Holographic Phases of Rényi Entropies

Alexandre Belin

Based on hep-th/1306.2640 with A. Maloney and S. Matsuura

Strings 2014, Gong Show session

Consider a QFT in state ρ with Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

We trace over the DOF in B

$$\rho_A = \text{Tr}_B \rho$$
 $S_A = -\text{Tr}_A \log \rho_A$

Consider a QFT in state ρ with Hilbert space

$$\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$$

We trace over the DOF in B

$$\rho_A = \text{Tr}_B \rho$$
 $S_A = -\text{Tr}_A \log \rho_A$

The Rényi entropies are defined as

$$S_n = \frac{1}{1-n} \log \operatorname{Tr}\left[\rho_A^n\right]$$

$$\xrightarrow{\text{if analytic}} S_A = \lim_{n \to 1} S_n$$

But is S_n analytic in n?

$$ho_{A}=e^{-2\pi H_{E}}$$

 \Rightarrow Thermal state on $S^{1} imes \mathbb{H}_{d-1}$ with $T_{0}=1/2\pi.$

$$S_A = S_{thermal}(\mathbb{H}_{d-1})$$

This can be generalized to Rényi entropies

$$\rho_A^n = e^{-2\pi n H_E} \Rightarrow S_n = \frac{n}{n-1} \frac{1}{T_0} \int_{T_0/n}^{T_0} S(T) dT$$

 $AdS/CFT \Rightarrow S_{thermal} = S_{BH}$

This can be generalized to Rényi entropies

$$\rho_A^n = e^{-2\pi n H_E} \Rightarrow S_n = \frac{n}{n-1} \frac{1}{T_0} \int_{T_0/n}^{T_0} S(T) dT$$

 $AdS/CFT \Rightarrow S_{thermal} = S_{BH}$

 $\mathcal{T} \to 0$, near horizon geometry is $AdS_2 imes \mathbb{H}_{d-1}$. If

$$BF_{AdS_{d+1}} < m_{eff}^2 \ell_{AdS_{d+1}}^2 < BF_{AdS_2}$$

Scalar condenses $\rightarrow 2^{nd}$ order phase trans. \rightarrow hairy black hole

 $\partial_T S(T)$ is discontinuous $\Rightarrow \partial_n^2 S_n$ is discontinuous at some $n = n_c$

\Rightarrow S_n is NOT analytic in n.

Analytical estimate using near horizon arguments. If

$$rac{d}{2}-1 < \Delta < rac{d+\sqrt{d}}{2}$$

 \rightarrow non-analyticity at $n = n_c$.

- We have found simple examples of non-analyticities in S_n for large N CFTs. This addresses possible subtleties in the use of the replica trick.
- It would be interesting to reproduce similar results from the field theory directly.

Thank you!

Alexandre Belin Holographic Phases of Rényi Entropies