## Aspects of string phenomenology in the new LHC era

#### I. Antoniadis



## STRINGS 2012 Munich, 23-28 July 2012

- High string scale, SUSY and 125 GeV Higgs
- Low scale strings and extra dimensions
- Extra U(1)'s

## Connect string theory to the real world: What is the value of the string scale $M_s$ ?

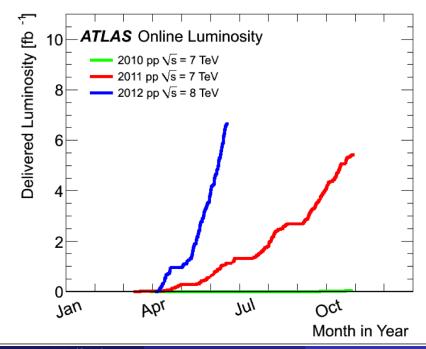
- arbitrary parameter : Planck mass  $M_P \longrightarrow \text{TeV}$
- physical motivations ⇒ favored energy regions:

$$ullet$$
 High :  $\left\{ egin{array}{ll} M_P^* \simeq 10^{18} \ {
m GeV} & {
m Heterotic\ scale} \ \\ M_{
m GUT} \simeq 10^{16} \ {
m GeV} & {
m Unification\ scale} \end{array} 
ight.$ 

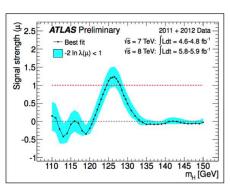
- Intermediate : around 10 $^{11}$  GeV  $(M_s^2/M_P \sim \text{TeV})$  SUSY breaking, strong CP axion, see-saw scale
- Low: TeV (hierarchy problem)

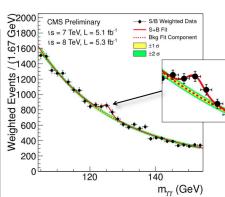
# Beyond the Standard Model of Particle Physics: driven by the mass hierarchy problem

Standard picture: low energy supersymmetry


Natural framework: Heterotic string (or high-scale M/F) theory

#### Advantages:


- natural elementary scalars
- gauge coupling unification
- LSP: natural dark matter candidate
- radiative EWSB


#### Problems:

- too many parameters: soft breaking terms
- MSSM: already a % % fine-tuning
   'little' hierarchy problem



## Higgs search at the LHC

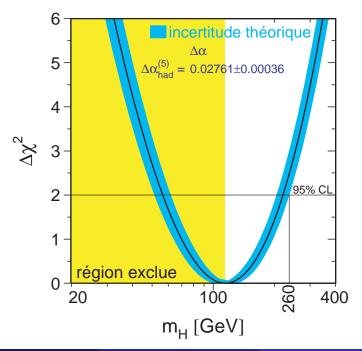




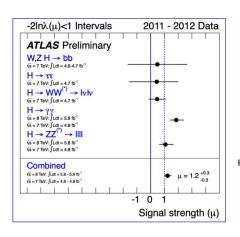
best-fit signal strength at 126.5 GeV

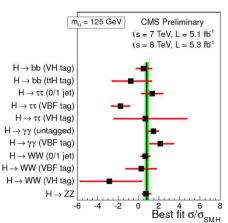
observed:  $m_H=125.3\pm0.6$  GeV

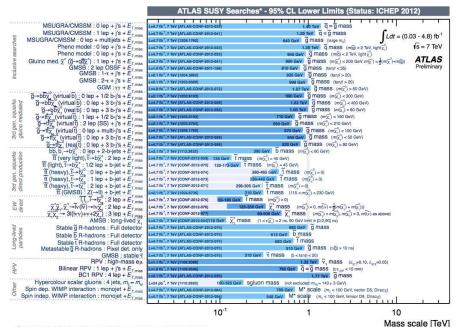
at 4.9  $\sigma$  significance


#### some remarks

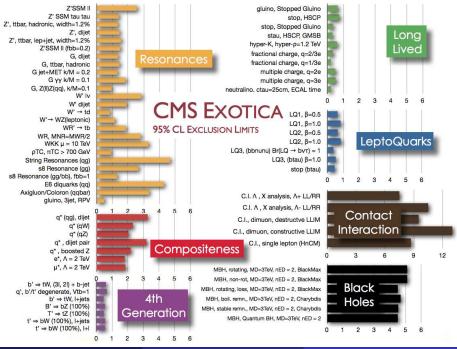
#### Higgs-like particle discovery around 125 GeV:


- consistent with expectation from precision tests of the SM
- favors perturbative physics quartic coupling  $\lambda = m_H^2/v^2 \simeq 1/8$


#### If confirmed:

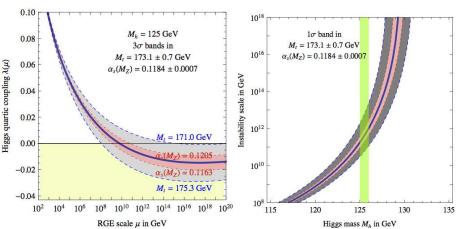

- supersymmetry becomes 'severely' fine-tuned, in its minimal version
- ullet but still early to draw a general conclusion before LHC13/14 an extra singlet or split families can remediate the fine tuning to  $\lesssim 10$
- very important to measure Higgs couplings [8]
   any deviation of its couplings to top, bottom and EW gauge bosons implies new light states involved in the EWSB altering the fine-tuning




## Couplings of the new boson vs SM Higgs








\*Only a selection of the available mass limits on new states or phenomena shown



### Can the SM be valid at high energies?

Degrassi-Di Vita-Elias Miró-Espinosa-Giudice-Isidori-Strumia '12



Instability of the SM Higgs potential ⇒ metastability of the EW vacuum

## Dropping the hierarchy motivation...

Next scale of new physics at  $M_I \sim 10^{11}$  GeV ?

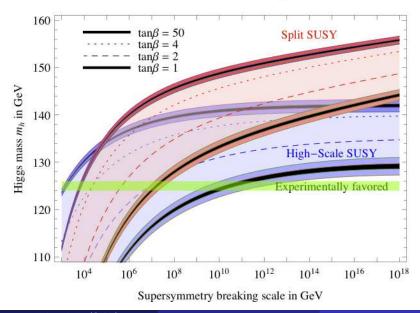
- Dark Matter ? → could be an axion
- Unification ? → perhaps different realization
- What could be the physics at  $M_I$ ?  $\rightarrow$  susy, string scale, ...

If the weak scale is tuned ⇒ split supersymmetry is a possibility

Arkani Hamed-Dimopoulos '04, Giudice-Romaninio '04

- natural splitting: gauginos, higgsinos carry R-symmetry, scalars do not
- main good properties of SUSY are maintained gauge coupling unification and dark matter candidate
- also no dangerous FCNC, CP violation, ...
- experimentally allowed Higgs mass ⇒ 'moderate' split

 $m_S\sim$  few - thousands TeV


gauginos: a loop factor lighter than scalars ( $\sim m_{3/2}$ )

• natural string framework: intersecting (or magnetized) branes

IA-Dimopoulos '04

D-brane stacks are supersymmetric with massless gauginos intersections have chiral fermions with broken SUSY & massive scalars

#### Predicted range for the Higgs mass



#### Alternative answer: Low UV cutoff $\Lambda \sim \text{TeV}$

- low scale gravity ⇒ extra dimensions: large flat or warped
- low string scale ⇒ low scale gravity, ultra weak string coupling

#### Experimentally testable framework:

- spectacular model independent predictions
- radical change of high energy physics at the TeV scale

#### Moreover no little hierarchy problem:

radiative electroweak symmetry breaking with no logs

$$\Lambda \sim$$
 a few TeV and  $\mathit{m}_{H}^2 =$  a loop factor  $\times \Lambda^2$  [17]

But unification has to be probably dropped

New Dark Matter candidates e.g. in the extra dims

## Framework of type I string theory $\Rightarrow$ D-brane world

I.A.-Arkani-Hamed-Dimopoulos-Dvali '98

- gravity: closed strings propagating in 10 dims
- gauge interactions: open strings with their ends attached on D-branes

Dimensions of finite size: 
$$n$$
 transverse  $6-n$  parallel

calculability 
$$\Rightarrow R_{\parallel} \simeq \mathit{I}_{\mathrm{string}}$$
 ;  $R_{\perp}$  arbitrary

$$M_P^2 \simeq {1\over g_s^2} M_s^{2+n} R_\perp^n \qquad \qquad g_s = lpha :$$
 weak string coupling Planck mass in  $4+n$  dims:  $M_*^{2+n}$ 

$$M_s \sim 1 \; {
m TeV} \Rightarrow R_\perp^n = 10^{32} \, I_s^n$$
 small  $M_s/M_P$  : extra-large  $R_\perp$ 

$$R_{\perp} \sim .1 - 10^{-13}$$
 mm for  $n = 2 - 6$ 

distances  $< R_{\perp}$ : gravity (4+n)-dim  $\rightarrow$  strong at  $10^{-16}$  cm

## Origin of EW symmetry breaking?

possible answer: radiative breaking

I.A.-Benakli-Quiros '00

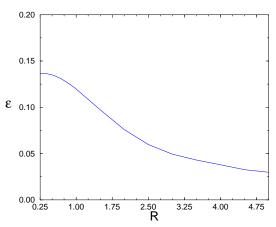
$$V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2$$

 $\mu^2 = 0$  at tree but becomes < 0 at one loop

non-susy vacuum

simplest case: one scalar doublet from the same brane

$$\Rightarrow$$
 tree-level  $V$  same as susy:  $\lambda = \frac{1}{8}(g_2^2 + g'^2)$ 


D-terms

$$\mu^2 = -g^2 \varepsilon^2 M_s^2 \leftarrow \text{effective UV cutoff}$$

$$\varepsilon^{2}(R) = \frac{R^{3}}{2\pi^{2}} \int_{0}^{\infty} dl l^{3/2} \frac{\theta_{2}^{4}}{16l^{4}\eta^{12}} \left(il + \frac{1}{2}\right) \sum_{n} n^{2} e^{-2\pi n^{2}R^{2}l}$$

$$IR$$

I. Antoniadis (CERN) 17 / 33



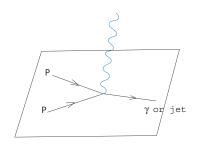
$$R \to 0$$
:  $\varepsilon(R) \simeq 0.14$  large transverse dim  $R_{\perp} = l_s^2/R \to \infty$ 

$$R o \infty$$
:  $\varepsilon(R) M_s \sim \varepsilon_\infty/R$   $\varepsilon_\infty \simeq 0.008$  UV cutoff:  $M_s \to 1/R$ 

Higgs scalar = component of a higher dimensional gauge field  $\Rightarrow \varepsilon_{\infty} \text{ calculable in the effective field theory}$ 

I. Antoniadis (CERN) 18 / 33

Quartic coupling ⇒ mass prediction:


- tree level :  $M_H = M_Z$
- low-energy SM radiative corrections (from top quark) :  $M_H \sim 120$  GeV

 ${\sf Casas\text{-}Espinosa\text{-}Quiros\text{-}Riotto,\ Carena\text{-}Espinosa\text{-}Quiros\text{-}Wagner'95}}$ 

Increasing 
$$\lambda \to g^2/4 \sim 1/8 \quad \Rightarrow \quad M_H \simeq v/2 = 125 \text{ GeV}$$

Also  $M_s$  or  $1/R \sim$  a few or several TeV

## Gravitational radiation in the bulk ⇒ missing energy



Angular distribution ⇒ spin of the graviton

present LHC bounds:  $M_* \gtrsim 2.5 - 4 \text{ TeV}$ 

| Collider bounds on $R_{\perp}$ in mm |                      |                       |                       |
|--------------------------------------|----------------------|-----------------------|-----------------------|
|                                      | n=2                  | n=4                   | <i>n</i> = 6          |
| LEP 2                                | $4.8 \times 10^{-1}$ | $1.9 \times 10^{-8}$  | $6.8 \times 10^{-11}$ |
| Tevatron                             | $5.5\times10^{-1}$   | $1.4 \times 10^{-8}$  | $4.1 \times 10^{-11}$ |
| LHC                                  | $4.5\times10^{-3}$   | $5.6 \times 10^{-10}$ | $2.7 \times 10^{-12}$ |

## Micro-black hole production?

String-size black hole energy threshold :  $M_{
m BH} \simeq M_s/g_s^2$ 

Horowitz-Polchinski '96, Meade-Randall '07

weakly coupled theory  $\Rightarrow$  strong gravity effects occur much above  $M_s$ ,  $M_*$ 

$$g_{\rm s} \sim 0.1$$
 (gauge coupling)  $\Rightarrow M_{\rm BH} \sim 100 M_{\rm s}$ 

Comparison with Regge excitations :  $M_j = M_s \sqrt{j} \, \Rightarrow$ 

production of  $j\sim 1/g_s^4\sim 10^4$  string states before reach  $M_{
m BH}$ 

I. Antoniadis (CERN) 21 / 33

## Other accelerator signatures: 3 different scales

string physics

Massive string vibrations  $\Rightarrow$  e.g. resonances in dijet distribution

$$M_j^2 = M_0^2 + M_s^2 j$$
; maximal spin :  $j + 1$ 

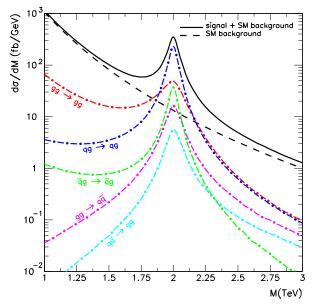
higher spin excitations of quarks and gluons with strong interactions

• Large TeV dimensions seen by SM gauge interactions [24]

I.A. '90

$$M_k^2 = M_0^2 + \frac{k^2}{R^2}$$
;  $k = \pm 1, \pm 2, \dots$   $R = V_{\parallel}^{1/d_{\parallel}}$ ;  $g^2 = 1/(V_{\parallel} M_s^{d_{\parallel}})$ 

experimental limits:  $R^{-1} \gtrsim 0.5-4$  TeV (UED - localized fermions)

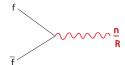

 $\bullet$  extra U(1)'s and anomaly induced terms

masses suppressed by a loop factor from  $M_s$  [25]

**Universal** deviation from Standard Model in dijet distribution

$$M_s = 2 \text{ TeV}$$
  
Width = 15-150 GeV

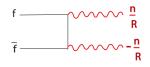
Anchordoqui-Goldberg-Lüst-Nawata-Taylor-Stieberger '08




present LHC limits:  $M_s \gtrsim 4.5 \text{ TeV}$ 

#### Localized fermions (on 3-brane intersections) [22]

⇒ single production of KK modes


I.A.-Benakli '94



- strong bounds indirect effects
- new resonances but at most n = 1

#### Otherwise KK momentum conservation

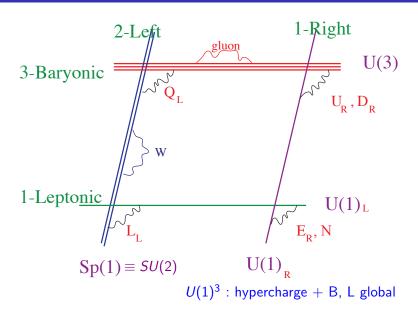
⇒ pair production of KK modes (universal dims)



- weak bounds
- no resonances
- lightest KK stable : dark matter candidate

Servant-Tait '02

24 / 33


## Extra U(1)'s and anomaly induced terms

or massless in the absence of such anomalies

```
masses suppressed by a loop factor
usually associated to known global symmetries of the SM
(anomalous or not) such as (combinations of)
                           Baryon and Lepton number, or PQ symmetry
Two kinds of massive U(1)'s:
                                             LA.-Kiritsis-Rizos '02
- 4d anomalous U(1)'s: M_A \simeq g_A M_S
- 4d non-anomalous U(1)'s: (but masses related to 6d anomalies)
  M_{NA} \simeq g_A M_S V_2 \leftarrow (6d \rightarrow 4d) internal space \Rightarrow M_{NA} > M_A
```

I. Antoniadis (CERN) 25 / 33

#### **Standard Model on D-branes : SM**<sup>++</sup>



I. Antoniadis (CERN) 26 / 33

- B and L become massive due to anomalies Green-Schwarz terms
- the global symmetries remain in perturbation
  - Baryon number ⇒ proton stability
  - Lepton number ⇒ protect small neutrino masses

- Lepton number 
$$\Rightarrow$$
 protect small neutrino masses no Lepton number  $\Rightarrow \frac{1}{M_s} LLHH \to \text{Majorana mass: } \frac{\langle H \rangle^2}{M_s} LL \sim \text{GeV}$ 

•  $B, L \Rightarrow \text{extra } Z's$ 

with possible leptophobic couplings leading to CDF-type Wij events

 $Z' \simeq B$  lighter than 4d anomaly free  $Z'' \simeq B - L$ 

- $Z' \simeq B$  anomalous and superheavy
- $Z'' \simeq B L$  massless at the string scale (no associated 6d anomaly) but broken at TeV by a Higgs VEV with the quantum numbers of  $N_R$
- L-violation from higher-dim operators suppressed by the string scale
- ullet U(3) unification and B global symmetry  $\Rightarrow Z''$ -gauge coupling fixed
- present LHC limits:  $m_{Z''} \gtrsim 2.5$  TeV scale
- interesting LHC phenomenology and cosmology

- Rotation of U(1)'s from the string to low energy basis Y, Y', Y'': completely fixed in terms of the couplings
  - Decoupling of anomalous Y'
  - Y'' linear combination of B-L and  $U(1)_R$  (mostly)
- LHC14 discovery potential:  $M_{Z''}$  up to  $\sim$  5 TeV (in dijets)

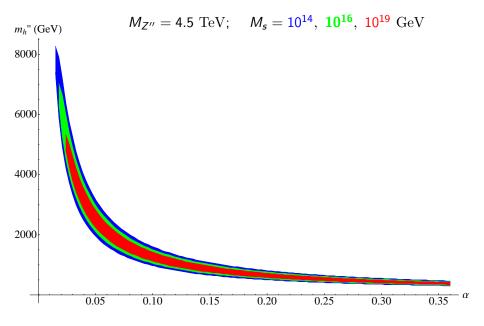
Recent cosmological observations indicate an extra relativistic component dark radiation parametrized by an effective neutrino number close to 4

- $\rightarrow$  use the 3  $\nu_R$ 's interacting with SM fermions via Z''
- data: their decoupling during the quark-hadron transition
  - absence of chemical potential  $\Rightarrow 3.6 < M_{Z''} < 4.8 \text{ TeV}$
  - thermal equlibrium  $\Rightarrow 5.4 < M_{Z''} < 6 \text{ TeV}$

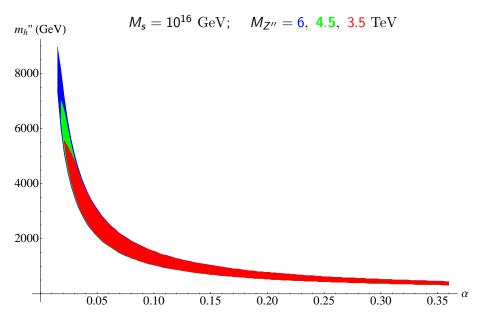
## Stability analysis in (non-susy) SM<sup>++</sup> AAGHLTV to appear

Scalar potential:

$$V(H, H'') = \mu^{2} |H|^{2} + {\mu'}^{2} |H''|^{2} + \lambda_{1} |H|^{4} + \lambda_{2} |H''|^{4} + \lambda_{3} |H|^{2} |H''|^{2}$$


5 parameters  $\gg v, m_h, v'', m_{h''} + a$  Higgs mixing angle  $\alpha$ 

$$\Rightarrow$$
 3 free parameters :  $m_{h''}, \alpha, v'' \leftrightarrow M_{Z''}$ 


Stability conditions: 
$$\lambda_1 > 0$$
,  $\lambda_2 > 0$ ,  $\lambda_1 \lambda_2 > \frac{1}{4} \lambda_3^2$ 

RGE analysis up to  $M_s \Rightarrow$  stability is possible in SM<sup>++</sup>

I. Antoniadis (CERN) 30 / 33



I. Antoniadis (CERN) 31 / 33



I. Antoniadis (CERN) 32 / 33

#### **Conclusions**

- Possible discovery of the Higgs scalar at the LHC: big step forward
- Precise measurement of its couplings is of primary importance
- hint on the origin of mass hierarchy and of BSM physics
  - natural or unnatural SUSY?
  - low string scale in some realization?
  - something new and unexpected?
- Good chance that next phase of LHC run will provide the answer

I. Antoniadis (CERN) 33 / 33