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• We cannot summarize thousands of papers in one talk 

– We will leave out many topics. 

– We will leave out many references. 

 

• Look for a theme of the recent developments. 

 

2 



Theme:  

Rigid supersymmetric field theories 

in nontrivial spacetimes 

• Relations between theories in different dimensions 

• New computable observables in known theories  

• New insights about the dynamics 
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Relations between theories in 

different dimensions 

• Old examples: theories in d dimensions compactified on 

a circle can lead to theories in d-1 dimensions. 

• Reduction to the boundary, e.g.                              

[Gaiotto, Witten…; cf. Witten‟s talk]  

• Exciting compactifications: 6d (2,0) theory on 2d/3d 

manifolds yields new 4d/3d theories [Witten; Gaiotto, 

Moore, Neitzke; Gaiotto;…]. 

– Will not pursue here [cf. talks: Gaiotto, Gukov, Moore, 

Morozov].  

• We will focus on theories on spheres. 
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New computable observables in 

known theories  

• Partition functions and correlation functions of Wilson or 

„t Hooft loops on a sphere 

– 4d [Pestun…] 

– 3d [Kapustin, Willett, Yaakov…] 

• Partition function on a sphere times a circle – spectrum 

of short representations  

– 4d [Romelsberger…] 

– 3d [Kim; Imamura, Yokoyama…] 
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New insights about the dynamics 

• Testing dualities 

– 3d [Kapustin, Willett, Yaakov …] 

– 4d [Romelsberger, Dolan, Osborn, Spiridonov, 

Vartanov…] 

• Identifying the correct superconformal algebra [Jafferis…]   

–  relation to “a-maximization” and “c-theorem”? 

• Surprising relations between distinct theories in different 

number of dimensions [Gaiotto, Moore, Neitzke; Gaiotto; 

Alday, Gaiotto, Tachikawa; Terashima, Yamazaki; 

Dimofte, Gukov…; cf. talks: Gaiotto, Gukov, Morozov] 

• Relations to integrable systems [Nekrasov, Shatashvili, 

Witten…; cf. talks: Morozov, Shatashvili] 
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Questions/Outline 

• How do we place a supersymmetric theory on a 

nontrivial spacetime? 

– When is it possible? 

– What is the Lagrangian? 

– How come we have supersymmetry on a sphere (or 

equivalently in dS)? 

• How do we compute? 

• What does it teach us? 
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SUSY in curved spacetime 

• Naïve condition: need a covariantly constant spinor  

 

• A more sophisticated condition: need a Killing spinor 

 

    with constant     . 

• A more general possibility (also referred to as Killing 

spinor) 

 

 

• Can include a background R gauge field in          in any 

of these (twisting) [Witten…]. 
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SUSY in curved spacetime 

Motivated by supergravity: a more general condition 

 

 

with an appropriate                  (with spinor indices). 

 

In the context of string or supergravity configurations          

is determined by the background values of the various 

dynamical fields (forms, matter fields…).   

All the dynamical fields have to satisfy their equations of   

motion. 
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Rigid SUSY in curved spacetime 

 

 

We are interested in a rigid theory (no dynamical gravity) in 

curved spacetime:   

• What is               ? 

• Which constraints should it satisfy? 

• Determine the curved spacetime supersymmetric 

Lagrangian.  
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Rigid SUSY in curved spacetime 

We start with a flat space supersymmetric theory and want 

to determine the curved space theory. 

• The Lagrangian can be deformed. 

• The SUSY variation of the fields can be deformed.  

• The SUSY algebra can be deformed. 

 

Standard approach:  Expand in large radius r and 

determine the correction terms iteratively in a power series 

in 1/r. 

• It is surprising when it works.   

• In all examples the iterative procedure ends at order 1/r2. 
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Landscape of special cases 

•                                            [Zumino (77)…] 

•                                            [D. Sen (87)…] 

•                                            [Pestun…] 

•                                            [Romelsberger…] 

•                                            [Kapustin, Willett, Yaakov…] 

•                                            [Kim; Imamura, Yokoyama…] 

All these backgrounds are conformally flat.   

So it is straightforward to put an SCFT on them. 

Example: the partition function on                  is the 

superconformal index [Kinney, Maldacena, Minwalla, Raju]. 

 

But for non-conformal theories it is tedious and not conceptual. 

What is the most general setup? 
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Curved superspace [Festuccia, NS] 

• Consider SUGRA in superspace and view the fields in 

the gravity multiplet as arbitrary, classical, background 

fields.  Do not impose any equation of motion. 

 

• Take                    with fixed metric and appropriate 

scaling of the various auxiliary fields in the gravity 

multiplet. 

• For supersymmetry, ensure that the variation of the 

gravitino vanishes (it is independent of the dynamical 

matter fields)                                   

     

     Here                 is determined by the auxiliary fields in     

     the gravity multiplet. 
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Curved superspace 

• For supersymmetry 

• Integrability condition: differential equations for the 

metric and the various auxiliary fields through               . 

• The supergravity Lagrangian with nonzero background 

fields gives us a rigid field theory in curved superspace. 

• Comments:  

– Enormous simplification  

– This makes it clear that the iterative procedure in 

powers of 1/r terminates at order 1/r2. 

– Different off-shell formulations of supergravity (which 

are equivalent on-shell) can lead to different 

backgrounds. 14 



Examples:             and 

•    :       : turn on a constant value of a scalar auxiliary field   

 

 

•       : set the auxiliary fields  

 

 

– Note: not the standard reality! 

– Equivalently,                 in Euclidean               .    

– When non-conformal, not reflection positive (non-

unitary).  Hence, consistent with “no SUSY in dS.” 

– In terms of the characteristic mass scale m and the 

radius r  the problematic terms are of order m/r. 
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  • In these two examples the superalgebra is 

– Good real form for Lorentzian 

– As always in Euclidean space,                  .    

– For        need a compact real form of the isometry 

 

 

– Then, the anti-commutator of two supercharges is 

not a real rotation.   

– Hence, hard to compute using localization (below).  

• The superpotential is not protected (can be absorbed 

in the Kahler potential) and holomorphy is not useful.   

• For N=2 the superalgebra is 

– computable 
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Examples:           and 



Example: N=1 on  
• Turn on a vector auxiliary field in the gravity multiplet 

along       .  

• For Q to be well defined around the      , need a global 

continuous R-symmetry and a background               gauge 

field. 

• Supersymmetry algebra:                                                    ,  

where the            factor is the combination of “time” 

translation and R-symmetry that commutes with Q. 

• Alternatively, can use “new-minimal” supergravity and turn 

on a               gauge field and a constant H=dB on       , 

where B is a two-form auxiliary field. 

• No quantization conditions on the periods of the auxiliary 

fields. 
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N=2  with             on 

• Can consider as a limit of the previous case 

 

 

• Can also view as a 3d theory, where we can add new 

terms, e.g. Chern-Simons terms. 

• Nonzero H=dB ensures supersymmetry. 

• Supersymmetry algebra: 

• As in the theory on       , if the theory is not conformal, it 

is not unitary.  (No SUSY in dS space.)   

– In terms of the characteristic mass scale m and the 

radius r  the problematic terms are of order m/r. 
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Deforming the theory 

On                   (or                            ) we can add background 

gauge fields for the non-R flavor symmetries,              ;                

turn on constant complex       along       : 

 

•              leads to a real mass in the 3d theory on       .  

•              shifts the choice of R-symmetry by              . 

• The partition function is manifestly holomorphic in        .  

 

We can also squash the        [Hama, Hosomichi, Lee].  We 

will not pursue it here. 
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The partition function on 

• It is a trace over a Hilbert space with (complex) chemical 

potentials        . 

• Only short representations of                  contribute to the 

trace [Romelsberger]. 

– Note, this is an index, but in general it is not “the 

superconformal index.” 

• It is independent of small changes in the parameters of 

the 4d Lagrangian – it has the same value in the UV and 

IR theories. 

• It is holomorphic in       . 
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How to compute: localization [Witten] 

• Find a supercharge      such that                (more 

generally                           ). 

 

• Add to the Lagrangian                               

    such that 

–     

– if                               ,      is invariant under it. 

 

• The partition function is independent of    .  Hence the 

answer does not change (slightly imprecise). 

• We can examine it for                 , where it is dominated 

by the zeros of               . 
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Localization 

 

• The functional integral is dominated by the zeros of    --   

– solutions of some PDE. 

• After computing the one loop determinant from the 

vicinity of the saddles the functional integral becomes an 

ordinary integral over the moduli space of these 

solutions.  

• It is computable – one-loop exact 

• With an appropriate      the saddles are constant fields 

– Relation to matrix models 
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Example:                      a 
[Kapustin, Willett, Yaakov…] 

 

 

 

 

 

 

• The                  terms are not reflection positive (non-

unitary). 

• Since the answer is independent of           , we can take 

it to zero and find that the theory localizes on   

 

 

• The one loop determinant is computable. 
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Generalizations 

• Non-Abelian theories 

• Add matter fields 

• Add Chern-Simons terms 

• Add Wilson lines 

 

In all these cases the functional integral becomes a matrix 

model for      . 

 

The partition function and some correlation functions of 

Wilson loops are computable. 
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Computations in 4d  

• Wilson and „t Hooft loops were computed on          and 

[Pestun, Giombi, Ricci, Dymarsky, Okuda, Gomis; cf. 

Pestun‟s talk]. We will not pursue it here. 

 

• For conformal theories the                   partition function is 

the superconformal index.  It was computed for various 

theories with                  [Gadde, Pomoni, Rastelli, 

Razamat, Yan…].  We will not pursue it here. 
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on  

• If the theory is conformal, the partition function is the 

superconformal index. 

• For non-conformal theories the partition function does 

not depend on the scale [Romelsberger]. 

• Can use a free field computation in the UV to learn about 

the IR answer.  (Equivalently, use localization.) 

• This probes the operators in short representations and 

their quantum numbers (more than just the chiral ones). 

• Highly nontrivial information about the IR theory; e.g. can 

test dual descriptions of it [Romelsberger, Dolan, 

Osborn, Spiridonov, Vartanov…]. 
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Answers 
A typical expression [Dolan, Osborn] 

 

 
 

Γ  Elliptic gamma function 

 

General lessons: 

• Very explicit 

• Nontrivial 

• Special functions – relation to the elliptic hypergeometric 

series of [Frenkel, Turaev] 

• To prove duality, need miraculous identities [Rains, 

Spiridonov...] 
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Duality in 3d N=2,…            

In 3d there are very few diagnostics of duality/mirror symmetry.   

The partition functions on                             provide such 

nontrivial tests. 

Examples (similar to duality in 4d): 

• 3d mirror symmetry [Intriligator, NS…] was tested [Kapustin, 

Willett, Yaakov] 

• The                                                               duality of 

[Aharony; Giveon and Kutasov] was tested [Kapustin, Willett, 

Yaakov; Bashkirov …]. 

• Generalizations [Kapustin]:  
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  Z-minimization 

29 

• Consider an N=2 3d  theory with an R-symmetry and 

some non-R-symmetries               with charges         . 

• If there are no accidental symmetries in the IR theory, 

the R-symmetry in the superconformal algebra at the IR 

fixed point is a linear combination of the charges  

 

 

• In 4d the coefficients       are determined by a-

maximization [Intriligator, Wecht]. 

• What happens in 3d? 

 



  Z-minimization 
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• The partition function             can be studied as a function  

    of        [Jafferis; Hama, Hosomichi, Lee].   

    (Recall,                        can be introduced as a complex   

    background              gauge field.) 

• Jafferis conjectured that              is minimized at the IR  

    values of      . 

• Many tests 

• Extension of 4d a-maximization. 

• Is there a version of a c-theorem in 3d? 



Conclusions 

• A rich landscape of rigid supersymmetric field theories in 

curved spacetime was uncovered. 

• New theories were found. 

• Many observables were computed. 

• New insights about the dynamics. 

• Many questions were answered. 

• Many new questions appeared. 

• Expectation: answers by Strings 2012. 
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