = 0 \qquad \swarrow t \approx q$ $\text{Special } S_R(A) \text{ Jones } J_R(q) \qquad \text{Alexander } \mathcal{A}_R(q)$ $A = t^N = q^{\beta N}$ $q = \exp \frac{2\pi i}{k+N}, \quad A \sim \exp(t'\text{Hooft coupling}), \text{ finite in the loop expansion}$

knot \longrightarrow $\begin{cases} point of the universal Grassmannian (a dream?) \\ vector in the Hilbert space, \\ where modular operators <math>S$ and T are acting vector in the space of characters (quantum or Macdonald dimensions)

A.Morozov⁴⁵ (ITEP)

June 28, 2011 43 / 55

イロト イポト イヨト イヨト

Braid representation of knot average

A.Morozov

(ITEP)

In the gauge $A_0 = 0$ knot invariants are described in terms of knot diagrams

Can be represented as a braid Element of a braid group is a product of quantum *R*-matrices (some generalization after the β -deformation) K = "trace" of an element a braid group

Toric knots and links are made from a special braid element

June 28, 2011

44 / 55

Toric links and knots T[m.n]:

$$H_R^{[m,n]} = \mathrm{Tr}\,(\mathcal{R}_m)^n$$

$$\operatorname{Tr}_{Q} I^{\otimes m} = \operatorname{tr}_{Q} q^{\rho} = \sum_{\vec{\alpha} \in Q} q^{\vec{\rho}\vec{\alpha}} = \chi_{Q}^{*}$$

= quantum dimension of representation Q

$$R_1 \otimes \ldots \otimes R_m = \bigoplus_{Q \vdash (|R_1| + \ldots + |R_m|)} c_R^Q \cdot Q$$

Q - eigenspaces of \mathcal{R}_m with the eigenvalues λ_Q .

$$H_{R}^{[m,n]}(A|q) = \sum_{Q} c_{R}^{Q} \lambda_{Q}^{n} \chi_{Q}^{*} = e^{n\hat{W}} \sum_{Q} c_{R}^{Q} \chi_{Q} \{p\} \Big|_{p \equiv p^{*} \equiv 0.000}$$
Motozov⁴⁷ (ITEP) Challenges of β-deformation June 28, 2011 45 / 55

MacDonald dimensions, repeated

Quantum dimensions
$$M_R^* = M_R \{ p = p^* \}$$

$$p_k^* = rac{A^k - A^{-k}}{t^k - t^{-k}} = rac{\{A^k\}}{\{t^k\}}, \qquad A = t^N \qquad \{z\} = z - 1/z$$

$$M_1^* = rac{A-1/A}{t-t/t} \quad \stackrel{t=q}{\longrightarrow} \quad [N]_q \; \stackrel{q=1}{\longrightarrow} \; N$$

$$M_{11}^{*} = \frac{\{A/t\}\{A\}}{\{t\}\{t^{2}\}} \xrightarrow{t=q} \frac{[N-1]_{q}[N]_{q}}{[2]_{q}} \xrightarrow{q=1} \frac{(N-1)N}{2}$$
$$M_{2}^{*} = \frac{\{A\}\{Aq\}}{\{t\}\{qt\}} \xrightarrow{t=q} \frac{[N]_{q}[N+1]_{q}}{[2]_{q}} \xrightarrow{q=1} \frac{N(N+1)}{2}$$

A.Morozov⁴⁸ (ITEP)

. . .

June 28, 2011 46 / 55

イロト イ団ト イヨト イヨト 二日

HOMFLY case [X.-S.Lin and H.Zheng, math.QA/0601267]:

$$\hat{W} = \frac{1}{m}\hat{W}[2] = \frac{1}{m}\sum_{a,b\geq 1}\left((a+b)p_{a}p_{b}\frac{\partial}{\partial p_{a+b}} + abp_{a+b}\frac{\partial^{2}}{\partial p_{a}\partial p_{b}}\right)$$

$$\hat{W}[2]s_Q\{p\} = \varkappa_Q s_Q\{p\}, \qquad \lambda_Q = q^{\varkappa_Q/m}$$

$$s_1\{p\} = p_1, \quad s_2\{p\} = \frac{1}{2}(p_2 + p_1^2), \quad s_{11}\{p\} = \frac{1}{2}(-p_2 + p_1^2), \quad \dots$$

$$arkappa_Q = \sum_i q_i(q_i-2i+1) =
u_Q -
u_{Q'}$$

$$\nu_Q = \sum_i (i-1)q_i$$

For general theory of cut-and-join operators see [0904.4227]

A.Morozov⁴⁹ (ITEP)

June 28, 2011 47 / 55

Moreover, "initial conditions" for *n*-evolution are very simple, e.g.

$$H_{1}^{[m,n]} = q^{\frac{n}{m}\hat{W}[2]} p_{m}\Big|_{p=p^{*}}$$
$$H_{R}^{[m,n]} = q^{\frac{n}{m}\hat{W}[2]} s_{R}\{p_{mk}\}\Big|_{p=p^{*}}$$

for mutually prime n and m, and

$$H_{R_1...R_m}^{[m,mk]} = q^{k\hat{W}[2]} s_{R_1}\{p_{mk}\} \dots s_{R_m}\{p_{mk}\}\Big|_{p=p^*}$$

In the last case they simply follow from the fact that T[m, n] for n = 0 is a set of *m* unknots.

In the first case for n = 1 there is a single unknot, i.e. $H_R^{[m,1]} \sim s_R^*$.

Matrix-model representation

$$H_R^{[m,n]}(A|q) = e^{n\hat{W}} \sum_Q c_R^Q \chi_Q\{p\} \bigg|_{p=p^*} = \sum_Q c_R^Q q^{\frac{n}{m} \varkappa_Q} \chi_Q^*$$

Reformulation in terms of Frobenius algebra (linear space + multiplication + linear form):

$$H_R^{[m,n]}(A=q^N|q) = \langle s_R[U^m] \rangle = \sum_Q c_R^Q \langle s_Q[U] \rangle$$

$$\left\langle s_Q[U] \right\rangle \sim q^{rac{n}{m} \varkappa_Q} s_Q^*$$

Matrix-model realization of this linear form $(q = e^{\hbar})$:

$$\left\langle F[U] \right\rangle = \int du_i e^{u_i^2/\hbar} \sinh \sqrt{\frac{n}{m}} \frac{u_i - u_j}{2} \sinh \sqrt{\frac{m}{n}} \frac{u_i - u_j}{2} F\left[\exp\left(\sqrt{\frac{n}{m}} u_i\right) \right]$$

[M.Tierz]; [A.Brini, B.Eynard & M.Marino, 1105.2012]

A.Morozov ⁵¹ (ITEP)

Split W-representation for toric superpolynomials [1106.4305]

Deformation from Shur to MacDonald:

$$\begin{aligned} H_{R}^{[m,n]}(A|q) &= \sum_{Q} c_{R}^{Q} q^{-\frac{n}{m}(\nu_{Q}-\nu_{Q'})} s_{Q}^{*} \quad \longrightarrow \\ P_{R}^{[m,n]}(A|q|t) &= \sum_{Q} c_{R}^{Q} q^{-\frac{n}{m}\nu_{Q}} t^{\frac{n}{m}\nu_{Q'}} M_{Q}^{*} \\ \text{split (refined) W-representation} \\ (\text{discrete evolution}) \end{aligned}$$

How to choose the coefficients c?

Properties of c_R^Q for toric knots

They depend on the series T[m, mk + p], p = 0, 1, ..., m - 1
They satisfy "initial conditions" at k = 0: T[m, p] = T[p, m], p < m
They are such, that P_R^[m,mk+p](A|q|t) is a polynomial in all its variables with positive coefficients for all k at once

Initial condition would be sufficient, if imposed for all values of time-variables p_k

Actually it is imposed only on the subspace $p_k = p_k^* = \frac{A^k - A^{-k}}{t^k - t^{-k}}$, and this is not sufficient for $|Q| \ge 4$

The third condition should be used

イロト 不得 トイヨト イヨト 二日

Example of $P_{[1]}^{[m,mk+1]}$

It is tedious, but it works:

$$egin{aligned} p_m &= \sum_{Qdash m} ar{c}^Q_{[1]} M_Q \{p\} \ c^Q_{[1]} &= ar{c}^Q_{[1]} \cdot \gamma^Q_{[1]} \end{aligned}$$

$$\begin{split} \gamma^{[2]} &= \frac{1+q^2}{1+q^2} = 1, \quad \gamma^{[11]} = \frac{1+t^2}{1+q^2} \\ \gamma^{[3]} &= \frac{1+q^2+q^2q^2}{1+q^2+q^2q^2} = 1, \quad \gamma^{[21]} = \frac{1+q^2+q^2t^2}{1+q^2+q^2q^2}, \quad \gamma^{[111]} = \frac{1+t^2+t^2t^2}{1+q^2+q^2q^2} \end{split}$$

General formula can be easily written down, also for other series

A.Morozov 54 (ITEP)

Challenges of β -deformation

June 28, 2011 52 / 55

Verification

- \bullet Consistent with all known superpolynomials in all fundamental representations $R=[1^{|R|}]$
- Consistent with HOMFLY Jones (N = 2) Alexander (N = 0) (by definition)
 - Consistent with Heegard-Floer polynomials $HF_R(q|t)$
- Consistent with superpolynomials, evaluated by the sums of paths on 2dlattices (q, t-Catalan numbers)
 - Reproduce P^[2,3]_[2] of M.Aganagic & Sh.Shakirov,
 but does not reproduce Hopf link superpols P^[2,2]_{[2],[1^s]} of GIKV and AK (because of the different choice of unknot superpolynomial)

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

Open problems

• Higher non-fundamental representations $R \neq [1^{|R|}]$ Choice of unknots: $\frac{Aq-(Aq)^{-1}}{tq-(tq)^{-1}}$ is not a polynomial, even if $A = t^N$

Link invariants
 Do superpolynomials exist at all for toric links?
 Weaker polynomiality condition
 Weaker positivity condition [Awata & Kanno]
 Split W-evolution, starting from modified unknots does not quite reproduce the known answers

• Non-toric knots Potentially successful example of $5_2 \longrightarrow 10_{139}$ Breakdown of positivity for evolution of 4_1

▲ロト ▲興 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

MANY THANKS FOR YOUR ATTENTION!

A.Morozov ⁵⁷ (ITEP)

3

(日) (周) (三) (三)