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| decided that rather than any technical details, |
would give an overview of the content of several
recent papers.



| decided that rather than any technical details, |
would give an overview of the content of several
recent papers. | won't try to give references to all
the basic results that | will mention along the way,
but | should at least mention the paper by S.
Gukov, A. Schwarz and C. Vafa, hep-th/0412243,
which was part of the inspiration.
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an arbitrary loop in spacetime. We just combine the
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N = 4 super Yang-Mills theory, which we will call
Gu o =1,...,4. Then for any loop K in
spacetime, and any representation R of the gauge
group G, we define

Wr(K) = TrrP exp jI{ (A, +i¢,)dx".
K

This is an ordinary Wilson loop operator except for
the replacement A, — A, + i¢,.
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Being 1/16-BPS, this operator preserves one
supersymmetry, which | will call @. This operator
obeys Q2 = 0. We can actually define a topological
field theory by only looking at Q-invariant operators
O, modulo O — O + {Q,-}. This gives a
topological field theory because the stress tensor is
trivial, i.e. T, = {Q, A, }, for some A. (It is
actually the same topological field theory that
Kapustin and | studied in relation to geometric
Langlands.)
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like that in four dimensions.
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In other words, we will study the D3-brane gauge
theory with this boundary condition. This is a half
BPS boundary condition, so it preserves 8
supersymmetries. One linear combination of them is
the supersymmetry that is preserved by the 1/16
BPS Wilson operator that we mentioned before.
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So we can have a topological field theory on a
half-space R® x R with Wilson loop operators for
an arbitrary loop K. The D3-NS5 boundary
condition is more easily described if the gauge
theory #-angle is zero (it gives Neuman boundary
conditions for gauge fields, for instance). In that
case, the supersymmetry Q of the 1/16-BPS Wilson
operators is a linear combination of the eight
supersymmetries allowed by the boundary condition.
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We actually do get something interesting if we take
the gauge theory #-angle to be nonzero. The
D3-NS5 boundary condition (which was generalized
to this situation in D. Gaiotto and EW,
arXiv:0804.2902) still preserves 8 supersymmetries,
but a different 8. It no longer preserves the same
supersymmetry that is preserved by the 1/16 BPS
Wilson operators, so they disappear.
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supersymmetry Q that obeys Q2 = 0, we can use a
procedure known as supersymmetric localization.
The basic idea is that the path integral over all
fields can be replaced by an integral over only the
supersymmetric configurations. This technique has
all sorts of applications, some of which will be
discussed at this meeting.
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If one applies supersymmetric localization in this
situation, one learns something interesting: the
expectation value of one of these Wilson operators
in the boundary of a four-dimensional space can be
computed in a purely three-dimensional topological
field theory, namely (bosonic) Chern-Simons theory.
So in fact, what we get this way are the knot
invariants — such as the Jones polynomial — that can
be computed by Chern-Simons theory.
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In particular, 3d Chern-Simons theory is completely
soluble via its relation to 2d conformal field theory,
so all these invariants are explicitly calculable. |
wish there were time to review this today, but there
really isn't. Likewise, | won't be able to explain why
localization of the D3-NS5 system gives a purely 3d
description via a Chern-Simons theory.
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We can apply supersymmetric localization in this
situation, and it gives a more straightforward
answer. The localization occurs on the solutions of
a certain set of equations that are the conditions for
Q-invariance:

F—¢Ad=xD¢, D" =0.

(These equations were introduced by Kapustin and
me in studying geometric Langlands. They have
also been used in K. Lee and H. Yee,

hep-th /0606159 to discuss six-dimensional string
webs.) Localization on the solutions of an equation
is the simplest sort of answer that one sometimes
gets from supersymmetric localization.
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Evaluating the path integral reduces to counting the
solutions of those equations. Let a, be the number
of solutions for which the instanton number

1

— TrFAF
87T2 R3xR,

is equal to n. Then the path integral Z is
Z=2 ad"
n

where in the purely 3d description by Chern-Simons

theory,
q = exp(2mi/(k + 2)).
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one can view this as a prediction for the number of
solutions of those four-dimensional equations. The
prediction is based on electric-magnetic duality and
supersymmetric localization. This prediction has
been verified in D. Gaiotto and EW,
arXiv:1106.4789, by directly analyzmg the equations
and counting their solutions. One can view this as
an unusual test of electric-magnetic duality. There
isn't time to explain what we did, but | can say that
a key fact was that the equations are actually
tractable in the time-independent case. Also, our
analysis showed that these equations have a novel
relation to two-dimensional conformal field theory
and integrable spin systems.
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But again, there is something interesting to say that
is much more straightforward. (This will lead to the
main result of my recent paper on “Fivebranes And
Knots.") We just compactify one of the directions
transverse to the D3-D5 system on a circle. Then
we apply T-duality. The D3-D5 system becomes a
D4-D6 system. The D3-brane gauge theory is
replaced by a D4-brane gauge theory and now we
can calculate the path integral, if we are so inclined,
by counting solutions of some supersymmetric
equations in five dimensions instead of four
dimensions.



In the D4-brane description, the knot is still
represented by an 't Hooft operator (which now is

supported on K x S!, where S! is the circle that
was generated by the T-duality).
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What do we gain by introducing a fifth dimension?
Since the D3-branes lived on R3 x R,. the
D4-branes live on R® x R, x S'. Just focus on the
fact that there is now a circle factor. A path
integral on a circle gives a trace or in the
supersymmetric context a supertrace. So if we write
H for the space of physical states (the cohomology
of the supercharge Q) in quantization of the
D4-brane system on R3 x R, then the partition
function is a trace or more exactly an index:

Z="Tr(-1)q",

where P is the instanton number.
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(Also, the states carry an integer-valued fermion
number F, and the index only depends on (—1)F,
i.e. on the values of F mod 2. And introducing a
fifth dimension lets us consider more general 't
Hooft operators.)

So there is a more powerful theory: we just study
the space ‘H of physical states, instead of the index.
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Thus, Chern-Simons theory can be derived from a
more powerful theory by taking an index. The more
powerful theory is known as Khovanov homology
gdeveloped in 2000 following ideas of |. Frenkel, and
irst interpreted physically by Gukov, Schwarz, and
Vafa). It is known that this more powerful theory
contains significantly more information about knots.
That would be interesting to discuss, but as
physicists, there is something else we should
consider.
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The cigar, which | will call D, is a cylinder of
revolution. If one reduces the M5-brane theory on
the U(1) orbits, the M5-brane theory is replaced by
a D4-brane theory, and D is replaced by

D/U(1) = R,.

This leads to the R, factor in the D3-NS5, D3-D5,
and D4-D6 descriptions.
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To a quantum field theorist, the M5-brane
description is the most perfect one, but the farthest
from Chern-Simons theory. To get back to
Chern-Simons theory, one reverses all the steps:
Reduce on the U(1) orbits to replace D by R, and
Mb5-branes by D4-branes; then compactify on a
circle to replace D4-branes by D3-branes (at the
cost of losing some information); apply S-duality to
get to a D3-NSb5 system; and finally use
supersymmetric localization to get to a purely
three-dimensional description in Chern-Simons
theory. All steps are based on completely standard
ideas except the last.



