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1) Introduction

Holography (e.g. AdS/CFT [Maldacena 97])
= Non-perturbative Definition of Quantum Gravity

d+1 dim.
oM

Boundary

ZQM (aM) — ZGravity(M)




To explore the holography in general setups, we need suitable
physical quantities. [not only AdS, but flat spaces, de Sitter, etc.]

Stationary BH = Mass M, Charge Q, Spin J.
(Thermodynamics)

Generic spacetime = We need much more quantities !
(Non-equilibrium)

We would like to argue that the entanglement entropy (EE)
will be an appropriate quantity.



Definition of Entanglement Entropy

Divide a quantum system into two subsystems A and B.

H..,=H,®H; .

Example: Spin Chain
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We define the reduced density matrix ©, for A by

P4 = Tertot )

taking trace over the Hilbert space of B .



Now the entanglement entropy SA is defined by the
von-Neumann entropy

S,=-Tr, p,logp,

In QFTs, it is defined geometrically:

N : time slice
A

B (A)—on

oB




Various Applications in other subjects

e Quantum Information and Quantum Computing

EE = the amount of quantum information
[see e.g. Nielsen-Chuang’s text book 00]

e Condensed Matter Physics

EE = Efficiency of a computer simulation (DMRG) [Gaite 03,..]

= Divergent at phase transition points !
[G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, 02,...]
i.e. Quantum Critical Points [SachdevV’s talk]

mp A new quantum order parameter !
[Topological entanglement entropy: Kitaev-Preskill 06, Levin-Wen 06]



Basic property: Area law

EE in d+1 dim. QFTs (in the ground states) includes UV div.
[Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]

_ Area(0A)

d-1
E

S, + (subleading terms),

where & is a UV cutoff (i.e. lattice spacing).

Similar to the Bekenstein-Hawking formula of black hole entropy

[ EE = loop corrections to BH entropy,
_ Area(horizon) Susskind-Uglum 94,...]

4G,

SBH



(2 Holographic Entanglement Entropy

(2-1) Holographic Entanglement Entropy Formula
[Ryu-TT 06]

Area(y,)
S, =
4G,

7 5 is the minimal area surface
(codim.=2) such that

OoA=0y, and A~y, .

" (Weomit the timedirection.)



Comments

* |nthe presence of a black hole horizon, the minimal surfaces
typically wraps the horizon.

= Reduced to the Bekenstein-Hawking entropy, consistently.

e We need to replace minimal surfaces with extremal surfaces in
the time-dependent spacetime. [Hubeny-Rangamani-TT 07]

e The area formula assumes the supergravity approximation.
The holographic formula is modified by higher derivatives.

[Lovelock: Hung-Myers-Smolkin 11, de Boer-Kulaxizi-Parnachev 11,
AdS5 X S5 in IIB String: Ogawa-TT to appear]



* |n spite of a heuristic argument [Fursaev, 06], there has been no
complete proof. However, there have been many evidences and
no counter examples so far.

[A Partial List of Evidences]

» Area law follows straightforwardly [Ryu-TT 06]

» Agreements with analytical 2d CFT results for AdS3 [Ryu-TT 06]

» Holographic proof of strong subadditivity [Headrick-TT 07]

» Consistency of 2d CFT results for disconnected subsystems
[Calabrese-Cardy-Tonni 09] with our holographic formula [Headrick 10]

» Agreement on the coefficient of log term in 4d CFT (~a+c)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-Schwimmer-Theisen 09,
Dowker 10, Casini-Huerta, 10, Myers-Sinha 10, Casini-Hueta-Myers 11]



o
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(2-2) Holographic Proof of Strong Subadditivity

[Headrick-TT 07]

We can easily derive the strong subadditivity, which is known as
the most important inequality satisfied by EE. [Lieb-Ruskai 73]
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(2-3) Calculations of HEE

Two analytical examples of the subsystem A:

(a) Infinite strip (b) Circular disk




Entanglement Entropy for (a) Infinite Strip from AdS

Rd L d-1 L d-1
sl <2
2d-1)G? |\ ¢ ]

\ d
where C =272 F(ﬁ) (L .
2d 2d )

Area law divergence

This termis finiteand does not depend

on the UV cutoff.
d=1 (i.e. AdS3) case:
R ] ¢ ] Agrees with 2d CFT results
SA = 3 log— = —log—. [Holzhey-Larsen-Wilczek 94 ;
2GN & 3 & Calabrese-Cardy 04]



Basic Example of AdS5/CFT4

AdS, xS® < N =4 SU(N) SYM

272 272
CFT: S~ =K. VL 0.087. NL

6‘

272 272
Gravity . deS=K'-N82L —O.OSI-NZL.

The order one deviation is expected since the AdS result

corresponds to the strongly coupled Yang-Mills.
[cf. 4/3 in thermal entropy, Gubser-Klebanov-Peet 96]



Entanglement Entropy for (b) Circular Disk from AdS
[Ryu-TT 06]

g __ 7R [L) (L]
1= 26% @2y \e) TPe

pd_l[ij p, (f d=even)——, Arealaw
£

PRIy ) l
pd_z[— qlog[—] (if d =odd)
£

—(d-2)/[2(d - 3_)],....
..... g = (DD M /(d 1)

Conformal Anomaly

?

A universal quantity in

odd dimensional CFT (“central charge)
= Satisfy ‘C-theorem’ 2d CFT  ¢/3+log(l/€)

[Myers-Sinha 10] 4d CFT  -4a-log(l/¢)

divergence



(2-4) HEE and AdS BH

AdS BH < Finite temp.CFT
P 1S NOtpure & S, #S;.

BH formation < Thermalization
P 1S pure ie. S, =0,
but S™ o Size of BH.

— EE = Coarse - grained entropy
[Arrastia-Aparicio-Lopez 10, Ugajin-TT 10]




3 HEE of Confining Gauge Theories and Higher Derivatives
(3-1) Supergravity Result [Nishioka-TT 06, Klebanov-Kutasov-Murugan 07]

4D N=4 SU(N) SYM on a Scherk-Schwarz circle

& AdSS5 Soliton X S° [Witten 98]
2 2 2 2
ds :rL—z(— dt® + dx* +dy2)+ Ir'2 -1_?2”4 + rL2 (1—r04/r4)d6’2.
0

2
6 ~0+27R, (R:L—=
L 21, )

We consider the EE when the subsystem A is just a half space:




Calculation of HEE

g SUGRA  _ Area _ ZERVV
4G 4G L
_ N2V,
= (area law div.) - SR = ] = 0

Free Field Calculation

A L2 _

After summin

0Q

N 2V
V.) - /| = ) = (
12R

over KK modes
div

S ™ = (area law

= The dependence on A is non-trivial.



(3-2) Higher Derivative Corrections [0gawa-TT to appear]

We take into account the R* correction in 1B string theory:

_ 1 10 i 4(3)05'3 4
S"B__167zG,§|1°)JdX \/E R+ . W*™ +...

The correction to HEE can be calculated by using the replica trick:

[Cf. thermal entropy: Gubser-Klebanov-Tseytlin 98]

——+
R 8 64+/2
A\ J/
Y

S, = (area law div.) +

NV, (1 £(3) 13}

Indeed, HEE increases as
the coupling gets smaller !



N=4 SYM on A Twisted Circle

Maximall SUSY Breaking Supersymmetric Point
< AdS Soliton :
/ (& AdS Solitor o } Twist
| 0.2 0.4 0.6 0.8
parameter
-0.05
0.1

Free Yang-Mills

= AdS side (Strongly coupled YM)



(3-3) Confinement/deconfinement

EE can be an order parameter.

phase transition

HEE of pure SU(N) YM Lattice Result for pure YM
10 prerrrerressrrm A U A ) W WA B
Sfif\ite I % iiziii ﬁi;ﬁ ]
0.05 YeoT o 16%32,B=5.75 -
i =, 5 16°x 32, B=5.80 -
. I B }ﬁ v 16° 32, B=5.85
: ’ g, } bod g | ]
E IR: 3 Bl }k I
i g = Confinement
] S 2 (disconnected) o
0.1 HE g | [fm]
] > O €
S § S [4D SU(3), Nakagawa-Nakamura-
| T L Motoki-Zakharov 09]

[Nishioka-TT 06, Klebanov-Kutasov-Murugan 07]



(4)AdS/BCFT and Quantum Entanglement

(4-1) AdS/BCFT
What is a holographic dual of CFT on a manifold with
Boundary (BCFT) ?
CFTd: SO(d,2) <  AdSd+1
BCFTd: SO(d-1,2) <  AdSd

—_— .

3

o
c
>
Q.
Q
=
<<

[cf. Defect CFT Karch-Randall 00, DeWolfe-Freedman-Ooguri 01,
Janus CFT Bak-Gutperle-Hirano 03, Clark-Freedman-Karch-Schnabl 04]



AdS/BCFT Proposal [TT 11 + work in progress with Fujita and Tonni]

In addition to the standard AdS boundary M,
we include an extra boundary Q, such that 0Q=0M.

= J‘\/i(R 2A = Latter

le =~ 1672(3

matter !

EOM at boundary leads to Q
the Neumann b.c. on Q:

Kab - Khab — 8ﬂGNTa(kg

Conformal inv. = Ta?) = —Thab.



(4-2) Simplest Example
Consider the AdS slice metric:
2 2 2 2
AS pgs (g+1) = A" +COSN " (P T R)AS 4.4y -

Restricting the values of pto —o0 < p < p. solves the

boundary condition with d_1

T=—_~tanh 2
R R

N (AdS)




(4-3) Holographic Boundary Entropy

The entanglement entropy in 2D CFT

. o 1
with a boundary looks like ]
[Holzhey-Larsen-Wilczek 94 ; Calabrese-Cardy 04, :
Recent review: Calabrese-Cardy 09, Casini-Huerta 09] B A E
C I
S, :glog — 1| +log g,
E

where log g is the boundary entropy [Affleck-Ludwig 91].
[Earlier holographic calculations: Yamaguchi 02 (Defect CFT),
Azeyanagi-Karch-Thompson-TT 07 (Non-SUSY Janus),
Chiodaroli-Gutperle-Hung, 10 (SUSY Janus) ]



In our setup, HEE can be found as follows

L J‘_p*dp:EIoglJr p-
4G, & 4G,

6
Boundary Entropy

_ Length

S
4G,

Comment 1. dey = Ds /4(3N can be confirmed from the disk

cylinder partition function.
2 -
R [ r +rS|nh(p*/R)+|Ogg . 1]

0 = .

PHCAG, | 267 € r R 2
Vs o

I =Ee T+

Cyllnder 3 BH ZGN

Comment 2. The null energy condition for T2 leads to a

holographic g-theorem.



Holographic Dual of Disk Holographic Dual of Cylinder
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@ Towards Gravity Dual of Lattices [work in progress with Ryu]
(5-1) Holographic Dual of Two Points (or 2 qubits)

ot Thermal AdS3

2 2
ds* =R° —dtz + zdz +h(§)dx2 ,
z° z2°h(z) z

B h(2)=1-7%/z, x~x+2mz,

RTz
| 2,/h(z)-R°T?

w2

N: [x(z)gz,-arctan

HEE is calculated as follows:

2R ¢z dZ 2p*
\ = L =" =S mp AandBare
4Gy “» z4/h(z) 4Gy maximally entangled



(5-2) How does Holographic Dual of Lattices look like ?

Holographic dual of many points

L+1 .
A L Minimal Surface /s for A
[7al _C
S, = ~—log L.

The separation AX does not have
any direct physical meaning in CFT.
But, it does in the AdS gravity.

Emergent AdS space in the IR of a lattice theory
(continuum limit)



This argument looks a bit similar to the calculation framework
called MERA (multiscale entanglement renormalization ansatz).
[ MERA: Vidal 06; Relation to AdS/CFT: Swingle 09]

Space direction " _Curve Y,

S, ~Min_ [#Bonds]

| 7
/A

I

I

~ Min
| AG,

Coarse-graining
o

Disentangler _oraini
Coarse-graining [Other approaches to holographic lattices:

.g. Kachru-Karch-Yaida 09, Lee 10
Fig taken from B. Swingle 0905.1317 =6, RaEHrRarEnTalte ee 0]



® Conclusions

 The entanglement entropy (EE) is a useful bridge
between gravity and cond-mat physics. [cf. Sachdev’s talk]

Gravity 4mmm) Entanglement <4mmm) Cond-mat.
9. S, = Area systems ‘\P>

 EE can be a universal quantity for holography in
general spacetimes.

[e.g. holography in flat space: Li-TT 10
=highly entangled and non-local gravity dual
AdS Lorentzian wormholes: Fujita-Hatsuda-TT 11

=The EE between two boundaries are actually vanishing. ]



 EE is non-zero even for pure states (cf. thermal entropy).

= A quantum order parameter at zero temp.

e.g. Useful for BH formation = Thermalization (quantum quench)

 We proposed a holographic dual of BCFT.
= Here again HEE played an important role.

= This holography can also be useful in AdS/CMT.

e.g. Edge states of QHE, Topological Insulators ?
Any holographic SC localized on boundaries ?

Non-equilibrium systems with boundaries ?



