
Challenges of β-deformation

A.Morozov 2

ITEP, Moscow

June 28, 2011

2A.Alexandrov, V.Dolotin, P.Dunin-Barkovsky, D.Galakhov, A.Marshakov,
A.Mironov, And.Morozov, S.Natanzon, A.Popolitov, Sh.Shakirov, A.Sleptsov,
A.Smirnov, E.Zenkevich

A.Morozov 3 (ITEP) Challenges of β-deformation June 28, 2011 1 / 55



I. β-DEFORMATION
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β-deformation is an old subject
in the theory of matrix models and symmetric functions

Dedeking function counts Young diagrams∏
k

(1− qk)−1

McMahon formula counts 3d partitions∏
k

(1− qk)−k

t=q←−
∏
i ,j

(1− qi t j)−1
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SL(N) characters (Shur fns) sR{p} −→ MacDonald polynomials MR{p}

eigenfunctions of cut-and-join operators W (∆),

W (∆)sR = ϕR(∆)sR

←→ eigenfunctions of Ruijsenaars Hamiltonians

W (∆) = :
∏
i

tr

(
X

∂

∂X

)δi
:

pk = trX k = ktk
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Orthogonal polynomials w.r.t. the measure∮ ∏
i<j

(xi − xj)
2
∏
i

dxi
xi

−→
∮ ∏

i<j

(xi − xj)
2β
∏
i

dxi
xi

−→
∮ ∏

i 6=j

β−1∏
k=0

(xi − qkxj)
∏
i

dxi
xi

A.Morozov 7 (ITEP) Challenges of β-deformation June 28, 2011 5 / 55



algebra Calogero

(Shur fns)
↙ ↘

quantum algebra β − ensemble
(Hall− Littlewood pols) (Jack pols)

↘ ↙
MacDonald pols

Ruijsenaars q, t = qβ

M1 = p1 = Tr X =
∑
i

xi , M11 =
1

2
(−p2 + p21) =

∑
i<j

xixj

M2 =
1

2

(
−(q + 1/q)(t − 1/t)

qt − 1/qt
p2 +

(q − 1/q)(t + 1/t)

qt − 1/qt
p21

)
. . .
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Quantum dimensions

Quantum dimensions M∗R = MR{p = p∗}

p∗k =
Ak − A−k

tk − t−k
=
{Ak}
{tk}

, A = tN

M∗1 =
A− 1/A

t − t/t

t=q−→ [N]q
q=1−→ N

M∗11 =
{A/t}{A}
{t}{t2}

t=q−→ [N − 1]q[N]q
[2]q

q=1−→ (N − 1)N

2

M∗2 =
{A}{Aq}
{t}{qt}

t=q−→ [N]q[N + 1]q
[2]q

q=1−→ N(N + 1)

2
. . .
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Hook formula for quantum dimensions:

M∗R =
∏

(i ,j)∈R

{Aqi−1/t j−1}
{qkt l+1}

i

j X
k

l

Familiar for those who know Nekrasov functions
or topological vertex formulas

{z} = z − z−1

At β 6= 1 only M∗11...1 are polynomials for A = tN
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Today β-deformation is finally in the mainstream:
it appears naturally in our theories

Just two examples
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AGT
6d CFT compactified on a Riemann surface:

relates smth 2d with smth 4d , e.g.

conformal blocks = LMNS integrals

c = (N − 1)

{
1− N(N + 1)

(√
β − 1√

β

)2
}

gs =
√
−ε1ε2

β = −ε2/ε1 = b2

LMNS integral =
∑

R1,...,RN
Nekrasov functions

Nekrasov functions have typical hook-product form,
similar to MacDonald dimensions
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3d AGT
involves 3d Chern-Simons theory, e.g.

relates S-duality (modular) transformations with
knot invariants

Wilson average in CS theory = HOMFLY polynomial
of two variables: q = e2πi/(k+N) and a = qN

HOMFLY(a|q)
β 6=1−→ superpolynomial P(A|q|t)

PR [K ](A|q|t) =
∑

Q`b[K ]

cQR [K ]M∗Q

t = qβ

only quantum dimension M∗Q depend on A = tN

Coefficients cQR [K ] depend on the knot, are rational functions of q, t
and for toric knots are described by a simple W -representation
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What survives under β-deformation?
Everything related to character calculus:

• Seiberg-Witten equations
ai =

∮
Ai

Ω

∂ logZ
∂ai

=
∮
Bi

Ω

(=⇒ quasiclassical integrability, WDVV equations)
• Virasoro constraints −→ AMM/EO topological recursion

• W-representations
• AGT relations
• knot invariants
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What is lost after β-deformation?

Everything related to KP-integrability:

• Z = τ -function
• determinantal representations
• Harer-Zagier recursion
• Kontsevich matrix models

Nice and natural decompositions:

• AGT could be a Hubbard-Stratanovich duality,
but Nekrasov fns have extra poles

• Naive link invariants for R 6= [1|R|] are not superpolynomials

natural quantities factorizable constituents

DF integral Selberg correlators Nekrasov functions

link invariants superpolynomials MacDonald dimensions
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II. MATRIX MODELS
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Matrix models

• multiple integrals (over eigenvalues)

Z =

(
N∏
i=1

∫
eV (xi )/gsdxi

)
∆{x}
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Exact evaluation will one day be possible
in the context of non-linear algebra [hep-th/0609022]

Integral discriminants [0911.5278]∫ ∫
dxdy eax

2+bxy+dy2 ∼ 1√
4ad − b2

= D
−1/2
2|2∫ ∫

dxdy eax
3+bx2y+cxy2+dy3 ∼ D

−1/6
2|3

D2|3 = 27a2d2 − b2c2 − 18abcd + 4ac3 + 4b3d

In general ordinary discriminants control
singularities of integral discriminants

Meanwhile – other approaches,
which reveal a lot of hidden structures
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• Ward identities (Virasoro constraints; loop equations)
= recursion relations for correlators(∑
k

ktk
∂

∂tk+n
+
∑

a+b=n

∂2

∂ta ∂tb

)
Z = 0

– preserved (slightly modified) by β-deformation

• Integrable structure:

as a function of tk in V (x) =
∑

k tkx
k

Z is a KP/Toda τ -function

∂2

∂t21
logZN =

ZN+1ZN−1
Z 2
N

– broken (essentially modified) by the β-deformation
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• genus expansion
(t’Hooft coupling a = Ngs fixed)

∆ =
∏
i 6=j

(xi − xj)
β

log ∆ +
∑
i

1

gs
V (xi ) ∼ N2 ⊕ N/gs

F = g2
s logZ =

∞∑
p=0

g2p
s Fp(a)

In perturbation theory F0 is a sum of planar diagrams and so on.

Many integration contours −→ many aI
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Spectral curve

• Spectral curve Σ

Σ is defined at the genus-zero level (F0)

Σ plays prominent role in two places:
resolvents & SW equations
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Resolvents, are peculiar generating functions of correlators

ρ(p|m)(z1, . . . , zm) =

〈
m∏
i=1

Tr
dzi

zi − X

〉
p

=
∑
{ki}

1

zk+1
i

〈∏
i

TrX ki

〉
p

Advantages:
• Resolvents are meromorphic poly-differentials on Σ
• As a consequence of Virasoro constraints

they can be recursively reconstructed for a given Σ
+ SW differential Ω(0) = ρ(0|1) ∼ y(z)dz and Bergmann kernel ρ(2|0)

(AMM/EO recursion)

Drawback:
• sum over genera diverges, in particular

Ω(z) = ρ(·|1)(z) =
∑
p

g2p
s ρ(p|1)(z)

can not be restored from the AMM/EO recursion
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ρ(·|1) as the universal SW differential

Ω(z) is important:
it is the SW differential for the free energy F (a) =

∑
p g

2p
s Fp(a)


ai =

∮
Ai

Ω

∂ logZ
∂ai

=
∮
Bi

Ω

Always in matrix models and β-ensembles

Ω(z) = ρ(·|1)(z) =
∑
p

g2p
s ρ(p|1)(z)

(generally believed, but not proved)
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Gaussian example: Σ : y(z)2 = z2 − 4gsN

ZN =
1

N!

∫
(xi − xj)

2e−x
2
i /2gsdxi ∼ g

N2/2
s

N−1∏
k=1

k!

∂

∂N

N−1∑
k=0

f (k) =
∑
k

Bk

k!
∂k f (N)

∂

∂N
logZN = N(log gsN − 1) +

∑
k

B2k

k

1

N2k−1

Ω(z) = −y(z)

2
+

g2
s

y(z)5
+

21g4
s (z2 + gsN)

y(z)11
+ . . .∮

A
Ω(z) = N,

∮
B

Ω(z) =
∂

∂N
logZN

General proof ⇐= integrability [1011.5629]

Generalization – theory of DV phases in matrix models
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HZ recursion. Alternatives to resolvent

How to define ρ(·|1)?

Harer-Zagier recursion ⇐= integrability [1007.4100]

Gaussian model (V (x) = x2/2):

ρ(z) =
∑
k

1

z2k+1

〈
TrX 2k

〉
φ(t) =

∑
k

t2k

(2k − 1)!!

〈
TrX 2k

〉
e(s) =

∑
k

s2k

(2k)!

〈
TrX 2k

〉
〈
TrX 2k

〉N=1

∼ (2k − 1)!! −→
〈
TrX 2k

〉
0
∼ (2k − 1)!!

(k + 1)!
(Catalan numbers)
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HZ functions for Gaussian model

φ(t|N) =
1

2t2

((
1 + t2

1− t2

)N

− 1

)

• N −→ λ:

φ̂(t|λ) =
∞∑

N=0

φ(t|N)λN =
λ

λ− 1
· 1

1− λ− (1 + λ)t2

• multi-point correlators:

φ̂odd(t1, t2|λ) =
λ

(1− λ)3/2

arctan t1t2
√
1−λ√

1−λ+(1+λ)(t21+t22 )√
1− λ+ (1 + λ)(t21 + t22 )
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HZ: back to reolvents

• other generating functions:

ê(s|λ) =
λ

(1− λ)2
e

1+λ
1−λ s

2

ρ̂(z |λ) =
iλ

(1− λ)
√

1− λ2
erf

(
iz

√
1− λ
1 + λ

)
=

=
∞∑
k=0

λ(1 + λ)k

(1− λ)k+2

(2k − 1)!!

z2k+1

=⇒ ρ(z) =
z − y(z)

2
+

N

y5(z)
+

21N(z2 + N)

y11(z)
+ . . .

• β-deformation:
β = 2, 1/2 – 1-point fns through arctan

β = 3 – diff.eq.
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W-representation

W-representations

Partition functions can be considered as
a result of ”evolution”, driven by cut-and-join (W) operators

from very simple ”initial conditions” [0902.2627]

Z{p} = egŴ τ0{p}

If W ∈ UGL(∞), then KP/Toda-integrability is preserved

Ŵn =
1

2

∑
a,b

(
(a + b + n)papb

∂

∂pa+b+n
+ abpa+b−n

∂2

∂pa∂pb

)
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W-representation. Examples

• Hermitian matrix model ZN =
∫
dXe

∑
k

pk
k
TrX k

ZN = eŴ−2eNp0

• Kontsevich model Z =
∫
dXeTr(

1
3
X 3−L2X ), pk = TrL−k

Z = eŴ
K
−1 · 1

ŴK
−1 = 2

3

∑(
k + 1

2

)
τkL

K
k−1 [A.Alexandrov, 1009.4887]

• Hurwitz model [V.Bouchard & M.Marino, 0708.1458]

Z = etŴ0ep1

• Toric knots and links

Z = e
n
m
Ŵ0

∏
link comps

χ̃R

A.Morozov 29 (ITEP) Challenges of β-deformation June 28, 2011 27 / 55



III. AGT RELATIONS
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AGT relations: main points of interest

AGT relation

• Dotsenko-Fateev matrix model
• Hubbard-Stratanovich duality
• Relation to integrable systems
• Bohr-Sommerfeld integrals
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Universality classes are labeled by integrable systems
hep-th/9505035

N = 2 SYM models
AGT←→ 2d CFT conformalblocks

l dictionary [1995− 97] l

1d integrable systems
?←→ DF/Penner matrix model

quantization of integrable systems
Shroedinger-like equations (Fourier tr. of Baxter eqs.)

insertions of degenerate states
SW description through BS integrals

Ψ(z) = exp
∫ z

Ω, Ω = Pdz
∂F/∂a =

∮
B Ω, a =

∮
A Ω

NS limit ε1 → 0, β →∞
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DF/Penner/Selberg matrix model [ ]

H
HH

��
�

�
��

HH
HVα1(0)

Vα2(q) Vα3(1)

Vα4(∞)

α

〈
eα1φ(0)eα2φ(q)eα3φ(1)eα4φ(∞)

N1∏
i=1

∫ q

0
ebφ(xi )

N2∏
j=1

∫ 1

0
ebφ(yj )

〉

α1 + α2 + bN1 = α

α + α3 + α4 + bN2 = 0

=

∫
dxi

∫
dyj (xi−xi′)2β(yj−yj′)2β(xi − yj)

2β(xiyj)
2α1b

(
(q−xi )(q−yj)

)2α2b
(
(1−xi )(1−yj)

)2α3b

=

∫
dµ(x)

∫
dµ(y)

(
Mixing term(x |y)

)2
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Selberg measure

for β = 1

dµ(x) =
∏
i<i ′

(xi − x ′i )
2
∏
i

xai (1− xi )
cdxi

is Selberg measure
Natural are Selberg averages of Shur functions,
they are nicely factorized = Nekrasov functions

β and MacDonald deformations:∫
Jackson

β−1∏
k=0

∏
i 6=i ′

(xi − qkxi ′)

qβ = t

Averages of Jack and MacDonald polynomials are often not factorized
linearly decompose into factorizable quantities (Nekrasov functions)
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Pure gauge limit and BGW model

Pure-gauge limit −→ BGW model
(unitary matrices!) [1011.3481]

Elliptic case (toric conformal blocks)
?−→ double-cut BGW

[R.Dijkgraaf and C.Vafa, hep-th/0207106]

BGW model is an important building block
in M-theory of matrix models [hep-th/0605171]
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AGT as HS duality [1012.3137]

≈
∫
dµ(x)

∫
dµ(y)

exp

2β
∑
i ,j

log(1− xiyj)

 =

=

∫
dµ(x)

∫
dµ(y)

exp
(

2β
∑
k

pk p̄k/k
)

=

∫
dµ(x)

∫
dµ(y)

(∑
A

χA(X )χA(Y )
)(∑

B

χB(X )χB(Y )
)

=
∑
A,B

(∫
dµ(x)

χA(X )χB(X )

)(∫
dµ(y)

χA(Y )χB(Y )

)

pk = TrX k , p̄k = TrY k [H.Itoyama & T .Oota 1003.2929]

exp
∑
k

[β]qkpk p̄k

k
=
∑
A

CA

CA′
MA(X )MA(Y )
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AGT as Hubbard-Stratanovich duality [1012.2137]

H
H
��

�
�

HH

HH

��

��

HH

=

χA(X )

χA(Y )

χB(X )

χB(Y )

χA(X )

χA(Y )

χB(X )

χB(Y )

∑
X ,Y

(∑
A

χA(X )χA(Y )

)(∑
B

χB(X )χB(Y )

)
=

=
∑
A,B

(∑
X

χA(X )χB(X )

)(∑
Y

χA(Y )χB(Y )

)

Conformal block =
∑
A,B

NA,B
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Decomposition problem for β 6= 1

∫
dµ(X )

χA(X )χB(X )

∫
dµ(Y )

χA(Y )χB(Y )
?
= NA,B

TRUE for β = 1
NOT so simple for β 6= 1

< χ[1] χ• >< χ[1] χ• > + < χ• χ[1] >< χ• χ[1] > =

=
1

(z − ε)
1

(z + ε)
+

1

(z + ε)

1

(z − ε)
=

=
2

z2 − ε2
=

1

z(z − ε)
+

1

z(z + ε)
= N[1],• + N•,[1]

For ε 6= 0 (β 6= 1) particular Nekrasov functions
have extra zeroes (at z = 0), not present in Kac determinant
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Decomposition problem

Instead Nekrasov functions are nicely factorized,
while Selberg correlators for β 6= 1 are not:

< χ[3] χ• >BGW ∼ z2 − (5ε1 + 8ε2)z + 6ε21 + 23ε1ε2 + 19ε22

ε2=−ε1−→ z2 + 3ε1z + 2ε21 = (z + ε1)(z + 2ε1)
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Decomposition problem

Natural quantities, e.g. Selberg correlators
(involved into duality relations)

are linear combinations of
the nicely factorized functions (Nekrasov functions),

which possess extra singularities

Similar is the situation with knot invariants:
superpolynomials for unknots (natural quantitites)

are linear combinations of
MacDonald dimensions (nicely factorized quantities)
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IV. KNOTS
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Knot theory

Not so much about knots
rather about averages of characters

knot −→ Wilson average K =
〈
Pexp

∮
knotA

〉
CS

−→ K{p| knot} =
∑

R KR(knot)χR{p} ←→ τ{p|G}

G – point of the universal moduli space
(universal Grassmannian)

different matrix models – different G
different knots – different G?

modification of τ
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A simple example of integrable knot invariants

”Special” polynomials

SR(A) =
(
S[1](A)

)|R|
are obtained from HOMFLY at q = 1

Coefficients are Catalan-like numbers,
counting the numbers of certain paths on 2d lattices

Satisfy Plücker relations and thus provide KP τ -functions

τ{p} =
∑
R

SR(A)χR{p}
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Hierarchy of knot invariants for the SL(N) family

For a given knot K and representation (Young diagram) R

Superpolynomial PR(A|q|t)

↙ t ≈ q ↘ A ≈ 1

CS −→ HOMFLY HR(A|q) Heegard− Floer HFR(q|t)

q = 1↙ N = 2↘ N = 0 ↙ t ≈ q

Special SR(A) Jones JR(q) Alexander AR(q)

A = tN = qβN

q = exp 2πi
k+N , A ∼ exp(t′Hooft coupling), finite in the loop expansion
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Avatars of the knots

knot −→



point of the universal Grassmannian (a dream?)

vector in the Hilbert space,
where modular operators S and T are acting

vector in the space of characters
(quantum or Macdonald dimensions)
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Braid representation of knot average

In the gauge A0 = 0
knot invariants are described in terms of knot diagrams

Can be represented as a braid
Element of a braid group is a product of quantum R-matrices

(some generalization after the β-deformation)
K = ”trace” of an element a braid group

Toric knots and links are made from a special braid element

D
D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
D
DD

D
D
D
D
D
D
D
D
DD

�
�
�
�
�
�
�
�
��

R5 :
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Toric links and knots T [m.n]:

H
[m,n ]
R = Tr (Rm)n

TrQ I⊗m = trQ qρ =
∑
~α∈Q

q~ρ~α = χ∗Q

= quantum dimension of representation Q

R1 ⊗ . . .⊗ Rm = ⊕Q ` (|R1|+...+|Rm|) c
Q
R · Q

Q – eigenspaces of Rm with the eigenvalues λQ .

H
[m,n ]
R (A|q) =

∑
Q

cQR λ
n
Qχ
∗
Q = enŴ

∑
Q

cQR χQ{p}

∣∣∣∣∣∣
p=p∗
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MacDonald dimensions, repeated

Quantum dimensions M∗R = MR{p = p∗}

p∗k =
Ak − A−k

tk − t−k
=
{Ak}
{tk}

, A = tN {z} = z − 1/z

M∗1 =
A− 1/A

t − t/t

t=q−→ [N]q
q=1−→ N

M∗11 =
{A/t}{A}
{t}{t2}

t=q−→ [N − 1]q[N]q
[2]q

q=1−→ (N − 1)N

2

M∗2 =
{A}{Aq}
{t}{qt}

t=q−→ [N]q[N + 1]q
[2]q

q=1−→ N(N + 1)

2
. . .
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HOMFLY case [X.-S.Lin and H.Zheng, math.QA/0601267]:

Ŵ =
1

m
Ŵ [2] =

1

m

∑
a,b≥1

(
(a + b)papb

∂

∂pa+b
+ abpa+b

∂2

∂pa∂pb

)

Ŵ [2]sQ{p} = κQsQ{p}, λQ = qκQ/m

s1{p} = p1, s2{p} =
1

2
(p2 + p21), s11{p} =

1

2
(−p2 + p21), . . .

κQ =
∑
i

qi (qi − 2i + 1) = νQ − νQ′

νQ =
∑
i

(i − 1)qi

For general theory of cut-and-join operators see [0904.4227]
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Moreover, ”initial conditions” for n-evolution are very simple, e.g.

H
[m,n]
1 = q

n
m
Ŵ [2] pm

∣∣∣
p=p∗

H
[m,n]
R = q

n
m
Ŵ [2] sR{pmk}

∣∣∣
p=p∗

for mutually prime n and m, and

H
[m,mk]
R1...Rm

= qkŴ [2] sR1{pmk} . . . sRm{pmk}
∣∣∣
p=p∗

In the last case they simply follow from the fact that
T [m, n] for n = 0 is a set of m unknots.

In the first case for n = 1 there is a single unknot,

i.e. H
[m,1]
R ∼ s∗R .
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Matrix-model representation

H
[m,n ]
R (A|q) = enŴ

∑
Q

cQR χQ{p}

∣∣∣∣∣∣
p=p∗

=
∑
Q

cQR q
n
m
κQχ∗Q

Reformulation in terms of Frobenius algebra
(linear space + multiplication + linear form):

H
[m,n ]
R (A = qN |q) =

〈
sR [Um]

〉
=
∑
Q

cQR

〈
sQ [U]

〉
〈
sQ [U]

〉
∼ q

n
m
κQ s∗Q

Matrix-model realization of this linear form (q = e~):〈
F [U]

〉
=

∫
duie

u2i /~ sinh

√
n

m

ui − uj
2

sinh

√
m

n

ui − uj
2

F

[
exp

(√
n

m
ui

)]
[M.Tierz]; [A.Brini, B.Eynard & M.Marino, 1105.2012]
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Split W-representation for toric superpolynomials [1106.4305]

Deformation from Shur to MacDonald:

H
[m,n ]
R (A|q) =

∑
Q

cQR q−
n
m
(νQ−νQ′ )s∗Q −→

P
[m,n ]
R (A|q|t) =

∑
Q

cQR q−
n
m
νQ t

n
m
νQ′ M∗Q

split (refined) W-representation
(discrete evolution)

How to choose the coefficients c?
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Properties of cQR for toric knots

• They depend on the series T [m,mk + p], p = 0, 1, . . . ,m − 1
• They satisfy ”initial conditions” at k = 0: T [m, p] = T [p,m], p < m

• They are such, that P
[m,mk+p]
R (A|q|t) is a polynomial

in all its variables with positive coefficients
for all k at once

Initial condition would be sufficient,
if imposed for all values of time-variables pk

Actually it is imposed only on the subspace pk = p∗k = Ak−A−k

tk−t−k ,
and this is not sufficient for |Q| ≥ 4

The third condition should be used
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Example of P
[m,mk+1]
[1]

It is tedious, but it works:

pm =
∑
Q`m

c̄Q[1]MQ{p}

cQ[1] = c̄Q[1] · γ
Q
[1]

γ[2] =
1 + q2

1 + q2
= 1, γ[11] =

1 + t2

1 + q2

γ[3] =
1 + q2 + q2q2

1 + q2 + q2q2
= 1, γ[21] =

1 + q2 + q2t2

1 + q2 + q2q2
, γ[111] =

1 + t2 + t2t2

1 + q2 + q2q2

General formula can be easily written down,
also for other series
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Verification

• Consistent with all known superpolynomials in all fundamental
representations R = [1|R|]

• Consistent with HOMFLY – Jones (N = 2) – Alexander (N = 0)
(by definition)

• Consistent with Heegard-Floer polynomials HFR(q|t)

• Consistent with superpolynomials, evaluated by the sums of paths on 2d
lattices (q, t-Catalan numbers)

• Reproduce P
[2,3]
[2] of M.Aganagic & Sh.Shakirov,

but does not reproduce Hopf link superpols P
[2,2]
[2],[1s ] of GIKV and AK

(because of the different choice of unknot superpolynomial)
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Open problems

• Higher non-fundamental representations R 6= [1|R|]
Choice of unknots:

Aq−(Aq)−1

tq−(tq)−1 is not a polynomial, even if A = tN

• Link invariants
Do superpolynomials exist at all for toric links?

Weaker polynomiality condition
Weaker positivity condition [Awata & Kanno]

Split W -evolution, starting from modified unknots does not quite
reproduce the known answers

• Non-toric knots
Potentially successful example of 52 −→ 10139

Breakdown of positivity for evolution of 41
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MANY THANKS FOR YOUR ATTENTION!
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