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Loop operators in 4d gauge theories

Wilson loop
electric

t’ Hooft loop
magnetic

EM duality
strong/weak 

coupling
weak/strong

coupling



EM duality
periodicity

Montone-Olive ’77S-duality for N = 4 SYM

symmetry
(ADE theories)

Why modular group?

L =
1

2g2YM

TrF ∧ �F +
iϑ

8π2
TrF ∧ F + . . .

τ =
4πi

g2YM

+
ϑ

2π

ϑ



4d
space-time

ADE (2,0) theory on x

τ

=
= ADE 4d N = 4 SYM with coupling τ

arbitrary curve 
w/ punctures Moore’s review talk

N = 2 SYM in 4d

geometric Langlands Kapustin, Witten



? ‘t Hooft loop
rep R of G 

(LG,L τ)

�TR�[Lτ ]

Can we make a computation? 

(G, τ)

Wilson loop
rep R of G

�WR�[τ ]

weak - strong

strong - weak

Lτ = −1/τ



exact 
computation



LocalizationMethod: Localization Principle
Localize the path integral:

Z0 =

�
[Dφ] e−S0[φ]

S0 – the physical action
Q – global fermionic symmetry, QS0 = 0
Q2 = R – global bosonic symmetry

Deform the action

St[φ] = S0[φ] + t{Q, V }

assuming {Q2, V } = 0
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QS0 = 0

compute the integral

given 

where  Q is fermionic symmetry,

  Q2 = Rand is bosonic symmetry

Atiyah-Bott,Singer,Duistermaat-Heckman,Berline-Vergne,Witten
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Now consider

Zt =

�
[Dφ] e−S0[φ]−t{Q,V [φ]}

Integrating by parts we get

d

dt
Zt = 0 =⇒ Z0 = Z∞

At t = ∞ the one-loop approximation to Zt is exact. But

Zt = Z0. Hence we get exact Z0.
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Consider

Integrate by parts

∂tZt = 0
Hence 

Z0 = Z∞
original integral

(hard)

integral over 
zeroes of  QV in 1-loop

approximation(easy)

Witten



Localization summary

Z =

�

X
e−S =

�

α

�

Yα⊂X
e−S|YαZ1−loop[NYα ]

where:
Q is a fermionic symmetry
Q2 = R is a bosonic symmetry
QS = 0
X = {Φ} is a space of fields
Yα = {Φ|QΨ = 0} are components of the localization locus
NYα - normal bundle to Yα ⊂ X.
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X

Yα

- the space of all fields
- the zeroes of QV

Take  
V = (QΨ,Ψ)

then zeroes of QV

are precisely zeroes of  QΨ

X

Yα



where

is the volume form
ω = sin θdθ ∧ dϕ

θ

ϕ

Example
Compute

Z(β) = 2π
exp(β)− exp(−β)

β

Straight integration gives 

Z(β) =

�

S2

exp(ω + β cos θ)



Consider the operator
Q = d− βiv

Notice that  
Z(β) =

�
expS

with QS = 0

(v = ∂φ)

(S = ω + β cos θ)

Q2 = −βLv

Localization exercise

V = sin2 θ dϕ

Deform the action using 

Then

t → ∞In the limit the integrand localizes 
to  θ = 0 θ = πand  

Z(t) =

�
ω(1 + 2t cos θ) exp(β cos θ − t sin2 θ)



N = 2 supersymmetry on S4
Definitions

OSp(2|4) ⊂ SL(1|2,H)

• 8 fermionic generators
• Sp(4) � SO(5) bosonic subgroup – isometry of S4

• SO(2)R symmetry
All zero modes in the OSp(2|4) theory on S4 are lifted. We
integrate over all fields in the path integral. No moduli on S4.
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Seiberg’s talk 



To introduce hypermultiplet masses in OSp(2|4) theory on S4:

1 gauge the flavor symmetry
2 give expectation value to Φ0 in the flavor vector multiplet

Remark on our conventions
In the OSp(2|4) theory on S4

• m is real for positivity of the action
• in conformal theory m = 0

• under localization m relates to Ω-background mΩ of
[Nekrasov’02] as

mΩ =
�1 + �2

2
+ im

The usual complex scalar field in N = 2 vector multiplet on R4

corresponds to a pair of real fields on S4: Φ0 and Φ9.
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Svect =
1

g2YM

�
√
gd4x

�
1

2
F 2 + (DΦ)2 +

R

6
Φ2 +

1

2
[Φa,Φb]

2 +K2 +ΨDΨ

�



Choice of supercharge Q

φ = iΦ0 − cos θΦ9

Q2 = J +R+Gφ

J – space-time rotation 
R – R-symmetry
Gφ – gauge transformation by

J

North

South

θ = 0

θ = π

1

2

3
4

�1

�2

�1 = �2 = 1/r



susy Wilson loop

susy ‘t Hooft loop

Supersymmetric Wilson loop

WR(C) = trR Pexp

�

C
(Adx+ iΦ0ds)

Supersymmetric ’t Hooft loop

Specify asymptotics in local R3 normal to the loop (x = 0):

FA → − �
B

2

dx

x2
, x → 0

Φ9 →
B

2

1

x
, x → 0

The parameter is B ∈ g (weight of ∨G) defining homomorphism

U(1) → G.

The asymptotics locally satisfies Bogomolny equations

DAΦ9 = �FA
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S

R – rep of G 

NS4

C

S4 N

S

C

R3
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– weight of g∨

(xi) :
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�
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NOW LET’S LOCALIZE

Solution strategy

We need to localize the path integral of N = 2 gauge theory on

S4 in the presence of ’t Hooft singularity.

0 Define the action S, the t’ Hooft operator T and the

fermionic operator Q compatible with S and T

1 Find the localization loci Yα (solve QΨ = 0).

2 Compute exp(−S|Yα)

3 Compute the determinant Z1−loop[NYα ]

4 Integrate over Yα and sum over α
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Step 1
The equations are QΨ = 0, where

QΨ = 1
2FmnΓ

mnε− 1
2φaΓ

aµ∇µε+ iKiΓ8i+4ε

For our Q, the equations interpolate between
• north pole: instanton equations F+ = 0 and DΦ9 = 0

• equator: Bogomolny equations DΦ9 = ∗F in the space
transversal to the S1 orbits and invariance along S1

• south pole: anti-instanton equations F− = 0 and DΦ9 = 0.
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ε – spinor on S4 defining Q

Step 1.

F+ = 0, DΦ9 = 0

DΦ9 = �3F, [Dτ , ·] = 0τ

F− = 0, DΦ9 = 0



Vanishing theorem

the only possible solutions to the susy equations 
smooth everywhere except at the ‘t Hooft loop 

singularity are given by 

Φ9 = Φbg
9

Aµ = Abg
µ

Φ0 = Φbg
0 + a

K3 = −a

Ki = 0, i = 1, 2Y0 =

a ∈ h



The original infinite dimensional path 
integral localizes to   

finite (rank G) dimensional integral  

Z =

�
[DADΦ . . . ]e−S =

�

h
[da]e−S(a)Z1−loop(a)

+ non-perturbative corrections 

from other loci Yα



Step 2. Compute e−S|Y0

‘t Hooft loop:

rewrite:

hence

âN = ia− �

2
B

âS = ia+
�

2
B

S(a) = −πiτTrâ2N + πiτ̄Trâ2S

= |eπiτTrâ
2
N |2

e−S(a) = eπiτTrâ
2
N · e−πiτ̄Trâ2

S =

Q2 = J +R+Gφ

φ = iΦ0 − cos θΦ9

Φbg
9 (N) = Φbg

9 (S) =
�

2
B

S(a) = −8π2

g2
Tra2 +

�
2π2

g2
+

g2ϑ2

32π2

�
TrB2



Step 3. Compute Z1-loop(a)

organize fields in Q-multiplets

R = J +R+GaQ2 = R withso

Step 3. The one-loop determinant
Denoting the fields of even and odd statistics with a subindex e
and o respectively, the Q multiplets are

Q · ϕb,f = ϕ�
b,f

Q · ϕ�
b,f = R · ϕb,f

and then
Q2 · ϕ(�)

b,f = R · ϕ(�)
b,f

We can show that the one-loop determinant is

detCokerDvmR|f
detKerDvmR|b

· detCokerDhmR|f
detKerDhmR|b

.

where D is a certain (tranversally elliptic) differential operator
defined from our tQV term.
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�

NY

etQV =
detcokerD R
detkerD R , t → ∞

D
F+ = 0, DΦ9 = 0

DΦ9 = �3F, [Dτ , ·] = 0τ

F− = 0, DΦ9 = 0from the linearized equations 

– transverally elliptic 
differential operator

Z1-loop(a) =



D : Γ(E0) → Γ(E1)
Γ(E0) = {φb}
Γ(E1) = {φ�

f}
compute

from the index

To find the ratio of determinants (equivariant Euler character)
we consider the index of operator D (equivariant Chern
character)

indD = trKerDe
R − trCokerDe

R

read the weights of R and combine them into determinant
using the rule

�

j

cje
wj(ε1,ε2,â,m̂f ) →

�

j

wj(ε1, ε2, â, m̂f )
cj

Recall that R = J +R+ [Φ, ·]
J is the SD spatial rotation
R is the R-symmetry rotation
[Φ, ·] is the gauge transformation.
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using the rule�
mje

wj →
�

w
mj

j

wj -weights of R
mj -multiplicities

detcokerD R
detkerD R

Z1-loop(a) =



indD(R) =
�

p∈F

trE0(p)R− trE1(p)R
detTMp(1−R)

F -set of fixed points of R action on M

Excision property of the index/Atiya-Singer theory
To find index for transversally elliptic operator D on a manifold
M under equivariant U(1) action R we can cut M into three
pieces
To compute indD we slice sphere into

• neighborhood of the north pole
• neighborhood of the equator
• neighborhood of the south pole

and use Atiyah-Singer index formula

indD(R) =
�

p∈F

trE0(p)R− trE1(p)R
detTMp(1−R)

.
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Equator region gives 

Each pole region gives

where âN = ia− �

2
B âS = ia+

�

2
B

Zeq
1-loop(a) =

�NF

f=1

�
w∈R

�
sin

�
πw ·

�
ia
� + B

2

�
− π imf

�

��|w·B|/2

�
α>0

�
sin

�
πα ·

�
ia
� + B

2

���|α·B|

Zpole
1-loop(â) =

�
α

�
G
�
α·â
�

�
G
�
2 + α·â

�

��1/2

�NF

f=1

�
w∈R

�
G
�
1 + w·â

� − imf

�

�
G
�
1− w·â

� + imf

�

��1/2

R - hypermultiplet rep

G(1 + z) = (2π)z/2e−((1+γz2)+z)/2
∞�

n=1

�
1 +

z

n

�n
e−z+

z2

2n

- Barnes G-function /related to q-dilog/ G



ZN (â) = eπiτ â
2

ZN
1-loop(â)

locus gives exact result up to 
nonperturbative corrections

Y0

�TB�
Y0=

�
da

���ZN (ia− �

2
B)

���
2
Zeq
1-loop(a)

�WR�
Y0=

�
da |ZN (ia)|2 trRe2πia

where 

notice connection with Nekrasov’s Z

S4

C

ZN (â) =
�
ZΩ-bg
R4

�1,�2

�
â; �1 = 1

r , �2 = 1
r

��pert



Step 4.

Yα

Non-perturbative corrections

• point instantons at North pole

• point monopoles at the equator

• point anti-instantons at South pole

(from higher      loci) 

F+ = 0, DΦ9 = 0

DΦ9 = �3F, [Dτ , ·] = 0τ

F− = 0, DΦ9 = 0



gauge theory in    -background /Losev, Moore, Nekrasov, Shatashvili /

approximates OSp(2|4) theory up to O(x2) at x = 0

Instanton corrections

four-sphere Omega-background
�1 = �2 = 1/r

 point instantons at x=0 
contribute in the same way

�
1− x2 1− 1

2x
2 + . . .

, ,

Ω



with instanton corrections the result is

ZN (â) = eπiτ â
2

ZN
1-loop(â)Zinst(â|�1 = �2 = r−1; im)

if B is miniscule rep, the result is final

�TB�=
�

da
���ZN (ia− �

2
B)

���
2
Zeq
1-loop(a)

�WR�=
�

da |ZN (ia)|2 tre2πia

if not, expect screening corrections 



Monopole screening

Non-abelian monopoles can screen the singularity 
and reduce effective magnetic charge seen at infinity 

T

Φ =
1

2x
B, x → 0

Φ =
1

2x
B�, x → ∞

DAΦ = �FA

/abelian/

/abelian/

/non-abelian/

Kronheimer 
Kapustin,Witten
Cherkis,Durkan

M(B,B�)

we need to localize on 
moduli space  

B� ⊂ rep(B)



�TB� =
�

da
�

B�∈rep(B)

���ZN (ia− �

2
B�)

���
2
Zeq
1-loop(a;B,B�)

�WR� =
�

da |ZN (ia)|2
�

R�∈rep(R)

e2πiR
�·a

The final exact result 

• S-duality for SU(2) N=2* checked /numerically/

• results agree with conjectures for AGT dual loop 
observables in Liouville (Toda) theories

Drukker,Gomis,Okuda,Teschner’09, 
Alday, Gaiotto, Gukov, Tachikawa, Verlinde’09
Gomis,Floch’10 .

V.P. ’07

Gomis, Okuda, V.P. ’11



• Exact results for vevs of susy ‘t Hooft and Wilson 
loops in OSp(2|4) theories: all perturbative and non-
perturbative corrections.

• Agreement with conjectured loop observables in 
AGT dual Liouville/Toda CFTs. 

• Precision S-duality test

• similar localization techniques are used 

• more complicated loops in N=4 SYM  V.P., Giombi

•                                Seiberg’s review talk 

• gravity/black holes calculations OSV, Dabholkar-Gomes-
Murthy-Sen 

Summary/Discussion

S3 × S1, S3, S2 × S1



Thank you!


