Uses of 3d toric varieties

Dimitrios Tsimpis

Insitut de Physique Nucléaire de Lyon Université de Lyon

Strings 2011, Uppsala

SCTV

Based on

Flux compactification on smooth, compact, three-dimensional toric varieties

- & M. Larfors, D. Lüst, D. T., JHEP 1007
- In progress

Outline

- Introduction
- 3d SCTV
- Symplectic quotient
- SU(3) structures
- Conclusions

String Theory vs Field Theory

Low-energy limit

- Effective description
- Supergravity solutions

Supergravity solutions

Absence of flux

- Susy vacua $\mathbb{R}^{1,3} \times \mathcal{M}_6$ with $\mathcal{M}_6 = \mathsf{CY}$
- Use math.AG for \mathcal{M}_6
- Candelas, Horowitz, Strominger, Witten, '85
- Strominger, Witten, '85
- De Wit, Smit, Dass, '87
- Maldacena, Nuñez, '00

Supergravity solutions

Author: J.C. Benoist File liscenced under GNU Free Documentation License; Creative Commons Attribution-Share Alike License

Presence of flux

- Susy vacua $\mathcal{X}^{1,3} \times \mathcal{M}_6$ with $\mathcal{M}_6 \neq CY$
- Moduli stabilization, susy-breaking, KKLT, ...
- $\mathcal{X}^{1,3} = AdS_4$
- Freund, Rubin, '80
- ♣ Duff, Pope, '82
- Nilsson, Pope, '84
- Sorokin, Tkatch, Volkov, '84

Flux backgrounds

Modern tools

- G-structures and generalized geometry
- · Gauntlett, Kim, Martelli, Waldram, '01
- · Gauntlett, Martelli, Pakis, Waldram, '02
- 4 Graña, Minasian, Petrini, Tomasiello, '04; '05

Backreaction may be severe

Susy 'selects' on M₆
a non-integrable almost-complex structure

Main idea

- M₆ may admit another integrable almost-complex structure
- Use the underlying complex analytic (algebro-geometric) description

3d SCTV

Proposal

Use directly as internal manifolds in flux compactifications

Indirect uses

- No compact toric CY's
- Embedding spaces for CY submanifolds
- Non-compact CY's

Playground of infinitely many topologies

Explicit description

Toric varieties

Fan $\Sigma = \{\sigma_1, \dots, \sigma_k\} \leftrightarrow V_{\Sigma}$

Collection of strongly convex cones σ in $N_{\mathbb{R}} := \mathbb{R} \otimes N$, $N \cong \mathbb{Z}^d$

$$\sigma = \{a_1 \mathbf{v_1} + \dots a_r \mathbf{v_r}; \quad 0 \le a_1, \dots a_r \in \mathbb{R}\}$$

such that $v_1, ..., v_r \in N$ linearly-independent, primitive and

- if $\sigma \in \Sigma$ and $\sigma' \leq \sigma$ then $\sigma' \in \Sigma$;
- if σ , $\sigma' \in \Sigma$ then $\sigma \cap \sigma' \leq \sigma$ and $\sigma \cap \sigma' \leq \sigma'$.

Cone generators $G(\Sigma)$

$$G(\Sigma)=\{v_1,\ldots,v_n\}$$

Miyake, Oda, reported in Oda, '78

Correspondence: admissible wcg ←→ 2d SCTV

Miyake, Oda, reported in Oda, '78

d=3, $N \cong \mathbb{Z}^3$

 $S^2 \subset N$, centered at the origin

Canonical isomorphisms between

- 3d SCTV
- ullet admissible double ${\mathbb Z}$ -weightings of S^2
- admissible N-weightings of S²

N-weighting

- Triangulation of S^2 by spherical triangles
- Assignment of primitive $v \in N$ to each spherical vertex

Admissible N-weighting

- Intersect a fan Σ with the sphere $S^2 \Rightarrow$ triangulation
- Vertex of the triangulation \leftrightarrow generator in $G(\Sigma)$

Double Z-weighting

Assignment of a pair of integers to each spherical edge

Admissible N-weighting \Rightarrow double \mathbb{Z} -weighting

$$v + v' + av_1 + bv_2 = 0$$

Admissible double Z-weighting

The equations

$$v_{i-1} + v_{i-1} + a_i v_i + b_i v = 0$$

are compatible for each v

- The weighted link of each v is an admissible wcg
- Can solve to determine $G(\Sigma)$

Miyake, Oda, reported in Oda, '78

Partial classification of (minimal) 3d SCTV

- \mathbb{CP}^2 bundles over \mathbb{CP}^1
- CP¹ bundles over 2d SCTV
- Complete *N*-weightings for triangulations $n \le 8$

Symplectic quotient

Moment maps

$$\mu^a:=\sum_{i=1}^nQ_i^a|z^i|^2-\xi^a$$

$$a=1,\dots s\;;\quad z^1,\dots z^n\in\mathbb{C}^n\;;\quad d=n-s$$

$U(1)^s$ action on \mathbb{C}^n

$$z^i \longrightarrow e^{i\varphi_a Q_i^a} z^i$$

Toric variety $\mathcal{M}_{2d} = V_{\Sigma}$

$$\mathcal{M}_{2d} = \mu^{-1}(0)/U(1)^{s}$$

• Unique topology for $\xi^a \in \mathcal{K}_{\mathcal{M}}$

Symplectic quotient

Forms on \mathcal{M}_{2d}

- Basic forms on $\mu^{-1}(0)$
- Gauge-invariant forms Φ on \mathbb{C}^n subject to $\mu^a = 0$, $P(\Phi) = \Phi$

Relation to the previous description

• Generators $G(\Sigma) \leftrightarrow U(1)$ charges

$$\sum_{i=1}^{n} Q_i^a v_i = 0 , \quad a = 1, ..., s$$

From SCTV to G-structures Classification of 3d SCTV Weighted triangulations and SCTV charges

of SCTV

SU(3) structures

Compactifications on \mathcal{M}_6

- Susy 'selects' an SU(3) or SU(3)xSU(3) structure on open sets
- Global solution by extension
- Convenient to have a global SU(3)

Topological obstruction

• \mathcal{M}_6 must be spin

SU(3) structures

SU(3) structure on \mathcal{M}_6

- ullet Ω complex decomposable three-form
- J real two-form

•
$$\Omega \wedge J = 0$$
 & $\Omega \wedge \Omega^* = -\frac{4i}{3}J \wedge J \wedge J \neq 0$

Link with supergravity

- $\epsilon \sim \zeta \otimes \eta$
- $\Omega \sim \eta \gamma_{(3)} \eta$ & $J \sim \eta^{\dagger} \gamma_{(2)} \eta$

SU(3) structures

Torsion classes $W_1, \dots W_5$

$$dJ = \frac{3}{2} \operatorname{Im}(\mathcal{W}_1 \Omega^*) + \mathcal{W}_4 \wedge J + \mathcal{W}_3$$
$$d\Omega = \mathcal{W}_1 J \wedge J + \mathcal{W}_2 \wedge J + \mathcal{W}_5^* \wedge \Omega$$

Solutions

- Conditions for vacuum \leftrightarrow Conditions on W_i
- Geometrical problem

Necessary and sufficient conditions on W_i

IIA/B $\mathcal{N} = 2$ CY

- F = 0, $W_i = 0$
- $ds^2 = ds^2(\mathbb{R}^{1,4}) + ds^2(\mathcal{M}_6)$
- Many examples

IIA $\mathcal{N}=1$ rigid SU(3)

- $F \neq 0$, W_3 , W_4 , $W_5 = 0$, W_1 , $W_2 \neq 0$, $dW_2 \propto \text{Re}\Omega$
- $ds^2 = ds^2(AdS_4) + ds^2(\mathcal{M}_6)$
- & Lüst, D. T., '04
 - A handful of examples
- & Behrndt, Cvetic, '04
- Tomasiello, '07
- & Koerber, Lüst, D. T., '08

'SCTV' now refers to the topology

Sufficient conditions

(1,0) form K on \mathbb{C}^n such that

- \bullet P(K) = K
- $Q^a(K) = \frac{1}{2}Q^a(\Omega_{\mathbb{C}})$
- $|K|^2 = 2$, on $u^{-1}(0)$

Local SU(2) structure

$$\omega = -\frac{i}{2} K^* \cdot \widetilde{\Omega} \quad \& \quad j = \widetilde{J} - \frac{i}{2} K \wedge K^*$$
 where

$$\widetilde{\Omega} \propto \prod_{a=1}^{3} \iota_{V^a} \Omega_{\mathbb{C}} \& \widetilde{J} = P(J_{\mathbb{C}}), \quad V^a = \sum_i Q_i^a z^i \partial_{z^i}$$

Global SU(3) structure

$$J = \alpha j - \frac{i\beta^2}{2} K \wedge K^* \quad \& \quad \Omega = \alpha \beta e^{i\gamma} K^* \wedge \omega$$

Torsion classes

- Generally $W_i \neq 0$
- Special points where W_1 , W_3 , $W_4 = 0$
- Tomasiello, '07
- & Gaiotto, Tomasiello, '09
- & Larfors, Lüst, D.T., '10

Remarks

- Conditions are easy to satisfy
- A plethora of SU(3) structures on various 3d SCTV
- Does not produce solutions automatically: torsion classes must be computed case by case
- In progress

Known 3d SCTV solutions (topology)

Susy $AdS_4 \times \mathcal{M}_6$ vacua, where \mathcal{M}_6 is:

- \bullet \mathbb{CP}^3
- Nilsson, Pope, '84
- Sorokin, Tkatch, Volkov, '84
- ♣ Tomasiello, '07
- & Koerber, Lüst, D. T., '08
- Aharony, Jafferis, Tomasiello, Zaffaroni, '10
 - S^1 reduction of $Y^{p,q}(\mathcal{B}_4)$ where \mathcal{B}_4 =Kähler-Einstein
- · Gauntlett, Martelli, Sparks, Waldram, '04
- Martelli, Sparks, '08

Known 3d SCTV solutions (topology) cont'd

Susy $AdS_4 \times \mathcal{M}_6$ vacua, where \mathcal{M}_6 is:

- Massive deformation of S^1 reduction of $Y^{2,3}(\mathbb{CP}^2) = M^{1,1,1}$
- A Petrini, Zaffaroni, '09
 - Massive deformation of S^1 reduction of $Y^{p,q}(\mathcal{B}_4)$ where \mathcal{B}_4 =Kähler-Einstein
- . Lüst, D. T., '09
 - Massive deformation of S^1 reduction of $A^{p,q,r}(\mathbb{CP}^1 \times \mathbb{CP}^1)$
- Gauntlett, Martelli, Sparks, Waldram, '04
- A Chen, Lu, Pope, Vazquez-Poritz, '04
- Tomasiello, Zaffaroni, '10

Non-compact example

- Resolved conifold
- . Chen, Dasgupta, Franche, Katz, Tatar, '10

Conclusions

Summary

SCTV's as compactification manifolds may offer many concrete examples where ideas about flux compactifications and AdS/CFT can be tested explicitly.

- Method to produce SU(3) structures on 3d SCTV
- Does not automatically produce solutions: torsion classes must be computed

Future directions

- Searches for:
 AdS₄/dS₄ vacua, SB vacua
 KK reductions, low-energy effective actions, ...
- Consistent truncations on 3d SCTV
- Existence theorems for specific types of SU(3) structures on 3d SCTV

1*扑片 从4N (Thank You)