Uses of 3d toric varieties

Dimitrios Tsimpis

Insitut de Physique Nucléaire de Lyon
Université de Lyon

Strings 2011, Uppsala

SCTV

Based on

Flux compactification on
smooth, compact, three-dimensional toric varieties

* M. Larfors, D. Lüst, D. T., JHEP 1007
* In progress

Outline

- Introduction
- 3d SCTV
- Symplectic quotient
- $\operatorname{SU}(3)$ structures
- Conclusions

String Theory vs Field Theory

Low-energy limit

- Effective description
- Supergravity solutions

Supergravity solutions

Absence of flux

- Susy vacua $\mathbb{R}^{1,3} \times \mathcal{M}_{6}$ with $\mathcal{M}_{6}=\mathrm{CY}$
- Use math. AG for \mathcal{M}_{6}

2 Candelas, Horowitz, Strominger, Witten, ' 85

* Strominger, Witten, ' 85
* De Wit, Smit, Dass, '87

2 Maldacena, Nuñez, 'O0

Supergravity solutions

Presence of flux

- Susy vacua $\mathcal{X}^{1,3} \times \mathcal{M}_{6}$ with $\mathcal{M}_{6} \neq \mathrm{CY}$
- Moduli stabilization, susy-breaking, KKLT, ...
- $\mathcal{X}^{1,3}=A d S_{4}$
* Freund, Rubin, ' 80

2 Duff, Pope, ' 82
2 Nilsson, Pope, ' 84

* Sorokin, Tkatch, Volkov, ' 84

Author: J.C. Benoist

File liscenced under GNU Free Documentation License;
Creative Commons Attribution-Share Alike License

Flux backgrounds

Modern tools

- G-structures and generalized geometry
* Gauntlett, Kim, Martelli, Waldram, '01
* Gauntlett, Martelli, Pakis, Waldram, '02
* Graña, Minasian, Petrini, Tomasiello, '04; '05

Backreaction may be severe

- Susy 'selects' on \mathcal{M}_{6} a non-integrable almost-complex structure

Main idea

- \mathcal{M}_{6} may admit another integrable almost-complex structure
- Use the underlying
complex analytic (algebro-geometric) description

3d SCTV

Proposal

- Use directly as internal manifolds in flux compactifications

Indirect uses

- No compact toric CY's
- Embedding spaces for CY submanifolds
- Non-compact CY's

Playground of infinitely many topologies

- Explicit description

From SCTV to G-structures

Toric varieties

Fan $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\} \leftrightarrow V_{\Sigma}$

Collection of strongly convex cones σ in $N_{\mathbb{R}}:=\mathbb{R} \otimes N, N \cong \mathbb{Z}^{d}$

$$
\sigma=\left\{a_{1} v_{1}+\ldots a_{r} v_{r} ; \quad 0 \leq a_{1}, \ldots a_{r} \in \mathbb{R}\right\}
$$

such that $v_{1}, \ldots, v_{r} \in N$ linearly-independent, primitive and

- if $\sigma \in \Sigma$ and $\sigma^{\prime} \leq \sigma$ then $\sigma^{\prime} \in \Sigma$;
- if $\sigma, \sigma^{\prime} \in \Sigma$ then $\sigma \cap \sigma^{\prime} \leq \sigma$ and $\sigma \cap \sigma^{\prime} \leq \sigma^{\prime}$.

Cone generators $G(\Sigma)$

$$
G(\Sigma)=\left\{v_{1}, \ldots, v_{n}\right\}
$$

2d classification

* Miyake, Oda, reported in Oda, '78

Correspondence: admissible wcg \longleftrightarrow 2d SCTV

3d classification

* Miyake, Oda, reported in Oda, '78

$\mathrm{d}=3, N \cong \mathbb{Z}^{3}$

$S^{2} \subset N$, centered at the origin
Canonical isomorphisms between

- 3d SCTV
- admissible double \mathbb{Z}-weightings of S^{2}
- admissible N-weightings of S^{2}

3d classification

N-weighting

- Triangulation of S^{2} by spherical triangles
- Assignment of primitive $v \in N$ to each spherical vertex

Admissible N-weighting

- Intersect a fan Σ with the sphere $S^{2} \Rightarrow$ triangulation
- Vertex of the triangulation \leftrightarrow generator in $G(\Sigma)$

3d classification

Double \mathbb{Z}-weighting

Assignment of a pair of integers to each spherical edge

Admissible N-weighting \Rightarrow double \mathbb{Z}-weighting

$$
v+v^{\prime}+a v_{1}+b v_{2}=0
$$

3d classification

Admissible double \mathbb{Z}-weighting

- The equations

$$
v_{i-1}+v_{i-1}+a_{i} v_{i}+b_{i} v=0
$$

are compatible for each v

- The weighted link of each v is an admissible wcg
- Can solve to determine $G(\Sigma)$

3d classification

* Miyake, Oda, reported in Oda, '78

Partial classification of (minimal) 3d SCTV

- $\mathbb{C P}^{2}$ bundles over $\mathbb{C} \mathbb{P}^{1}$
- $\mathbb{C P}{ }^{1}$ bundles over 2 d SCTV
- Complete N-weightings for triangulations $n \leq 8$

From SCTV to G-structures

Symplectic quotient

Moment maps

$$
\begin{gathered}
\mu^{a}:=\sum_{i=1}^{n} Q_{i}^{a}\left|z^{i}\right|^{2}-\xi^{a} \\
a=1, \ldots s ; \quad z^{1}, \ldots z^{n} \in \mathbb{C}^{n} ; \quad d=n-s
\end{gathered}
$$

$U(1)^{s}$ action on \mathbb{C}^{n}

$$
z^{i} \longrightarrow e^{i \varphi_{a} Q_{i}^{a} z^{i}}
$$

Toric variety $\mathcal{M}_{2 d}=V_{\Sigma}$

$$
\mathcal{M}_{2 d}=\mu^{-1}(0) / U(1)^{\mathrm{s}}
$$

- Unique topology for $\xi^{a} \in \mathcal{K}_{\mathcal{M}}$

Symplectic quotient

Forms on $\mathcal{M}_{2 d}$

- Basic forms on $\mu^{-1}(0)$
- Gauge-invariant forms Φ on \mathbb{C}^{n} subject to $\mu^{a}=0, P(\Phi)=\Phi$

Relation to the previous description

- Generators $G(\Sigma) \leftrightarrow U(1)$ charges

$$
\sum_{i=1}^{n} Q_{i}^{a} v_{i}=0, \quad a=1, \ldots, s
$$

From SCTV to G-structures

SU(3) structures

Compactifications on \mathcal{M}_{6}

- Susy 'selects' an $\mathrm{SU}(3)$ or $\mathrm{SU}(3) \times \mathrm{SU}(3)$ structure on open sets
- Global solution by extension
- Convenient to have a global SU(3)

Topological obstruction

- \mathcal{M}_{6} must be spin

$\mathrm{SU}(3)$ structures

$\mathrm{SU}(3)$ structure on \mathcal{M}_{6}

- Ω complex decomposable three-form
- J real two-form
- $\Omega \wedge J=0 \quad \& \quad \Omega \wedge \Omega^{*}=-\frac{4 i}{3} J \wedge J \wedge J \neq 0$

Link with supergravity

- $\epsilon \sim \zeta \otimes \eta$
- $\Omega \sim \eta \gamma_{(3)} \eta$ \& $J \sim \eta^{\dagger} \gamma_{(2)} \eta$

$\mathrm{SU}(3)$ structures

Torsion classes $\mathcal{W}_{1}, \ldots \mathcal{W}_{5}$

$$
\begin{aligned}
d J & =\frac{3}{2} \operatorname{Im}\left(\mathcal{W}_{1} \Omega^{*}\right)+\mathcal{W}_{4} \wedge J+\mathcal{W}_{3} \\
d \Omega & =\mathcal{W}_{1} J \wedge J+\mathcal{W}_{2} \wedge J+\mathcal{W}_{5}^{*} \wedge \Omega
\end{aligned}
$$

Solutions

- Conditions for vacuum \leftrightarrow Conditions on \mathcal{W}_{i}
- Geometrical problem

Necessary and sufficient conditions on \mathcal{W}_{i}

IIA/B N = 2 CY

- $F=0, \mathcal{W}_{i}=0$
- $d s^{2}=d s^{2}\left(\mathbb{R}^{1,4}\right)+d s^{2}\left(\mathcal{M}_{6}\right)$
- Many examples

$\| A \mathcal{N}=1$ rigid $S U(3)$

- $F \neq 0, \mathcal{W}_{3}, \mathcal{W}_{4}, \mathcal{W}_{5}=0, \mathcal{W}_{1}, \mathcal{W}_{2} \neq 0, \quad d \mathcal{W}_{2} \propto \operatorname{Re} \Omega$
- $d s^{2}=d s^{2}\left(A d S_{4}\right)+d s^{2}\left(\mathcal{M}_{6}\right)$
* Lüst, D. T., '04
- A handful of examples
* Behrndt, Cvetic, '04
* Tomasiello, '07
* Koerber, Lüst, D. T., '08

SU(3) structures on SCTV

'SCTV' now refers to the topology

Sufficient conditions

$(1,0)$ form K on \mathbb{C}^{n} such that

- $P(K)=K$
- $Q^{a}(K)=\frac{1}{2} Q^{a}\left(\Omega_{\mathbb{C}}\right)$
- $|K|^{2}=2$, on $\mu^{-1}(0)$

Local $S U(2)$ structure

$\omega=-\frac{i}{2} K^{*} \cdot \widetilde{\Omega} \quad \& \quad j=\widetilde{J}-\frac{i}{2} K \wedge K^{*}$
where
$\widetilde{\Omega} \propto \prod_{a=1}^{s} \iota^{a} \Omega_{\mathbb{C}} \& \widetilde{J}=P\left(J_{\mathbb{C}}\right), \quad V^{a}=\sum_{i} Q_{i}^{a} z^{i} \partial_{z^{i}}$

SU(3) structures on SCTV

Global SU(3) structure

$$
J=\alpha j-\frac{i \beta^{2}}{2} K \wedge K^{*} \& \Omega=\alpha \beta e^{i \gamma} K^{*} \wedge \omega
$$

Torsion classes

- Generally $\mathcal{W}_{i} \neq 0$
- Special points where $\mathcal{W}_{1}, \mathcal{W}_{3}, \mathcal{W}_{4}=0$
* Tomasiello, '07
* Gaiotto, Tomasiello, '09
* Larfors, Lüst, D.T., '10

SU(3) structures on SCTV

Remarks

- Conditions are easy to satisfy
- A plethora of SU(3) structures on various 3d SCTV
- Does not produce solutions automatically: torsion classes must be computed case by case
* In progress

SU(3) structures on SCTV

Known 3d SCTV solutions (topology)

Susy $\operatorname{AdS}_{4} \times \mathcal{M}_{6}$ vacua, where \mathcal{M}_{6} is:

- $\mathbb{C} \mathbb{P}^{3}$
* Nilsson, Pope, ' 84
* Sorokin, Tkatch, Volkov, ' 84
- Tomasiello, '07
* Koerber, Lüst, D. T., '08
* Aharony, Jafferis, Tomasiello, Zaffaroni, '10
- S^{1} reduction of $Y^{p, q}\left(\mathcal{B}_{4}\right)$
where $\mathcal{B}_{4}=$ Kähler-Einstein
* Gauntlett, Martelli, Sparks, Waldram, '04
* Martelli, Sparks, '08

SU(3) structures on SCTV

Known 3d SCTV solutions (topology) cont'd

Susy $A d S_{4} \times \mathcal{M}_{6}$ vacua, where \mathcal{M}_{6} is:

- Massive deformation of S^{1} reduction of $Y^{2,3}\left(\mathbb{C} \mathbb{P}^{2}\right)=M^{1,1,1}$
* Petrini, Zaffaroni, '09
- Massive deformation of S^{1} reduction of $Y^{p, q}\left(\mathcal{B}_{4}\right)$
where $\mathcal{B}_{4}=$ Kähler-Einstein
* Lüst, D. T., '09
- Massive deformation of S^{1} reduction of $A^{p, q, r}\left(\mathbb{C} \mathbb{P}^{1} \times \mathbb{C} \mathbb{P}^{1}\right)$
* Gauntlett, Martelli, Sparks, Waldram, '04
* Chen, Lu, Pope, Vazquez-Poritz, '04
* Tomasiello, Zaffaroni, '10

Non-compact example

- Resolved conifold
* Chen, Dasgupta, Franche, Katz, Tatar, '10

Conclusions

Summary

SCTV's as compactification manifolds may offer many concrete examples where ideas about flux compactifications and AdS/CFT can be tested explicitly.

- Method to produce $\operatorname{SU}(3)$ structures on 3d SCTV
- Does not automatically produce solutions: torsion classes must be computed

Future directions

- Searches for:
$A d S_{4} / d S_{4}$ vacua, $S B$ vacua
KK reductions, low-energy effective actions, ...
- Consistent truncations on 3d SCTV
- Existence theorems for specific types of $S U(3)$ structures on 3d SCTV

1＊トトト 小㧈
 （Thank You）

