Towards Simple de Sítter Vacua

Gary Shiu
University of Wisconsin-Madison

Based on:

- S.S. Haque, GS, B. Underwood, T. Van Riet, Phys. Rev. D79, 086005 (2009).
- U.H. Danielsson, S.S. Haque, GS, T. Van Riet, JHEP 0909, 114 (2009).
- U.H. Danielsson, S.S. Haque, P. Koerber, GS, T. Van Riet, T. Wrase, arXiv:1103. 4858 [hep-th].
- GS, Y. Sumítomo, ín preparation.

Puzzles of two accelerating phases

Early universe: Inflation

Current universe:
Dark Energy

SEIF-REPRODUCING COSMOS appears as an extended branching of inflationary SELF-REPRODUCING COSMOS appears as an extended braws of physics from par-
bubbles. Changes in color represent "mutations" in the laws ent universes. The properties of space in each bubble do not depend on the time ent universes. The properties of space in each bubble do not depend one stationary, when the bubble formed. In this sense, the universe as a whole may be station
even though the interior of each bubble is described by the big bang theory.

"The Landscape" (Picture from Scientific American)
A landscape of string vacua?

Antipasti
Fluxes stabilize complex structure moduli; Kahler moduli remain unfixed.

Entree

Non-perturbative effects (D7 gauge instantons or ED3 instantons)
stabilize the Kahler moduli.

Desserts

Anti-branes to "uplift" vacuum energy.

In fine print

- Non=perturbative effects: difficult to compute explicitly. Most work aims to illustrate their existence, rather than to compute the actual contributions:

$$
W_{\mathrm{np}}=A e^{-a \rho} \quad \Longrightarrow \quad W_{\mathrm{np}}=A\left(\zeta_{i}\right) e^{-a \rho}
$$

Moreover, the full moduli dependence is suppressed.

- Anti D3-branes: backreaction on the IOD SUGRA proves to be very challenging.
[DeWolfe, Kachru, Mulligan];[McGuirk, GS, Sumitomo];[Bena, Grana, Halmagyi], [Dymarsky], ...

Minimalism describes movements in various forms of art and design, especially visual art and music, where the work is stripped down to its most fundamental features. As a specific movement in the arts it is identified with developments in post-World War II Western Art, most strongly with American visual arts in the late 1960s and early 1970s. Prominent artists associated with this movement include Donald Judd, Agnes Martin and Frank Stella. It is rooted in the reductive aspects of Modernism, and is often interpreted as a reaction against Abstract Expressionism and a bridge to Postmodern art practices.

Richard Pousette-Dart, Symphony No. 1, The Transcendental, oil on canvas, 1941-42, Metropolitan Museum of Art

Barnett Newman, Anna's light, 1968

Barnett Newman, Onement 1, 1948. Museum of Modern Art, New York. The first example of Newman using the so-called "zip" to define the spatial structure of his paintings.

Towards simple de Sitter vacua

- Explicitly computable within classical SUGRA.
- Absence of np effects, and explicit SUSY breaking localized sources, e.g., anti-branes.
- Solve 10D equations of motion (c.f., 4D EFT).
- (For now) content with simple dS solutions w/o requiring a realistic cc \& SUSY breaking scale: explicit models help address conceptual issues.

Our Ingredients

\% Fluxes: contribute positively to energy and tend to make the internal space expands:

$$
S=-\frac{1}{2 p!} \int_{6} \sqrt{g_{6}} F_{\mu_{11} \ldots \mu_{p+1}} F^{\mu_{1} \ldots \mu_{p+1}}
$$

※ Branes: contribute positively to energy and tend to shrink the internal space (reverse for O-plane which has negative tension):

$$
S=-T_{\text {brane }} \int_{\text {brane }} \sqrt{g_{\text {brane }}}
$$

\% Curvature: Positively (negatively) curved spaces tend to shrink (expand) and contribute a negative (positive) energy:

$$
\int_{10} \sqrt{\left|g_{10}\right|} \mathcal{R}_{10}=\int_{4} \sqrt{g_{4}}\left(\left(\int_{6} \sqrt{g_{6}}\right) \mathcal{R}_{4}+\int_{6} \sqrt{g_{6}} \mathcal{R}_{6}\right)
$$

Universal Moduli

* Consider metric in 10D string frame and 4d Einstein frame:

$$
\mathrm{d} s_{10}^{2}=\tau^{-2} \mathrm{~d} s_{4}^{2}+\rho \mathrm{d} s_{6}^{2}, \quad \tau \equiv \rho^{3 / 2} \mathrm{e}^{-\phi}
$$

ρ, T are the universal moduli.
\% The various ingredients contribute to V in some specific way:

$$
\begin{array}{ll}
V_{R}=U_{R} \rho^{-1} \tau^{-2}, & U_{R}(\varphi) \sim \int \sqrt{g_{6}}\left(-R_{6}\right), \\
V_{H}=U_{H} \rho^{-3} \tau^{-2}, & U_{H}(\varphi) \sim \int \sqrt{g_{6}} H^{2}, \\
V_{q}=U_{q} \rho^{3-q} \tau^{-4}, & U_{q}(\varphi) \sim \int \sqrt{g_{6}} F_{q}^{2}>0 \\
V_{p}=U_{p} \rho^{\frac{p-6}{2}} \tau^{-3}, & U_{p}(\varphi)=\mu_{p} \operatorname{Vol}\left(M_{p-3}\right) .
\end{array}
$$

\& The full 4D potential $V\left(\rho, T, \varphi_{i}\right)=V_{R}+V_{H}+V_{q}+V_{p}$.

Intersecting Brane Models

\% Consider Type IIA string theory with intersecting D6-branes/ O6-planes in a Calabi-Yau space:

a popular framework for building the Standard Model (and beyond) from string theory. See [Blumenhagen, Cvetic, Langacker, GS]; [Blumenhagen, Kors, Lust, Stieberger];[Marchesano]; ... for reviews.

No-go Theorem(s)

\because For Calabi-Yau, $V_{\mathrm{R}}=0$, we have: $\quad V=V_{H}+\sum_{q} V_{q}+V_{D 6}+V_{O 6}$ \% The universal moduli dependence leads to an inequality:

$$
-\rho \frac{\partial V}{\partial \rho}-3 \tau \frac{\partial V}{\partial \tau}=9 V+\sum_{q} q V_{q} \geq 9 V
$$

\therefore This excludes a de Sitter vacuum:

$$
\frac{\partial V}{\partial \rho}=\frac{\partial V}{\partial \tau}=0 \text { and } V>0
$$

as well as slow-roll inflation since $\epsilon \geq \mathcal{O}(1)$.

Hertzberg, Kachru, Taylor, Tegmark
\% More general no-goes were found for Type IIA/B theories with various D-branes/O-planes. [Haque, GS, Underwood, Van Riet, 08]; [Danielsson, Haque, GS, van Riet, 09];[Wrase, Zagermann, O].
\because In some cases: further no-goes on stability. [GS, Sumitomo]

No-go Theorem(s)

※Evading these no-goes: O-planes [introduced in any case because of [Gibbons; de Wit, Smit, Hari Dass; Maldacena,Nunez], fluxes, often also negative curvature. [Silverstein + above cited papers]

Heuristically: negative internal scalar curvature acts as an uplifting term.

* Classical AdS vacua from IIA flux compactifications with D6/O6 were found [Derendinger et al;Villadoro et al; De Wolfe et al; Camara et al].
© Minimal ingredients needed for dS [Haque, GS, Underwood, Van Riet]:
I) O6-planes 2) Romans mass 3) H-flux 4) Negatively curved internal space.

Generalized Complex Geometry

$\%$ Interestingly, such extensions were considered before in the context of generalized complex geometry (GCG).
$\%$ Among these GCG, many are negatively curved (e.g., twisted tori), at least in some region of the moduli space [Lust et al; Grana et al; Kachru et al; ...].

* Attempts to construct explicit dS models were made soon after no-goes [Haque,GS,Underwood,Van Riet];[Flauger,Paban,Robbins, Wrase]; [Caviezel,Koerber,Lust,Wrase,Zagermann];[Danielsson,Haque,GS,van Riet]; [de Carlos,Guarino,Moreno];[Caviezel,,Wrase,Zagermann];[Danielsson, Koerber,Van Riet];
\& We report on the result of a systematic search within a broad class of such manifolds [Danielsson, Haque, Koerber, GS, van Riet, Wrase].

Two Approaches

SUSY broken

@ or above KK scale

Do not lead to an effective SUGRA in dim. reduced theory
[Silverstein, 07];
[Andriot, Goi, Minasian, Petrini, IO];
[Dong, Horn, Silverstein, Torroba, I0];

SUSY broken

 belowKK scale

Lead to a 4d SUGRA ($\mathrm{N}=1$):
[This talk]
\Rightarrow Spontaneous SUSY state
\Rightarrow Potentially lower SUSY scale
\Rightarrow Much more control on the EFT
\Rightarrow c.f. dS searches within SUGRA

$10 d$ vs $4 d$

\because We advocate 10d point of view, so why consider $4 \mathrm{~d} \mathrm{~V}(\rho, T)$?
It can be shown [Danielsson, Haque, GS, Van Riet]:

$$
\square \phi=0=\sum_{n} \frac{a_{n}}{2 n!} \mathrm{e}^{a_{n} \phi} F_{n}^{2} \pm \frac{p-3}{4} \mathrm{e}^{(p-3) \phi / 4}\left|\mu_{p}\right| \delta(\Sigma),
$$

and trace of

$$
R_{a b}=\sum_{n}\left(-\frac{n-1}{16 n!} g_{a b} e^{a_{n} \phi} F_{n}^{2}+\frac{1}{2(n-1)!} e^{a_{n} \phi}\left(F_{n}\right)_{a b}^{2}\right)+\frac{1}{2}\left(T_{a b}^{l o c}-\frac{1}{8} g_{a b} T^{l o c}\right),
$$

(upon smearing of sources) are equivalent to $\partial_{\rho} V=\partial_{T} V=0$ \& trace of $R_{\mu v}$ equation just gives def. of V ; a useful first pass.
\% When backreaction of localized sources cannot be ignored (more later), 10d eoms are harder to solve, a warped 4D EFT is needed. [Giddings,Maharana],[Koerber,Martucci];[GS,Torroba, Underwood, Douglas]; ...

Search Strategy

\%GCG: natural framework for $\mathrm{N}=1$ SUSY compactifications when backreaction from fluxes are taken into account.
※Type IIA SUSY AdS vacua arise from specific SU(3) structure manifolds [Lust, Tsimpis];[Caviezel et al];[Koerber, Lust, Tsimpsis]; ...
\therefore Modify the AdS ansatz for the fluxes (which solves the flux eoms from the outset) and search for dS solutions.
©Spontaneously SUSY breaking state in a 4D SUGRA: powerful results \& tools from SUSY, GCG.

SU(3) Structure

©SUSY implies the existence of a nowhere vanishing internal 6d spinor η_{+}(and complex conjugate η_{-}).
\because Characterized by a real 2 -form J and a complex 3 -form Ω :

$$
\begin{aligned}
J & =\frac{i}{2\|\eta\|^{2}} \eta_{+}^{\dagger} \gamma_{i_{1} i_{2}} \eta_{+} \mathrm{d} x^{i_{1}} \wedge \mathrm{~d} x^{i_{2}} \\
\Omega & =\frac{1}{3!\|\eta\|^{2}} \eta_{-}^{\dagger} \gamma_{i_{1} i_{2} i_{3}} \eta_{+} \mathrm{d} x^{i_{1}} \wedge \mathrm{~d} x^{i_{2}} \wedge \mathrm{~d} x^{i_{3}}
\end{aligned}
$$

satisfying $\Omega \wedge J=0, \quad \Omega \wedge \Omega^{*}=(4 i / 3) J \wedge J \wedge J=8 i \operatorname{vol}_{6}$.
$\because \mathrm{J}, \Omega$ define $\mathrm{SU}(3)$ structure, not $\mathrm{SU}(3)$ holonomy: generically $\mathrm{dJ} \neq 0$ and $\mathrm{d} \Omega \neq 0$.

SU(3) Structure

* Build an almost complex structure:

$$
I_{k}^{l}=c \varepsilon^{m_{1} m_{2} \ldots m_{5} l}\left(\Omega_{R}\right)_{k m_{1} m_{2}}\left(\Omega_{R}\right)_{m_{3} m_{4} m_{5}} \quad I_{k}^{l} I_{m}^{k}=-\delta_{m}^{l}
$$

for which J is of $(1,1)$ and Ω is of $(3,0)$ type.
\% The metric then follows:

$$
g_{m n}=-I_{m}^{l} J_{l n}
$$

\% The global existence of these forms implies the structure group of the frame bundle to be $\operatorname{SU}(3)$.

SU(3) Torsion Classes

The non-closure of the exterior derivatives characterized by:

$$
\begin{aligned}
& \mathrm{d} J=\frac{3}{2} \operatorname{Im}\left(\mathcal{W}_{1} \Omega^{*}\right)+\mathcal{W}_{4} \wedge J+\mathcal{W}_{3} \\
& \mathrm{~d} \Omega=\mathcal{W}_{1} J \wedge J+\mathcal{W}_{2} \wedge J+\mathcal{W}_{5}^{*} \wedge \Omega
\end{aligned}
$$

Torsion classes	Name
$\mathcal{W}_{1}=\mathcal{W}_{2}=0$	Complex
$\mathcal{W}_{1}=\mathcal{W}_{3}=\mathcal{W}_{4}=0$	Symplectic
$\mathcal{W}_{2}=\mathcal{W}_{3}=\mathcal{W}_{4}=\mathcal{W}_{5}=0$	Nearly Kähler
$\mathcal{W}_{1}=\mathcal{W}_{2}=\mathcal{W}_{3}=\mathcal{W}_{4}=0$	Kähler
$\operatorname{Im} \mathcal{W}_{1}=\operatorname{Im} \mathcal{W}_{2}=\mathcal{W}_{4}=\mathcal{W}_{5}=0$	Half-flat
$\mathcal{W}_{1}=\operatorname{Im} \mathcal{W}_{2}=\mathcal{W}_{3}=\mathcal{W}_{4}=\mathcal{W}_{5}=0$	Nearly Calabi-Yau
$\mathcal{W}_{1}=\mathcal{W}_{2}=\mathcal{W}_{3}=\mathcal{W}_{4}=\mathcal{W}_{5}=0$	Calabi-Yau
$\mathcal{W}_{1}=\mathcal{W}_{2}=\mathcal{W}_{3}=0,(1 / 2) \mathcal{W}_{4}=(1 / 3) \mathcal{W}_{5}=-\mathrm{d} A$	Conformal Calabi-Yau

Half Flat Manifolds

\% For the $\operatorname{SU}(3)$ structure manifold to be compatible with the orbifold/orientifold symmetries we consider (more later):

$$
\begin{aligned}
& \mathrm{d} J=\frac{3}{2} W_{1} \Omega_{R}+W_{3}, \\
& \mathrm{~d} \Omega_{R}=0, \\
& \mathrm{~d} \Omega_{I}=W_{1} J \wedge J+W_{2} \wedge J,
\end{aligned}
$$

W1,2,3 are real
$\% \mathrm{~W} 1,2,3$ is a scalar, $\mathrm{a}(1,1)$ form, \& a $(1,2)+(2,1)$ form satisfying:

$$
\begin{array}{ll}
W_{2} \wedge J \wedge J=0, & W_{3} \wedge J=0 \\
W_{2} \wedge \Omega=0, & W_{3} \wedge \Omega=0
\end{array}
$$

\because Ricci tensor can be expressed explicitly in terms of J, Ω and the torsion forms [Bedulli, Vezzoni].

Universal Ansatz

$\%$ In terms of the universal forms: $\left\{J, \Omega, W_{1}, W_{2}, W_{3}\right\}$ one finds a natural ansatz for the fluxes:

$$
\begin{aligned}
e^{\Phi} \hat{F}_{0} & =f_{1} \\
e^{\Phi} \hat{F}_{2} & =f_{2} J+f_{3} \hat{W}_{2}, \\
e^{\Phi} \hat{F}_{4} & =f_{4} J \wedge J+f_{5} \hat{W}_{2} \wedge J, \\
e^{\Phi} \hat{F}_{6} & =f_{6} \operatorname{vol}_{6}, \\
H & =f_{7} \Omega_{R}+f_{8} \hat{W}_{3}, \\
j & =j_{1} \Omega_{R}+j_{2} \hat{W}_{3} .
\end{aligned}
$$

\%Universal ansatz: forms appear in all $\mathrm{SU}(3)$ structure (in this case, half flat) manifolds.

* Also the ansatz for the SUSY AdS vacua in [Lust, Tsimpis]

O-planes

\because To simplify, we take the smeared approximation:

$$
\delta \rightarrow \text { constant }
$$

i.e., we solve the eoms in an "average sense". If backreaction is ignored, eoms are not satisfied pointwise [Douglas, Kallosh].
※ Finding backeacted solutions with localized sources proves to be challenging (more later) [Blaback, Danielsson, Junghans, Van Riet, Wrase, Zagermann].
※ The Bianchi identity becomes:

$$
\mathrm{d} \hat{F}_{2}+H \hat{F}_{0}=-j, \quad e^{\Phi} j=j_{1} \Omega_{R}+j_{2} \hat{W}_{3} .
$$

\%The source terms of smeared O-planes in dilaton/Einstein eoms can be found in [Koerber, Tsimpis, 07].

Finding Solutions

\% The dilaton/Einstein/flux eoms and Bianchi identities can be expressed as algebraic equations (skip details).
*To find solutions other than the SUSY AdS, impose constraints:

$$
\begin{aligned}
\mathrm{d} \hat{W}_{2} & =c_{1} \Omega_{R}+d_{1} \hat{W}_{3}, \\
\hat{W}_{2} \wedge \hat{W}_{2} & =c_{2} J \wedge J+d_{2} \hat{W}_{2} \wedge J, \\
\mathrm{~d} \star_{6} \hat{W}_{3} & =c_{5} J \wedge J+c_{3} \hat{W}_{2} \wedge J, \\
\frac{1}{2}\left(\hat{W}_{3 i k l} \hat{W}_{3 j}{ }^{k l}\right)^{+} & =d_{4} J_{i k} \hat{W}_{2}{ }^{k}{ }_{j} .
\end{aligned}
$$

for some c's and d's.

Finding Solutions

$$
W 3=0
$$

[Danielsson, Haque, GS, Van Riet]
$W 2=0$

Universal de Sitter

\& Bottom-up approach: we found necessary constraints on fluxes \& torsion classes for universal dS solutions, a useful first step.
\& Next: explicit geometries, stabilization of model-dependent moduli, flux quantization, unsmeared sources, etc.
$\%$ Homogenous spaces (group/coset spaces) seem a promising first trial: can explicitly construct $\operatorname{SU}(3)$ structure.

Example

Bottom-up constraints (with $\mathrm{W}_{2}=0$) can be satisfied with an explicit model: an $\operatorname{SU}(2) \times S U(2)$ group manifold.

This realizes a solution obtained by 4d SUGRA approach[Caviezel, Koerber, Kors, Lust, Wrase, Zagermann]

Unfortunately, out of 14 scalars, one is tachyonic!

A Systematic Search

[Danielsson, Haque, Koerber, GS, Van Riet, Wrase]
\% Focus on homogenous spaces (G/H, H \subseteq SU(3)) where we can explicitly construct the $\mathrm{SU}(3)$ structure.


```
G=Semi-simple
[Caviezel,Koerber,Lust,Tsimpis,
Zagermann]; ..
Nilmanifold
Solmanifold
[Grana, Minasian, Petrini, Tomasiello];
[Andriot, Goi, Minasian, Petrini]; ...
Unexplored!
```

We cover all group manifolds, by classifying 6d groups.

Group Manifolds

\because A coframe of left-invariant forms: $g^{-1} \mathrm{~d} g=e^{a} T_{a}$ that obeys the Maurer-Cartan relations: $\quad \mathrm{d} e^{a}=-\frac{1}{2} f^{a}{ }_{b c} e^{b} \wedge e^{c}$

From these MC forms, we can construct J, Ω, and the metric:

$$
\mathrm{d} s^{2}=\mathcal{M}_{a b} e^{a} \otimes e^{b}
$$

© Levi's theorem: $\mathfrak{g}=\mathfrak{s} \ltimes \mathfrak{r}$
semi-simple $\mathfrak{5}$; radical $\mathfrak{r}=$ largest solvable ideal Ideal: $\quad[\mathfrak{g}, \mathfrak{i}] \subseteq \mathfrak{i}$.

Solvable: $\mathfrak{g}^{n}=\left[\mathfrak{g}^{n-1}, \mathfrak{g}^{n-1}\right]$ vanishes at some point

Group Manifolds

- Semi-simple:

Case
$\mathfrak{s o}(3) \times \mathfrak{s o}(3)$
$\mathfrak{s o}(3) \times \mathfrak{s o}(2,1)$
$\mathfrak{s o}(2,1) \times \mathfrak{s o}(2,1)$
$\mathfrak{s o}(3,1)$

- Semi-direct product of semi-simple algebra \& radical: $\mathfrak{g}=\mathfrak{s} \ltimes \mathfrak{r}$

$$
\begin{aligned}
& \text { Unimodular algebra: } \\
& \qquad f^{a}{ }_{a b}=0, \quad \text { for all } b \\
& \text { necessary condition for } \\
& \text { non-compact group space } \\
& \text { to be made compact. }
\end{aligned}
$$

Case	Representations
$\mathfrak{s o}(3) \ltimes_{\rho} \mathfrak{u}(1)^{3}$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$ and $\rho=\mathbf{3}$
$\mathfrak{s o}(3) \ltimes_{\rho} \mathrm{Heis}_{3}$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$
$\mathfrak{s o}(3) \ltimes_{\rho} \mathfrak{i s o}(2)$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$
$\mathfrak{s o}(3) \ltimes_{\rho} \mathfrak{i s o}(1,1)$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$
$\mathfrak{s o}(2,1) \ltimes_{\rho} \mathfrak{u}(1)^{3}$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}, \rho=\mathbf{1} \oplus \mathbf{2}$ and $\rho=\mathbf{3}$
$\mathfrak{s o}(2,1) \ltimes_{\rho} \mathrm{Heis}_{3}$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$ and $\rho=\mathbf{1} \oplus \mathbf{2}$
$\mathfrak{s o}(2,1) \ltimes_{\rho} \mathfrak{i s o}(2)$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$
$\mathfrak{s o}(2,1) \ltimes_{\rho} \mathfrak{i s o}(1,1)$	$\rho=\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$

[Danielsson, Haque, Koerber, GS, Van Riet, Wrase]

Group Manifolds

- Solvable groups:

Name	Algebra	O5	O6	Sp
$\mathfrak{g}_{3.4}^{-1} \oplus \mathbb{R}^{3}$	$\left(q_{1} 23, q_{2} 13,0,0,0,0\right) \quad q_{1}, q_{2}>0$	$\begin{gathered} \hline \hline 14,15,16,24,25, \\ 26,34,35,36 \end{gathered}$	$\begin{aligned} & \hline \hline 123,145,146,156,245, \\ & 246,256,345,346,356 \end{aligned}$	\checkmark
$\mathfrak{g}_{3.5}^{0} \oplus \mathbb{R}^{3}$	$(-23,13,0,0,0,0)$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	$\begin{aligned} & 123,145,146,156,245 \\ & 246,256,345,346,356 \end{aligned}$	\checkmark
$\mathfrak{g}_{3.1} \oplus \mathfrak{g}_{3.4}^{-1}$	$\left(-23,0,0, q_{1} 56, q_{2} 46,0\right) \quad q_{1}, q_{2}>0$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	-	\checkmark
$\mathfrak{g}_{3.1} \oplus \mathfrak{g}_{3.5}^{0}$	$(-23,0,0,-56,46,0)$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	-	\checkmark
$\mathfrak{g}_{3.4}^{-1} \oplus \mathfrak{g}_{3.5}^{0}$	$\left(q_{1} 23, q_{2} 13,0,-56,46,0\right) \quad q_{1}, q_{2}>0$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	-	\checkmark
$\mathfrak{g}_{3.4}^{-1} \oplus \mathfrak{g}_{3.4}^{-1}$	$\left(q_{1} 23, q_{2} 13,0, q_{3} 56, q_{4} 46,0\right) \quad q_{1}, q_{2}, q_{3}, q_{4}>0$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	-	\checkmark
$\mathfrak{g}_{3.5}^{0} \oplus \mathfrak{g}_{3.5}^{0}$	$(-23,13,0,-56,46,0)$	$\begin{gathered} 14,15,16,24,25 \\ 26,34,35,36 \end{gathered}$	-	\checkmark
$\mathfrak{g}_{4.5}^{p,-p-1} \oplus \mathbb{R}^{2}$?			-
$\mathfrak{g}_{4.6}^{-2 p, p} \oplus \mathbb{R}^{2}$?			-
$\mathfrak{g}_{4.8}^{-1} \oplus \mathbb{R}^{2}$	$\left(-23, q_{1} 34, q_{2} 24,0,0,0\right) \quad q_{1}, q_{2}>0$	14, 25, 26, 35, 36	145, 146, 256, 356	-
$\mathfrak{g}_{4.9}^{0} \oplus \mathbb{R}^{2}$	$(-23,-34,24,0,0,0)$	14, 25, 26, 35, 36	145, 146, 256, 356	-
$\mathfrak{g}_{5.7}^{1,-1,-1} \oplus \mathbb{R}$	$\left(q_{1} 25, q_{2} 15, q_{2} 45, q_{1} 35,0,0\right) \quad q_{1}, q_{2}>0$	$13,14,23,24,56$	125, 136, 146, 236, 246, 345	\checkmark
$\mathfrak{g}_{5.8}^{-1} \oplus \mathbb{R}$	$\left(25,0, q_{1} 45, q_{2} 35,0,0\right) \quad q_{1}, q_{2}>0$	$13,14,23,24,56$	125, 136, 146, 236, 246, 345	\checkmark
$\mathfrak{g}_{5.13}^{-1,0, r} \oplus \mathbb{R}$	$\left(q_{1} 25, q_{2} 15,-q_{2} r 45, q_{1} r 35,0,0\right) r \neq 0, q_{1}, q_{2}>0$	$13,14,23,24,56$	125, 136, 146, 236, 246, 345	\checkmark
$\mathfrak{g}_{5.14}^{0} \oplus \mathbb{R}$	$(-25,0,-45,35,0,0)$	13, 14, 23, 24, 56	125, 136, 146, 236, 246, 345	\checkmark
$\mathfrak{g}_{5.15}^{-1} \oplus \mathbb{R}$	$\left(q_{1}(25-35), q_{2}(15-45), q_{2} 45, q_{1} 35,0,0\right) \quad q_{1}, q_{2}>0$	14, 23, 56	146, 236	\checkmark
$\mathfrak{g}_{5.17}^{p,-p, r} \oplus \mathbb{R}$	$\begin{gathered} \left(q_{1}(p 25+35), q_{2}(p 15+45), q_{2}(p 45-15), q_{1}(p 35-25), 0,0\right) \\ r^{2}=1, q_{1}, q_{2}>0 \\ \hline \end{gathered}$	$\begin{gathered} 14,23,56 \\ p=0: 12,34 \end{gathered}$	$\begin{gathered} 146,236 \\ p=0: 126,135,245,346 \end{gathered}$	\checkmark
$\mathfrak{g}_{5.18}^{0} \oplus \mathbb{R}$	$(-25-35,15-45,-45,35,0,0)$	14, 23, 56	146, 236	\checkmark
$\mathfrak{g}_{6.3}^{0,-1}$	$\left(-26,-36,0, q_{1} 56, q_{2} 46,0\right) \quad q_{1}, q_{2}>0$	24, 25	134, 135, 456	\checkmark
$\mathfrak{g}_{6.10}^{0,0}$	$(-26,-36,0,-56,46,0)$	24, 25	134, 135, 456	\checkmark

[Turkowski];[Andriot,Goi,Petrini,Minasian]; [Grana,Minasian,Petrini,Tomasiello]

Orientifolding

*dS critical point of effective $\mathrm{N}=1$ SUGRA from group manifolds.
\% Orbifolding further by discrete $\Gamma \subset \mathrm{SU}(3)$.

* Among the Abelian orbifolds of (twisted) T^{6}, only two $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ orientifolds can evade $\varepsilon \geq \mathrm{O}$ (1) [Flauger, Paban, Robbins, Wrase]
$\%$ Consider $\mathrm{Z}_{2} \times \mathrm{Z}_{2}$ orientifolds of the group spaces we classified.

$$
\begin{aligned}
& \theta_{1}:\left\{\begin{array}{llc}
e^{1} & \rightarrow & -e^{1} \\
e^{2} & \rightarrow & -e^{2} \\
e^{3} & \rightarrow & e^{3} \\
e^{4} & \rightarrow-e^{4} \\
e^{5} & \rightarrow & e^{5} \\
e^{6} & \rightarrow & -e^{6}
\end{array},\right. \\
& \theta_{2}:\left\{\begin{array}{lll}
e^{1} & \rightarrow-e^{1} \\
e^{2} & \rightarrow & e^{2} \\
e^{3} & \rightarrow-e^{3} \\
e^{4} & \rightarrow & e^{4} \\
e^{5} & \rightarrow-e^{5} \\
e^{6} & \rightarrow-e^{6}
\end{array}\right. \\
& \sigma:\left\{\begin{array}{lll}
e^{1} & \rightarrow & e^{1} \\
e^{2} & \rightarrow & e^{2} \\
e^{3} & \rightarrow & e^{3} \\
e^{4} & \rightarrow & -e^{4} \\
e^{5} & \rightarrow & -e^{5} \\
e^{6} & \rightarrow & -e^{6}
\end{array}\right.
\end{aligned}
$$

[Other $Z_{2} \times Z_{2}$ orientifold has a different σ]

Constructing SU(3) Structure

\& O-planes: $\quad j_{6}=j_{A} e^{456}+j_{B} e^{236}+j_{C} e^{134}+j_{D} e^{125}$
$\% \mathrm{~J}$ and Ω_{R} are odd under orientifolding:

e^{1}	e^{2}	e^{3}	e^{4}	e^{5}	e^{6}
\otimes	\otimes	\otimes	-	-	-
\otimes	-	-	\otimes	\bigotimes	-
-	\otimes	-	-	\otimes	\bigotimes
-	-	\otimes	\otimes	-	\otimes

$$
\begin{aligned}
& J=a e^{16}+b e^{24}+c e^{35} \\
& \Omega_{R}=v_{1} e^{456}+v_{2} e^{236}+v_{3} e^{134}+v_{4} e^{125}
\end{aligned}
$$

※The metric fluxes are even:

$$
\begin{array}{ll}
\mathrm{d} e^{1}=f^{1}{ }_{23} e^{23}+f^{1}{ }_{45} e^{45}, & \mathrm{~d} e^{2}=f^{2}{ }_{13} e^{13}+f^{2}{ }_{56} e^{56}, \\
\mathrm{~d} e^{3}=f^{3}{ }_{12} e^{12}+f^{3}{ }_{464} e^{46}, & \mathrm{~d} e^{4}=f^{4}{ }_{36} e^{36}+f^{4}{ }_{15} e^{15}, \\
\mathrm{~d} e^{5}=f^{5}{ }_{14} e^{14}+f^{5}{ }_{26} e^{26}, & \mathrm{~d} e^{6}=f^{6}{ }_{34} e^{34}+f^{36}{ }_{25} e^{25}
\end{array}
$$

$\%$ Metric g and Ω_{I} can be expressed in terms of the "moduli":

$$
\begin{aligned}
& g=\frac{1}{\sqrt{v_{1} v_{2} v_{3} v_{4}}}\left(a v_{3} v_{4},-b v_{2} v_{4}, c v_{2} v_{3},-b v_{1} v_{3}, c v_{1} v_{4}, a v_{1} v_{2}\right) \quad \sqrt{v_{1} v_{2} v_{3} v_{4}}=-a b c \\
& \Omega_{I}=\sqrt{v_{1} v_{2} v_{3} v_{4}}\left(v_{1}^{-1} e^{123}+v_{2}^{-1} e^{145}-v_{3}^{-1} e^{256}-v_{4}^{-1} e^{346}\right)
\end{aligned}
$$

Constructing SU(3) Structure

\%Parity under orientifolding implies $\mathrm{Im} \mathrm{W} 1=\mathrm{Im} \mathrm{W} 2=\mathrm{W} 4=$ W5 =0
= Half-flat SU(3) Structure Manifold
\because Construct the remaining torsion classes:

$$
\begin{aligned}
& W_{1}=-\frac{1}{6} \star_{6}\left(\mathrm{~d} J \wedge \Omega_{I}\right) \\
& W_{2}=-\star \mathrm{d} \Omega_{I}+2 W_{1} J \\
& W_{3}=\mathrm{d} J-\frac{3}{2} W_{1} \Omega_{R}
\end{aligned}
$$

※ Search for dS solutions satisfying constraints obtained earlier.

Challenges

$\boldsymbol{\%} \mathrm{In}$ all models, there are at least one tachyon among the leftinvariant modes! (generic? c.f. [Gomez-Reino, Louis, Scrucca], ...)

* Flux quantization:

Pictorially

For $\operatorname{SU}(2) x S U(2)$ examples, can explicitly check flux quantization demands solutions outside SUGRA.
$\%$ Backreaction of localized sources: $R_{6}=+\frac{1}{4} T_{6}-\frac{3}{4} T_{4}$. Douglas, Kallosh

In candidate vacua, tachyons seem ubiquitious

Summary

*No-go theorems for de Sitter vacua/inflation from string theory, and the minimal ingredients to evade them.
※ Motivate dS construction from SU(3) structure manifolds.

* Bottom-up approach: de Sitter ansatz.

〒A systematic search for dS vacua within a broad class of group manifolds that admit an explicit construction of $\operatorname{SU}(3)$ structure.
*dS solutions hard to come by; even for solutions found, tachyons seem ubiquitous. Other issues: backreaction, flux quantization.

* Some future directions: further no-goes [GS, Sumitomo]; warping/ inhomogeneous effects, search for more general models, e.g., SCTV [Larfors, Lust, Tsimpis; see Tsimpis's talk], other dimensions, ...

Local Organizing Committee:
Lisa Everett, Gary Shiu (co-chairs), Heng-Yu Chen, Jiajun Xu

