Scattering Amplitudes at Strong Coupling Beyond the Area Paradigm

Benjamin Basso ENS Paris

Strings 14 Princeton

based on work with Amit Sever and Pedro Vieira

Wilson loops at finite coupling in N=4 SYM

[Alday, Gaiotto, Maldacena, Sever, Vieira'10]

I + I d background : *flux tube* sourced by two parallel null lines bottom&top cap excite the *flux tube* out of its ground state

Sum over all flux-tube eigenstates

$$\mathcal{W} = \sum_{\text{states } \psi} C_{\text{bot}}(\psi) \times e^{-E(\psi)\tau + ip(\psi)\sigma + im(\psi)\phi} \times C_{\text{top}}(\psi)$$

Refinement : the pentagon way

[BB,Sever,Vieira'13]

Valid at any coupling

$$= \sum_{\psi_i} \left[\prod_i e^{-E_i \tau_i + ip_i \sigma_i + im_i \phi_i} \right] \times$$

 $P(0|\psi_1)P(\psi_1|\psi_2)P(\psi_2|\psi_3)P(\psi_3|0)$

Refinement : the pentagon way

[BB,Sever,Vieira'13]

Valid at any coupling

$$= \sum_{\psi_i} \left[\prod_i e^{-E_i \tau_i + ip_i \sigma_i + im_i \phi_i} \right] \times$$

 $P(0|\psi_1)P(\psi_1|\psi_2)P(\psi_2|\psi_3)P(\psi_3|0)$

To compute amplitudes we need

The spectrum of flux-tube states $~\psi$

All the pentagon transitions $\ P(\psi_1|\psi_2)$

Beyond the area paradigm

classical

 $\mathcal{W}_{n=6} = f_6 \,\lambda^{-\frac{7}{288}} e^{\frac{\sqrt{\lambda}}{144} - \frac{\sqrt{\lambda}}{2\pi}A_{n=6}} (1 + O(1/\sqrt{\lambda}))$

minimal area in AdS₅

quantum

[Alday, Gaiotto, Maldacena'09] [Alday, Maldacena, Sever, Vieira'10]

Pre-factor

$$f_6 = \frac{1.04}{(\sigma^2 + \tau^2)^{1/72}} + O(e^{-\sqrt{2}\tau})$$

[BB,Sever,Vieira'14]

The flux-tube eigenstates

Spectral data

$$E = E(u_1) + E(u_2) + \ldots + E(u_N) \qquad p = p(u_1) + \cdots + p(u_N)$$
rapidity

$$E(u) = \text{twist} + g^2 \dots \qquad p(u) = 2u + g^2 \dots$$

can be found using integrability

Pentagon/OPE series for hexagon

$$\mathcal{W}_{\text{hex}} = \int \int d\mathbf{u} P_{\mathbf{a}}(0|\mathbf{u}) e^{-E(\mathbf{u})\tau + ip(\mathbf{u})\sigma + im\phi} P_{\mathbf{a}}(\bar{\mathbf{u}}|0)$$

i.e. in collinear limit

Lightest states dominate at large au

What are they?

For $\tau \gg 1$ all heavy flux tube excitations decouple

Low energy effective theory : (relativistic) O(6) sigma model

[Alday, Maldacena'07]

= 1

$$\mathcal{L}_{\text{eff}} = \frac{\sqrt{\lambda}}{4\pi} \,\partial X \cdot \partial X \qquad \text{with} \qquad X^2 = \sum_{i=1}^6 X_i^2$$

The pentagon/twist operator

Hexagon as a correlator of twist operators

corrections from heavy modes irrelevant in collinear limit

 $\mathcal{W}_{6} = \langle 0 | \phi_{\bigcirc}(\tau, \sigma) \phi_{\bigcirc}(0, 0) | 0 \rangle + O(e^{-\sqrt{2}\tau})$ Probes the physics of the $\mathcal{W}_{O(6)}(z)$ $z = m\sqrt{\sigma^{2} + \tau^{2}}$

Large distance $z \gg 1$ $\mathcal{W}_{O(6)} = 1 + O(e^{-2z})$ Short distance $z \ll 1$ $\mathcal{W}_{O(6)} = ?$

OPE as form factor expansion

Insert complete basis of states

See [Cardy,Castro-Alvaredo,Doyon'07] for similar considerations for computing entanglement entropy in integrable QFT

$$\mathcal{W}_{O(6)} = \sum_{N} \frac{1}{N!} \langle 0 | \phi_{\bigcirc} | \theta_1, \dots, \theta_N \rangle \langle \theta_1, \dots, \theta_N | \phi_{\bigcirc} | 0 \rangle e^{-z \sum_{i} \cosh \theta_i}$$

Pentagon transition = form factor of twist operator

$$P(0|\theta_1, \dots, \theta_N) = \langle \theta_1, \dots, \theta_N | \phi_{\bigcirc} | 0 \rangle$$

We found all these transitions
so we can plot

$$\langle 0 | \phi_{\bigcirc} | 0 \rangle = 1$$
 which enforces that $\mathcal{W}_{O(6)} \to 1$ $z \to \infty$

Numerical analysis

Plot of the truncated OPE/form factor series representation for $\log W_{O(6)}$

Short distance OPE (valid for $z \ll 1$)

$$\phi_{\bigcirc}(\tau,\sigma)\phi_{\bigcirc}(0,0) \sim \frac{\log\left(1/z\right)^{B}}{z^{A}}\phi_{\bigcirc}(0,0)$$
3-point function

Critical exponent A

$$A = 2\Delta_{\bigcirc} - \Delta_{\bigcirc} = 2\Delta_{5/4} - \Delta_{3/2}$$

with Δ_k the scaling dimension of the twist operator ϕ_k

[Knizhnik'87] [Lunin,Mathur'00] [Calabrese,Cardy'04]

$$\Delta_k = \frac{c}{12}\left(k - \frac{1}{k}\right)$$

$$c = \text{central charge}$$

 $2\pi(k-1) = \text{excess angle for } \phi_k$

Short distance OPE (valid for $z \ll 1$)

$$\phi_{\bigcirc}(\tau,\sigma)\phi_{\bigcirc}(0,0) \sim \frac{\log\left(1/z\right)^{B}}{z^{A}}\phi_{\bigcirc}(0,0)$$
3-point function

Critical exponent A

$$A = \frac{1}{36} \qquad \text{since in our case } c = 5$$

Critical exponent B from one-loop anomalous dimensions

$$B = -\frac{3}{2}A = -\frac{1}{24}$$

Constant C is fixed in the IR by

 $\mathcal{W}_{O(6)} \to 1$ when $z \to \infty$

and is thus non perturbative

Numerical analysis

Pre-factor $f_6 = \frac{1.04}{(\sigma^2 + \tau^2)^{1/72}} + O(e^{-\sqrt{2}\tau})$

Infrared/non-perturbative regime

 $z \gg 1$ equivalently $\tau \gg e^{\sqrt{\lambda}/4}$

Deep (infrared) collinear limit

Completely non perturbative

Cross over

 $z \ll 1$ equivalently $1 \ll \tau \ll e^{\sqrt{\lambda}/4}$

UV regime of O(6) model : *perturbative* collinear limit

Cross over

here we could match O(6) analysis with string perturbative expansion

Full stringy pre-factor

full thing : include all heavy modes gluons, fermions, ...

Next Strings maybe :)

 $f_6 = \frac{1.04}{(\sigma^2 + \tau^2)^{1/72}} + O(e^{-\sqrt{2}\tau}) + O(e^{-2\tau})$

Conclusions

At strong coupling SA develop a non-perturbative regime in the near collinear limit

The string α' expansion breaks down for extremely large values of $\tau \sim -\log u_2 \sim e^{\sqrt{\lambda}/4}$

That's because flux tube mass gap m becomes extremely small

One should think in terms of correlators of twist operators

This fixes the collinear limit of SA at strong coupling

Outlook

Higher multiplicity (heptagon,)?

Next-to-MHV amplitudes?

Full one-loop pre-factor?

One-loop Thermodynamical-Bubble-Ansatz equations?

... and many other questions ...

THANK YOU!

BACK UP

Pentagon as twist operator

Asympotically a pentagon = 5 quadrants glued together

One can go around the pentagon with 5 mirror rotations

This is one more than for a square

$$E \xrightarrow{\gamma} ip \longrightarrow -E \longrightarrow -ip \longrightarrow E$$

Hexagon as a correlator of twist operators

 $\mathcal{W}_6 = \langle 0 | \phi_{\bigcirc}(\tau, \sigma) \phi_{\bigcirc}(0, 0) | 0 \rangle$

computed in O(6) sigma model

Hexagon beyond 2pt approximation

$$\mathcal{W}_6 = 1 + \frac{1}{2} \int \frac{d\theta_1 d\theta_2}{(2\pi)^2} |P(0|\theta_1, \theta_2)|^2 e^{-m\tau(\cosh\theta_1 + \cosh\theta_2) + im\sigma(\sinh\theta_1 + \sinh\theta_2)} + \dots$$

multi-particle states

Higher multiplicity

Higher-point amplitudes correspond to higher-points correlators

$$\mathcal{W}_n = \langle 0 | \phi_{\bigcirc}(\tau_{n-4}, \sigma_{n-4}) \dots \phi_{\bigcirc}(\tau_1, \sigma_1) | 0 \rangle$$

Overall short-distance scaling is controlled by OPE

$$\underbrace{\phi_{\bigcirc} \dots \phi_{\bigcirc}}_{n-4} \sim m^{-(n-4)\Delta(\frac{5}{4}) + \Delta(\frac{n}{4})} \phi_{\varphi}$$

with final excess angle $\varphi = 2\pi \times \frac{n-4}{4}$

This leads to the addition

$$\mathcal{W}_n = e^{-\frac{\sqrt{\lambda}}{2\pi}A_n + \frac{\sqrt{\lambda}(n-4)(n-5)}{48n} + o(\sqrt{\lambda})}$$