Recent Advances in SUSY

Nathan Seiberg

Strings 2011

Thank: Gaiotto, Festuccia, Jafferis, Kapustin, Komargodski, Moore, Rocek, Shih, Tachikawa...

- We cannot summarize thousands of papers in one talk
 - We will leave out many topics.
 - We will leave out many references.
- Look for a theme of the recent developments.

Theme:

Rigid supersymmetric field theories in nontrivial spacetimes

- Relations between theories in different dimensions
- New computable observables in known theories
- New insights about the dynamics

Relations between theories in different dimensions

- Old examples: theories in *d* dimensions compactified on a circle can lead to theories in *d-1* dimensions.
- Reduction to the boundary, e.g. $\mathbf{R}^4 \to \mathbf{R}^3 \otimes \mathbf{R}_+ \to \mathbf{R}^3$ [Gaiotto, Witten...; *cf.* Witten's talk]
- Exciting compactifications: 6d (2,0) theory on 2d/3d manifolds yields new 4d/3d theories [Witten; Gaiotto, Moore, Neitzke; Gaiotto;...].
 - Will not pursue here [*cf.* talks: Gaiotto, Gukov, Moore, Morozov].
- We will focus on theories on spheres.

New computable observables in known theories

- Partition functions and correlation functions of Wilson or 't Hooft loops on a sphere
 - 4d [Pestun...]
 - 3d [Kapustin, Willett, Yaakov...]
- Partition function on a sphere times a circle spectrum of short representations
 - 4d [Romelsberger...]
 - *3d* [Kim; Imamura, Yokoyama...]

New insights about the dynamics

- Testing dualities
 - 3d [Kapustin, Willett, Yaakov ...]
 - 4d [Romelsberger, Dolan, Osborn, Spiridonov, Vartanov...]
- Identifying the correct superconformal algebra [Jafferis...]
 - relation to "a-maximization" and "c-theorem"?
- Surprising relations between distinct theories in different number of dimensions [Gaiotto, Moore, Neitzke; Gaiotto; Alday, Gaiotto, Tachikawa; Terashima, Yamazaki; Dimofte, Gukov...; *cf.* talks: Gaiotto, Gukov, Morozov]
- Relations to integrable systems [Nekrasov, Shatashvili, Witten...; cf. talks: Morozov, Shatashvili]

Questions/Outline

- How do we place a supersymmetric theory on a nontrivial spacetime?
 - When is it possible?
 - What is the Lagrangian?
 - How come we have supersymmetry on a sphere (or equivalently in dS)?
- How do we compute?
- What does it teach us?

SUSY in curved spacetime

• Naïve condition: need a covariantly constant spinor

 $\nabla_{\mu}\zeta = 0$

• A more sophisticated condition: need a Killing spinor

$$\nabla_{\mu}\zeta = c\gamma_{\mu}\zeta$$

with constant C.

A more general possibility (also referred to as Killing spinor)

 $\nabla_{\mu}\zeta = \gamma_{\mu}\tilde{\zeta}$

• Can include a background R gauge field in ∇_{μ} in any of these (twisting) [Witten...].

SUSY in curved spacetime

Motivated by supergravity: a more general condition

 $\nabla_{\mu}\zeta = M_{\mu}(x)\zeta$

with an appropriate $M_{\mu}(x)$ (with spinor indices).

In the context of string or supergravity configurations $M_{\mu}(x)$ is determined by the background values of the various dynamical fields (forms, matter fields...).

All the dynamical fields have to satisfy their equations of motion.

Rigid SUSY in curved spacetime

$\nabla_{\mu}\zeta = M_{\mu}(x)\zeta$

We are interested in a rigid theory (no dynamical gravity) in curved spacetime:

- What is $M_{\mu}(x)$?
- Which constraints should it satisfy?
- Determine the curved spacetime supersymmetric Lagrangian.

Rigid SUSY in curved spacetime

We start with a flat space supersymmetric theory and want to determine the curved space theory.

- The Lagrangian can be deformed.
- The SUSY variation of the fields can be deformed.
- The SUSY algebra can be deformed.

Standard approach: Expand in large radius r and determine the correction terms iteratively in a power series in 1/r.

- It is surprising when it works.
- In all examples the iterative procedure ends at order $1/r^2$.

Landscape of special cases

- $\mathcal{N} = 1$ on \mathbf{AdS}_4 [Zumino (77)...]
- $\mathcal{N} = 1, 2... \text{ on } \mathbf{S}^3 \times \mathbf{R}$ [D. Sen (87)...]
- $\mathcal{N} = 2 \text{ on } \mathbf{S}^4$ [Pest
- $\mathcal{N} = 1$ on $\mathbf{S}^3 \times \mathbf{S}^1$
- $\mathcal{N} = 2$ on \mathbf{S}^3
- $\mathcal{N} = 2$ on $\mathbf{S}^2 \times \mathbf{S}^1$

[Pestun...] [Romelsberger...] [Kapustin, Willett, Yaakov...]

[Kim; Imamura, Yokoyama...]

All these backgrounds are conformally flat.

So it is straightforward to put an SCFT on them.

Example: the partition function on $S^3 \times S^1$ is the

superconformal index [Kinney, Maldacena, Minwalla, Raju].

But for non-conformal theories it is tedious and not conceptual. What is the most general setup? ¹²

Curved superspace [Festuccia, NS]

- Consider SUGRA in superspace and view the fields in the gravity multiplet as arbitrary, classical, background fields. Do not impose any equation of motion.
- Take $M_P \rightarrow \infty$ with fixed metric and appropriate scaling of the various auxiliary fields in the gravity multiplet.
- For supersymmetry, ensure that the variation of the gravitino vanishes (it is independent of the dynamical matter fields) $\nabla_{\mu}\zeta = M_{\mu}(x)\zeta$

Here $M_{\mu}(x)$ is determined by the auxiliary fields in the gravity multiplet.

Curved superspace

- For supersymmetry $abla_{\mu}\zeta = M_{\mu}(x)\zeta$
- Integrability condition: differential equations for the metric and the various auxiliary fields through $M_{\mu}(x)$.
- The supergravity Lagrangian with nonzero background fields gives us a rigid field theory in curved superspace.
- Comments:
 - Enormous simplification
 - This makes it clear that the iterative procedure in powers of 1/r terminates at order $1/r^2$.
 - Different off-shell formulations of supergravity (which are equivalent on-shell) can lead to different backgrounds.

Examples: AdS_4 and S^4

- AdS_4 : turn on a constant value of a scalar auxiliary field
- $M = \frac{3}{r}$ • S⁴: set the auxiliary fields $M = \overline{M} = \frac{3}{ir}$
 - Note: not the standard reality!
 - Equivalently, r
 ightarrow ir in Euclidean AdS_4 .
 - When non-conformal, not reflection positive (non-unitary). Hence, consistent with "no SUSY in dS."
 - In terms of the characteristic mass scale *m* and the radius *r* the problematic terms are of order *m/r*.

Examples: AdS_4 and S^4

- In these two examples the superalgebra is OSp(1|4)
 - Good real form for Lorentzian AdS_4
 - As always in Euclidean space, $Q^*
 eq Q$.
 - For S^4 need a compact real form of the isometry

$SO(5) \sim Sp(4) \subset OSp(1|4)$

- Then, the anti-commutator of two supercharges is not a real rotation.
- Hence, hard to compute using localization (below).
- The superpotential is not protected (can be absorbed in the Kahler potential) and holomorphy is not useful.
- For N=2 the superalgebra is OSp(2|4)- computable

Example: N=1 on $\mathbf{S}^3 \times \mathbf{S}^1$

- Turn on a vector auxiliary field in the gravity multiplet along \mathbf{S}^1 .
- For Q to be well defined around the S^1 , need a global continuous R-symmetry and a background $U(1)_R$ gauge field.
- Supersymmetry algebra: $SU(2|1) \times SU(2) \times U(1)$, where the U(1) factor is the combination of "time" translation and R-symmetry that commutes with Q.
- Alternatively, can use "new-minimal" supergravity and turn on a $U(1)_R$ gauge field and a constant H=dB on S^3 , where *B* is a two-form auxiliary field.
- No quantization conditions on the periods of the auxiliary fields.

N=2 with $U(1)_R$ on \mathbf{S}^3

• Can consider as a limit of the previous case

 Can also view as a 3d theory, where we can add new terms, e.g. Chern-Simons terms.

 $\mathbf{S}^3 \times \mathbf{S}^1 \to \mathbf{S}^3$

- Nonzero *H*=*dB* ensures supersymmetry.
- Supersymmetry algebra: $SU(2|1) \times SU(2)$
- As in the theory on S^4 , if the theory is not conformal, it is not unitary. (No SUSY in *dS* space.)
 - In terms of the characteristic mass scale *m* and the radius *r* the problematic terms are of order *m/r*.

Deforming the theory

On $\mathbf{S}^3 \times \mathbf{R}$ (or $\mathbf{S}^3 \times \mathbf{S}^1$, \mathbf{S}^3) we can add background gauge fields for the non-R flavor symmetries, $U(1)_f$; turn on constant complex A^f along \mathbf{R} :

- $\operatorname{Re} A^{f}$ leads to a real mass in the 3d theory on S^{3} .
- $\operatorname{Im} A^f$ shifts the choice of R-symmetry by $U(1)_f$.
- The partition function is manifestly holomorphic in A^f .

We can also squash the S^3 [Hama, Hosomichi, Lee]. We will not pursue it here.

The partition function on $\mathbf{S}^3\times\mathbf{S}^1$

- It is a trace over a Hilbert space with (complex) chemical potentials A^f .
- Only short representations of SU(2|1) contribute to the trace [Romelsberger].
 - Note, this is an index, but in general it is not "the superconformal index."
- It is independent of small changes in the parameters of the 4d Lagrangian – it has the same value in the UV and IR theories.
- It is holomorphic in A^f .

How to compute: localization [Witten]

- Find a supercharge Q such that $Q^2 = 0$ (more generally $Q^2 = \text{isometry}$).
- Add to the Lagrangian $\delta \mathcal{L} = t\{Q, \Psi\}$ such that
 - $\operatorname{Re} t\{Q,\Psi\} \ge 0$ - if $Q^2 = \operatorname{isometry}$, Ψ is invariant under it.
- The partition function is independent of *t*. Hence the answer does not change (slightly imprecise).
- We can examine it for $t\to\infty$, where it is dominated by the zeros of $\,{\rm Re}\,\delta{\cal L}$.

Localization

 $\delta \mathcal{L} = \lim_{t \to \infty} t \left\{ Q, \Psi \right\}$

- The functional integral is dominated by the zeros of $\operatorname{Re} \delta \mathcal{L}$ – solutions of some PDE.
- After computing the one loop determinant from the vicinity of the saddles the functional integral becomes an ordinary integral over the moduli space of these solutions.
- It is computable one-loop exact
- With an appropriate Ψ the saddles are constant fields
 - Relation to matrix models

Example: $\mathcal{N} = 2 U(1)$ on \mathbf{S}^3 [Kapustin, Willett, Yaakov...]

$$\mathcal{L} = \frac{1}{g_{YM}^2} \left(\frac{1}{2} F_{\mu\nu}^2 + (\partial_\mu \sigma)^2 - D^2 + i\lambda^{\dagger} \nabla \!\!\!\!/_{\mu} \lambda + \frac{2i}{r} D\sigma - \frac{1}{2r} \lambda^{\dagger} \lambda + \frac{1}{r^2} \sigma^2 \right)$$

- The O(1/r) terms are not reflection positive (non-unitary).
- Since the answer is independent of g_{YM} , we can take it to zero and find that the theory localizes on

$$D = \frac{i}{r}\sigma = \text{const.} \quad F_{\mu\nu} = 0$$

• The one loop determinant is computable.

Generalizations

- Non-Abelian theories
- Add matter fields
- Add Chern-Simons terms
- Add Wilson lines

In all these cases the functional integral becomes a matrix model for $\ensuremath{\sigma}$.

The partition function and some correlation functions of Wilson loops are computable.

Computations in 4d $\mathcal{N} = 2, 4$

- Wilson and 't Hooft loops were computed on S^4 and S^2 [Pestun, Giombi, Ricci, Dymarsky, Okuda, Gomis; *cf.* Pestun's talk]. We will not pursue it here.
- For conformal theories the $S^3 \times S^1$ partition function is the superconformal index. It was computed for various theories with $\mathcal{N} = 2, 4$ [Gadde, Pomoni, Rastelli, Razamat, Yan...]. We will not pursue it here.

$\mathcal{N} = 1$ on $\mathbf{S}^3 \times \mathbf{S}^1$

- If the theory is conformal, the partition function is the superconformal index.
- For non-conformal theories the partition function does not depend on the scale [Romelsberger].
- Can use a free field computation in the UV to learn about the IR answer. (Equivalently, use localization.)
- This probes the operators in short representations and their quantum numbers (more than just the chiral ones).
- Highly nontrivial information about the IR theory; *e.g.* can test dual descriptions of it [Romelsberger, Dolan, Osborn, Spiridonov, Vartanov...].

Answers

A typical expression [Dolan, Osborn]

 $I_E(p,q,\mathbf{y},\tilde{\mathbf{y}})_{SU(N_c)}$

$$= (p;p)^{N_c-1} (q;q)^{N_c-1} \frac{1}{N_c!} \int \prod_{j=1}^{N_c-1} \frac{\mathrm{d}z_j}{2\pi i z_j} \frac{\prod_{1 \le i \le N_f} \prod_{1 \le j \le N_c} \Gamma(y_i z_j, 1/(\tilde{y}_i z_j); p, q)}{\prod_{1 \le i < j \le N_c} \Gamma(z_i/z_j, z_j/z_i; p, q)} \Big|_{\prod_{j=1}^{N_c} z_j = 1}$$

✓ Elliptic gamma function

General lessons:

- Very explicit
- Nontrivial
- Special functions relation to the elliptic hypergeometric series of [Frenkel, Turaev]
- To prove duality, need miraculous identities [Rains, Spiridonov...]

Duality in 3d N=2,...

In 3d there are very few diagnostics of duality/mirror symmetry. The partition functions on \mathbf{S}^3 , $\mathbf{S}^2 \times \mathbf{S}^1$ provide such nontrivial tests.

Examples (similar to duality in 4d):

- 3d mirror symmetry [Intriligator, NS...] was tested [Kapustin, Willett, Yaakov]
- The $U(N_c)_k / U(|k| + N_f N_c)_{-k}$ duality of [Aharony; Giveon and Kutasov] was tested [Kapustin, Willett, Yaakov; Bashkirov ...].
- Generalizations [Kapustin]:

 $USp(2N_c)_k / USp(2(|k| + N_f - N_c - 1))_{-k}$ $O(N_c)_k / O(|k| + N_f - N_c + 2)_{-k}$

Z-minimization

- Consider an N=2 3d theory with an R-symmetry and some non-R-symmetries $U(1)_f$ with charges F_f .
- If there are no accidental symmetries in the IR theory, the R-symmetry in the superconformal algebra at the IR fixed point is a linear combination of the charges

$$R_{IR} = R + \sum a^f F_f$$

- In 4d the coefficients a^f are determined by amaximization [Intriligator, Wecht].
- What happens in 3d?

Z-minimization

$$R_{IR} = R + \sum a^f F_f$$

- The partition function $Z(S^3)$ can be studied as a function of a^f [Jafferis; Hama, Hosomichi, Lee]. (Recall, $a^f = \operatorname{Im} A^f$ can be introduced as a complex background $U(1)_f$ gauge field.)
- Jafferis conjectured that $|Z(S^3)|$ is minimized at the IR values of a^f .
- Many tests
- Extension of 4d a-maximization.
- Is there a version of a *c*-theorem in 3*d*?

Conclusions

- A rich landscape of rigid supersymmetric field theories in curved spacetime was uncovered.
- New theories were found.
- Many observables were computed.
- New insights about the dynamics.
- Many questions were answered.
- Many new questions appeared.
- Expectation: answers by Strings 2012.