Scattering Amplitudes at Strong Coupling Beyond the Area Paradigm

Benjamin Basso
ENS Paris

Strings 14 Princeton

based on work with Amit Sever and Pedro Vieira

Wilson loops at finite coupling in N=4 SYM

[Alday,Gaiotto,Maldacena,Sever,Vieira'l0]

I+Id background : flux tube sourced by two parallel null lines bottom\&top cap excite the flux tube out of its ground state \longrightarrow Sum over all flux-tube eigenstates

$$
\mathcal{W}=\sum_{\text {states } \psi} C_{\mathrm{bot}}(\psi) \times e^{-E(\psi) \tau+i p(\psi) \sigma+i m(\psi) \phi} \times C_{\mathrm{top}}(\psi)
$$

Refinement : the pentagon way

[BB,Sever,Vieira'I3]

Valid at any coupling

$$
\begin{aligned}
=\sum_{\psi_{i}} & {\left[\prod_{i} e^{-E_{i} \tau_{i}+i p_{i} \sigma_{i}+i m_{i} \phi_{i}}\right] \times } \\
& P\left(0 \mid \psi_{1}\right) P\left(\psi_{1} \mid \psi_{2}\right) P\left(\psi_{2} \mid \psi_{3}\right) P\left(\psi_{3} \mid 0\right)
\end{aligned}
$$

Refinement : the pentagon way

[BB,Sever,Vieira'I3]

Valid at any coupling

$$
\begin{aligned}
&=\sum_{\psi_{i}}\left[\prod_{i} e^{-E_{i} \tau_{i}+i p_{i} \sigma_{i}+i m_{i} \phi_{i}}\right] \times \\
& P\left(0 \mid \psi_{1}\right) P\left(\psi_{1} \mid \psi_{2}\right) P\left(\psi_{2} \mid \psi_{3}\right) P\left(\psi_{3} \mid 0\right)
\end{aligned}
$$

To compute amplitudes we need

- The spectrum of flux-tube states ψ
- All the pentagon transitions $P\left(\psi_{1} \mid \psi_{2}\right)$

Beyond the area paradigm

Simplest case : hexagon $(\mathrm{n}=6) \mathrm{WL}$

classical

$\mathcal{W}_{n=6}=f_{6} \lambda^{-\frac{7}{288}} e^{\frac{\sqrt{\lambda}}{144}-\frac{\sqrt{\lambda}}{2 \pi} A_{n=6}}(1+O(1 / \sqrt{\lambda}))$
minimal area in
AdS_{5}

Pre-factor

$$
f_{6}=\frac{1.04}{\left(\sigma^{2}+\tau^{2}\right)^{1 / 72}}+O\left(e^{-\sqrt{2} \tau}\right)
$$

The flux-tube eigenstates

$\psi=N$ particles state

(Adjoint) field insertions along a light-ray : create/annihilate state on the flux tube

Spectral data

$$
\begin{array}{cc}
E=E\left(u_{1}\right)+E\left(u_{2}\right)+\ldots+E\left(u_{N}\right) & p=p\left(u_{1}\right)+\cdots+p\left(u_{N}\right) \\
E(u)=\mathrm{twist}+g^{2} \ldots & p(u)=2 u+g^{2} \ldots
\end{array}
$$

can be found using integrability

Pentagon/OPE series for hexagon

Lightest states dominate at large τ

What are they?

```
mass}E(p=0
```


Decoupling limit

Scalar mass is exponentially small at strong coupling
coupling \longrightarrow

$$
m=\frac{2^{1 / 4}}{\Gamma(5 / 4)} \lambda^{1 / 8} e^{-\frac{\sqrt{\lambda}}{4}}(1+O(1 / \sqrt{\lambda})) \ll 1
$$

For $\tau \gg 1$ all heavy flux tube excitations decouple
Low energy effective theory :
(relativistic) $\mathrm{O}(6)$ sigma model

$$
\mathcal{L}_{\text {eff }}=\frac{\sqrt{\lambda}}{4 \pi} \partial X \cdot \partial X \quad \text { with } \quad X^{2}=\sum_{i=1}^{6} X_{i}^{2}=1
$$

The pentagon/twist operator

$$
S_{\mathrm{NG}}=-\frac{1}{2 \pi \alpha^{\prime}} \sqrt{-\operatorname{det}\left(\partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} g_{\mu \nu}^{A d S}\right)-\operatorname{det}\left(\partial_{\alpha} y^{\mu} \partial_{\beta} y^{\nu} g_{\mu \nu}^{S^{5}}\right)}
$$

\uparrow
square

\uparrow

pentagon

\uparrow
AdS_{5}

hexagon

Hexagon as a correlator of twist operators

corrections from heavy modes irrelevant in collinear limit

$$
\mathcal{W}_{6}=\langle 0| \phi_{\bullet}(\tau, \sigma) \phi_{\bullet}(0,0)|0\rangle+O\left(e^{-\sqrt{2} \tau}\right)
$$

Probes the physics of the $\mathrm{O}(6)$ sigma model :
$\mathcal{W}_{O(6)}(z)$
$z=m \sqrt{\sigma^{2}+\tau^{2}}$

Large distance

$$
z \gg 1
$$

$$
\mathcal{W}_{O(6)}=1+O\left(e^{-2 z}\right)
$$

Short distance

$$
z \ll 1
$$

$$
\mathcal{W}_{O(6)}=?
$$

OPE as form factor expansion

Insert complete basis of states

See [Cardy,Castro-Alvaredo,Doyon'07]
for similar considerations for computing entanglement entropy in integrable QFT

$$
\mathcal{W}_{O(6)}=\sum_{N} \frac{1}{N!}\langle 0| \phi_{\square}\left|\theta_{1}, \ldots, \theta_{N}\right\rangle\left\langle\theta_{1}, \ldots, \theta_{N}\right| \phi_{\square}|0\rangle e^{-z \sum_{i} \cosh \theta_{i}}
$$

Pentagon transition $=$ form factor of twist operator
$P\left(0 \mid \theta_{1}, \ldots, \theta_{N}\right)=\left\langle\theta_{1}, \ldots, \theta_{N}\right| \phi_{\square}|0\rangle$

Normalization

$\langle 0| \phi_{\square}|0\rangle=1 \quad$ which enforces that $\quad \mathcal{W}_{O(6)} \rightarrow 1 \quad z \rightarrow \infty$

Numerical analysis

Plot of the truncated OPE/form factor series representation for $\log \mathcal{W}_{O(6)}$

Short distance analysis

Short distance OPE (valid for $z \ll 1$)

$$
\phi_{\square}(\tau, \sigma) \phi_{\square}(0,0) \sim{\frac{\log (1 / z)^{B}}{z^{A}} \phi_{\circlearrowright}(0,0)}_{3 \text {-point function }}
$$

Critical exponent A

$$
A=2 \Delta_{\square}-\Delta_{\square}=2 \Delta_{5 / 4}-\Delta_{3 / 2}
$$

with Δ_{k} the scaling dimension of the twist operator ϕ_{k}

$$
\Delta_{k}=\frac{c}{12}\left(k-\frac{1}{k}\right) \quad\left\{\begin{array}{l}
c=\text { central charge } \\
2 \pi(k-1)=\text { excess angle for } \phi_{k}
\end{array}\right.
$$

Short distance analysis

Short distance OPE (valid for $z \ll 1$)

$$
\phi_{\square}(\tau, \sigma) \phi_{\square}(0,0) \sim \frac{\log (1 / z)^{B}}{z^{A}} \phi_{\circlearrowright}(0,0)
$$

Critical exponent A

$$
A=\frac{1}{36} \quad \text { since in our case } c=5
$$

Critical exponent B from one-loop anomalous dimensions

$$
B=-\frac{3}{2} A=-\frac{1}{24}
$$

Short distance analysis

For $z \ll 1$
include subleading
RG logs

Constant C is fixed in the IR by

$$
\mathcal{W}_{O(6)} \rightarrow 1 \quad \text { when } \quad z \rightarrow \infty
$$

and is thus non perturbative

Numerical analysis

$$
\begin{aligned}
\log \mathcal{W}+1 / 36 \log \mathrm{z}+1 / 24 \log \alpha \\
-0.0110
\end{aligned}
$$

Short distance analysis

For $z \ll 1 \quad$ (i.e. $1 \ll \tau \ll e^{\sqrt{\lambda} / 4}$)

$$
m \simeq \frac{2^{1 / 4}}{\Gamma(5 / 4)} \lambda^{1 / 8} e^{-\frac{\sqrt{\lambda}}{4}}
$$

$$
\mathcal{W}_{O(6)}=\frac{C}{z^{1 / 36} \log (1 / z)^{1 / 24}}+\ldots \quad z=m \sqrt{\sigma^{2}+\tau^{2}}
$$

controlled by the gluons
$\mathcal{W}_{n=6}=f_{6} \lambda^{-\frac{7}{288}} e^{\frac{\sqrt{\lambda}}{144}-\frac{\sqrt{\lambda}}{2 \pi} A_{n=6}}(1+O(1 / \sqrt{\lambda}))$

Pre-factor

$$
f_{6}=\frac{1.04}{\left(\sigma^{2}+\tau^{2}\right)^{1 / 72}}+O\left(e^{-\sqrt{2} \tau}\right)
$$

Infrared/non-perturbative regime

$z \gg 1 \quad$ equivalently $\quad \tau \gg e^{\sqrt{\lambda} / 4}$

Deep (infrared) collinear limit
Completely non perturbative

Cross over

Cross over

here
we could match $O(6)$ analysis with
string perturbative expansion

Full stringy pre-factor

α^{\prime} expansion

full thing :
include all heavy modes gluons, fermions, ...

Next Strings maybe:)

$$
f_{6}=\frac{1.04}{\left(\sigma^{2}+\tau^{2}\right)^{1 / 72}}+O\left(e^{-\sqrt{2} \tau}\right)+O\left(e^{-2 \tau}\right)
$$

Conclusions

At strong coupling SA develop a non-perturbative regime in the near collinear limit

The string α^{\prime} expansion breaks down for extremely large values of $\tau \sim-\log u_{2} \sim e^{\sqrt{\lambda} / 4}$

That's because flux tube mass gap m becomes extremely small

One should think in terms of correlators of twist operators

This fixes the collinear limit of SA at strong coupling

Outlook

Higher multiplicity (heptagon,)?

Next-to-MHV amplitudes?

Full one-loop pre-factor?

One-loop Thermodynamical-Bubble-Ansatz equations?
... and many other questions...

THANKYOU!

BACK UP

Pentagon as twist operator

Asympotically a pentagon $=5$ quadrants glued together

excess angle $=\frac{\pi}{2}$

$$
P\left(\psi_{\text {edge } 2} \mid \psi_{\text {edge 5 }}^{\prime}\right)=\left\langle\psi^{\prime}\right| \phi_{\square}|\psi\rangle
$$

Monodromy

One can go around the pentagon with 5 mirror rotations

This is one more than for a square

$$
E \xrightarrow{\gamma} i p \longrightarrow-E \longrightarrow-i p \longrightarrow E
$$

Hexagon as a correlator of twist operators

$$
\mathcal{W}_{6}=\langle 0| \phi_{\square}(\tau, \sigma) \phi_{\square}(0,0)|0\rangle
$$

Hexagon beyond 2pt approximation

$\mathcal{W}_{6}=1+\frac{1}{2} \int \frac{d \theta_{1} d \theta_{2}}{(2 \pi)^{2}}\left|P\left(0 \mid \theta_{1}, \theta_{2}\right)\right|^{2} e^{-m \tau\left(\cosh \theta_{1}+\cosh \theta_{2}\right)+i m \sigma\left(\sinh \theta_{1}+\sinh \theta_{2}\right)}+\ldots$

Multi-particle transitions

Understood!

$$
\text { integrand }=\prod_{i<j} \frac{1}{P\left(\theta_{i} \mid \theta_{j}\right) P\left(\theta_{j} \mid \theta_{i}\right)} \times \text { rational }
$$

Higher multiplicity

Higher-point amplitudes correspond to higher-points correlators

$$
\mathcal{W}_{n}=\langle 0| \phi_{\square}\left(\tau_{n-4}, \sigma_{n-4}\right) \ldots \phi_{\square}\left(\tau_{1}, \sigma_{1}\right)|0\rangle
$$

Overall short-distance scaling is controlled by OPE

$$
\underbrace{\phi_{\bigcirc \ldots \phi_{\bullet}}}_{n-4} \sim m^{-(n-4) \Delta\left(\frac{5}{4}\right)+\Delta\left(\frac{n}{4}\right)} \phi_{\varphi}
$$

with final excess angle $\varphi=2 \pi \times \frac{n-4}{4}$
This leads to the addition

$$
\mathcal{W}_{n}=e^{-\frac{\sqrt{\lambda}}{2 \pi} A_{n}+\frac{\sqrt{\lambda}(n-4)(n-5)}{48 n}+o(\sqrt{\lambda})}
$$

