Exact results for loop operators in 4d gauge theories

Strings 2011
Uppsala, Sweden, June 29

Vasily Pestun
Harvard University

Based on arXiv:II05.2568 with J. Gomis and T. Okuda

Loop operators in 4d gauge theories

Wilson loop electric

t' Hooft loop magnetic
EM duality $\quad \int_{S^{2}} F=2 \pi m$

$$
E \sim \frac{1}{r^{2}}
$$

strong/weak coupling

weak/strong
coupling

$$
\begin{gathered}
\text { S-duality for } \mathcal{N}=4 \mathrm{SYM} \quad \text { Montone-Olive '77 } \\
\mathcal{L}=\frac{1}{2 g_{Y M}^{2}} \operatorname{Tr} F \wedge \star F+\frac{i \vartheta}{8 \pi^{2}} \operatorname{Tr} F \wedge F+\ldots \\
\tau=\frac{4 \pi i}{g_{\mathrm{YM}}^{2}}+\frac{\vartheta}{2 \pi}
\end{gathered}
$$

EM duality $\quad \tau \leftrightarrow-\frac{1}{\tau}$
ϑ periodicity $\quad \tau \rightarrow \tau+1$
$\Longrightarrow S L(2, \mathbb{Z})$ symmetry (ADE theories)
Why modular group?

ADE $(2,0)$ theory on

ADE $4 \mathrm{~d} \mathcal{N}=4$ SYM with coupling τ

geometric Langlands Kapustin, Witten
arbitrary curve w/ punctures

$\mathcal{N}=\underset{\text { Moore's review talk }}{2 \mathrm{SYM}} 4 \mathrm{~d}$

Can we make a computation?

WA MIED exact

computation

Localization

 compute the integral$$
Z_{0}=\int[D \phi] e^{-S_{0}[\phi]}
$$

given

$$
Q S_{0}=0
$$

where Q is fermionic symmetry, and $Q^{2}=R$ is bosonic symmetry

Deform the action

$$
S_{t}[\phi]=S_{0}[\phi]+t\{Q, V\}
$$

assuming

$$
\left\{Q^{2}, V\right\}=0
$$

Consider

$$
Z_{t}=\int[D \phi] e^{-S_{0}[\phi]-t\{Q, V[\phi]\}}
$$

Integrate by parts

$$
\partial_{t} Z_{t}=0
$$

Hence

$$
\begin{aligned}
Z= & \int_{X} e^{-S}=\sum_{\alpha} \int_{Y_{\alpha} \subset X} e^{-\left.S\right|_{Y_{\alpha}}} Z_{1-\text { loop }}\left[N_{Y_{\alpha}}\right] \\
& X \text { - the space of all fields } \\
& Y_{\alpha} \text { - the zeroes of } Q V
\end{aligned}
$$

Take

$$
V=(\overline{Q \Psi}, \Psi)
$$

then zeroes of $Q V$
are precisely zeroes of $Q \Psi$

Example
Compute

$$
Z(\beta)=\int_{S^{2}} \exp (\omega+\beta \cos \theta)
$$

where

$$
\omega=\sin \theta d \theta \wedge d \varphi
$$

is the volume form

Straight integration gives

$$
Z(\beta)=2 \pi \frac{\exp (\beta)-\exp (-\beta)}{\beta}
$$

Localization exercise

Consider the operator

$$
\begin{gathered}
Q=d-\beta i_{v} \\
Q^{2}=-\beta \mathcal{L}_{v}
\end{gathered}
$$

$$
\left(v=\partial_{\phi}\right)
$$

Notice that

$$
Z(\beta)=\int \exp S
$$

$$
(S=\omega+\beta \cos \theta)
$$

with $Q S=0$
Deform the action using
Then

$$
V=\sin ^{2} \theta d \varphi
$$

$$
Z(t)=\int \omega(1+2 t \cos \theta) \exp \left(\beta \cos \theta-t \sin ^{2} \theta\right)
$$

In the limit $t \rightarrow \infty$ the integrand localizes

$$
\text { to } \theta=0 \text { and } \theta=\pi
$$

$$
\begin{gathered}
\mathcal{N}=2 \text { supersymmetry on } S^{4} \\
O S p(2 \mid 4) \subset S L(1 \mid 2, \mathbb{H})
\end{gathered}
$$

- 8 fermionic generators
- $S p(4) \simeq S O(5)$: isometry of S^{4}
- $S O(2): \mathrm{R}$-symmetry

Seiberg's talk

$\mathcal{N}=2$ vector multiplet

$$
\left(A_{\mu}, \Phi_{0}, \Phi_{9}, \Psi, K_{i}\right)
$$

$$
S_{\text {vect }}=\frac{1}{g_{\mathrm{YM}}} \int \sqrt{g} d^{4} x\left(\frac{1}{2} F^{2}+(D \Phi)^{2}+\frac{R}{6} \Phi^{2}+\frac{1}{2}\left[\Phi_{a}, \Phi_{b}\right]^{2}+K^{2}+\Psi D \Psi\right)
$$

$\mathcal{N}=2$ hypermultiplet

To introduce hypermultiplet masses in $\operatorname{OSp}(2 \mid 4)$ theory on S^{4} :
(1) gauge the flavor symmetry
(2) give expectation value to Φ_{0} in the flavor vector multiplet

Choice of supercharge Q

$Q^{2}=J+R+G_{\phi}$
J - space-time rotation
R - R-symmetry
$G_{\phi}-$ gauge transformation by $\phi=i \Phi_{0}-\cos \theta \Phi_{9}$

$$
\epsilon_{1}=\epsilon_{2}=1 / r
$$

1 Find the localization loci Y_{α} (solve $Q \Psi=0$).
2 Compute $\exp \left(-\left.S\right|_{Y_{\alpha}}\right)$
3 Compute the determinant $Z_{1-\text { loop }}\left[N_{Y_{\alpha}}\right]$
4 Integrate over Y_{α} and sum over α

Step 1. Find the localization loci Y_{α} (solve $Q \Psi=0$)

$$
\begin{array}{r}
Q \Psi=\frac{1}{2} F_{m n} \Gamma^{m n} \varepsilon-\frac{1}{2} \phi_{a} \Gamma^{a \mu} \nabla_{\mu} \varepsilon+i K_{i} \Gamma_{8 i+4} \varepsilon \\
\\
\varepsilon-\text { spinor on } S^{4} \text { defining } Q
\end{array}
$$

Vanishing theorem

the only possible solutions to the susy equations smooth everywhere except at the 't Hooft loop singularity are given by

$$
Y_{0}=\quad \begin{aligned}
& A_{\mu}=A_{\mu}^{\mathrm{bg}} \\
& \Phi_{9}=\Phi_{9}^{\mathrm{bg}} \\
& K_{i}=0, \quad i=1,2 \\
& \Phi_{0}=\Phi_{0}^{\mathrm{bg}}+a \\
& K_{3}=-a \\
& a \in \mathfrak{h}
\end{aligned}
$$

The original infinite dimensional path integral localizes to finite (rank G) dimensional integral

$$
\begin{aligned}
& Z=\int[D A D \Phi \ldots] e^{-S}= \int_{\mathfrak{h}}[d a] e^{-S(a)} Z_{1-l o o p}(a) \\
&+ \text { non-perturbatius corrections } \\
& \text { from othse loci } Y_{\alpha}
\end{aligned}
$$

Step 2. Compute $e^{-\left.S\right|_{Y_{0}}}$

't Hoof loop:

$$
S(a)=-\frac{8 \pi^{2}}{g^{2}} \operatorname{Tr} a^{2}+\left(\frac{2 \pi^{2}}{g^{2}}+\frac{g^{2} \vartheta^{2}}{32 \pi^{2}}\right) \operatorname{Tr} B^{2}
$$

rewrite:

$$
\begin{aligned}
S(a) & =-\pi i \tau \operatorname{Tr} \hat{a} \hat{2} \\
\hat{a}_{N} & =i a-\frac{\epsilon}{2} B \\
\hat{a}_{S} & =i a+\frac{\epsilon}{2} B
\end{aligned}
$$

hence

$$
\begin{gathered}
Q^{2}=J+R+G_{\phi} \\
\phi=i \Phi_{0}-\cos \theta \Phi_{9} \\
\Phi_{9}^{\mathrm{bg}}(N)=\Phi_{9}^{\mathrm{bg}}(S)=\frac{\epsilon}{2} B
\end{gathered}
$$

$$
\begin{gathered}
e^{-S(a)}=e^{\pi i \tau \operatorname{Tr} \hat{a}_{N}^{2}} \cdot e^{-\pi i \bar{\tau} \operatorname{Tr} \hat{a}_{S}^{2}}= \\
=\left|e^{\pi i \tau \operatorname{Tr} \hat{a}_{N}^{2}}\right|^{2}
\end{gathered}
$$

Step 3. Compute $Z_{1-\text { loop }}(a)$

organize fields in Q-multiplets
$Q \cdot \varphi_{\mathrm{b}, \mathrm{f}}=\varphi_{\mathrm{b}, \mathrm{f}}^{\prime}$
$Q \cdot \varphi_{\mathrm{b}, \mathrm{f}}^{\prime}=\mathcal{R} \cdot \varphi_{\mathrm{b}, \mathrm{f}}$
so $Q^{2}=\mathcal{R} \quad$ with $\quad \mathcal{R}=J+R+G_{a}$

$$
Z_{1-\text { loop }}(a)=\int_{\mathcal{N}_{\nu}} e^{t Q V}=\frac{\operatorname{det}_{\text {cokerD }} \mathcal{R}}{\operatorname{det}_{\text {ker } D} \mathcal{R}}, \quad t \rightarrow \infty
$$

D - transverally elliptic differential operator
from the linearized equations

$D: \Gamma\left(E_{0}\right) \rightarrow \Gamma\left(E_{1}\right)$

$$
\begin{aligned}
& \Gamma\left(E_{0}\right)=\left\{\phi_{\mathrm{b}}\right\} \\
& \Gamma\left(E_{1}\right)=\left\{\phi_{\mathrm{f}}^{\prime}\right\}
\end{aligned}
$$

compute

$$
Z_{1-\text { loop }}(a)=\frac{\operatorname{det}_{\text {cokerD }} \mathcal{R}}{\operatorname{det}_{\text {ker } D} \mathcal{R}}
$$

from the index

$$
\text { ind } D=\operatorname{tr}_{\operatorname{Ker} D} e^{\mathcal{R}}-\operatorname{tr}_{\text {Coker } D} e^{\mathcal{R}}
$$

using the rule

$$
\sum m_{j} e^{w_{j}} \rightarrow \prod w_{j}^{m_{j}}
$$

w_{j}-weights of R
m_{j}-multiplicities

To compute ind D we slice sphere into

- neighborhood of the north pole
- neighborhood of the equator
- neighborhood of the south pole and use Atiyah-Singer index formula

$$
\operatorname{ind} D(\mathcal{R})=\sum_{p \in F} \frac{\operatorname{tr}_{E_{0}(p)} \mathcal{R}-\operatorname{tr}_{E_{1}(p)} \mathcal{R}}{\operatorname{det}_{T M_{p}}(1-\mathcal{R})}
$$

F-set of fixed points of \mathcal{R} action on M

Each pole region gives

$$
Z_{1-1 \text { oot }}^{\text {pole }}
$$

where

$$
\hat{a}_{N}=i a-\frac{\epsilon}{2} B \quad \hat{a}_{S}=i a+\frac{\epsilon}{2} B
$$

Equator region gives
$Z_{1-\text { loop }}^{\text {eq }}(a)=\frac{\prod_{f=1}^{N_{\mathrm{F}}} \prod_{w \in R}\left[\sin \left(\pi w \cdot\left(\frac{i a}{\epsilon}+\frac{B}{2}\right)-\pi \frac{i m_{f}}{\epsilon}\right)\right]^{|w \cdot B| / 2}}{\prod_{\alpha>0}\left[\sin \left(\pi \alpha \cdot\left(\frac{i a}{\epsilon}+\frac{B}{2}\right)\right)\right]^{|\alpha \cdot B|}}$
R - hypermultiplet rep
G - Barnes G-function/related to q-dilog/

$$
G(1+z)=(2 \pi)^{z / 2} e^{-\left(\left(1+\gamma z^{2}\right)+z\right) / 2} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{n} e^{-z+\frac{z^{2}}{2 n}}
$$

Y_{0} locus gives exact result up to nonperturbative corrections

$\left\langle T_{B}\right\rangle \stackrel{Y_{0}}{=} \int d a\left|Z_{N}\left(i a-\frac{\epsilon}{2} B\right)\right|^{2} Z_{1-\text { loop }}^{\text {eq }}(a)$
$\left\langle W_{R}\right\rangle \stackrel{Y_{0}}{=} \int d a\left|Z_{N}(i a)\right|^{2} \operatorname{tr}_{R} e^{2 \pi i a}$
where

$$
Z_{N}(\hat{a})=e^{\pi i \tau \hat{a}^{2}} Z_{1-\mathrm{loop}}^{N}(\hat{a})
$$

notice connection with Nekrasov's Z

$$
Z_{N}(\hat{a})=\left[Z_{\mathbb{R}_{\epsilon_{1}}^{4}, \epsilon_{2}}^{\Omega-\mathrm{bg}}\left(\hat{a} ; \epsilon_{1}=\frac{1}{r}, \epsilon_{2}=\frac{1}{r}\right)\right]^{\text {pert }}
$$

Step 4. Non-perturbative corrections

(from higher Y_{α} loci)

- point instantons at North pole
- point monopoles at the equator

Instanton corrections

$$
\begin{gathered}
\text { four-sphere } \longleftrightarrow \text { Omega-background } \\
\begin{array}{c}
\epsilon_{1}=\epsilon_{2}=1 / r \\
\sqrt{1-x^{2}} \longleftrightarrow 1-\frac{1}{2} x^{2}+\ldots
\end{array}
\end{gathered}
$$

gauge theory in Ω-background /Losev, Moore, Nekrasov, Shatashvili / approximates $\operatorname{OSp}(2 \mid 4)$ theory up to $O\left(x^{2}\right)$ at $x=0$

point instantons at $x=0$ contribute in the same way

with instanton corrections the result is

$$
\begin{aligned}
& \left\langle T_{B}\right\rangle=\int d a\left|Z_{N}\left(i a-\frac{\epsilon}{2} B\right)\right|^{2} Z_{1-\mathrm{loop}}^{\mathrm{eq}}(a) \\
& \left\langle W_{R}\right\rangle=\int d a\left|Z_{N}(i a)\right|^{2} \operatorname{tr} e^{2 \pi i a}
\end{aligned}
$$

$$
Z_{N}(\hat{a})=e^{\pi i \tau \hat{a}^{2}} Z_{1-\mathrm{loop}}^{N}(\hat{a}) Z_{\mathrm{inst}}\left(\hat{a} \mid \epsilon_{1}=\epsilon_{2}=r^{-1} ; i m\right)
$$

if B is miniscule rep, the result is final
if not, expect screening corrections

Monopole screening

Non-abelian monopoles can screen the singularity and reduce effective magnetic charge seen at infinity

The final exact result

$$
\begin{aligned}
& \left\langle T_{B}\right\rangle=\int d a \sum_{B^{\prime} \in \operatorname{rep}(B)}\left|Z_{N}\left(i a-\frac{\epsilon}{2} B^{\prime}\right)\right|^{2} Z_{\substack{\text { 1-loop } \\
\text { Gomis, Okuda,..P.'।। }}}^{\text {eq }}\left(a ; B, B^{\prime}\right) \\
& \left\langle W_{R}\right\rangle=\int d a\left|Z_{N}(i a)\right|^{2} \sum_{R^{\prime} \in \operatorname{rep}(R)} e^{2 \pi i R^{\prime} \cdot a}
\end{aligned}
$$

- S-duality for $\operatorname{SU}(2) \mathrm{N}=2^{*}$ checked /numerically/
- results agree with conjectures for AGT dual loop observables in Liouville (Toda) theories

Drukker,Gomis,Okuda,Teschner’09, Alday, Gaiotto, Gukov, Tachikawa,Verlinde’09 Gomis,Floch'IO .

Summary/Discussion

- Exact results for vevs of susy ' t Hooft and Wilson loops in $\operatorname{OSp}(2 \mid 4)$ theories: all perturbative and nonperturbative corrections.
- Agreement with conjectured loop observables in AGT dual Liouville/Toda CFTs.
- Precision S-duality test
- similar localization techniques are used
- more complicated loops in N=4 SYM v.p., Giombi
- $S^{3} \times S^{1}, S^{3}, S^{2} \times S^{1}$ Seiberg's review talk
- gravity/black holes calculations OSV, Dabholkar-Gomes-Murthy-sen

Thank you!

