Holographic perspectives on the Kibble-Zurek mechanism Paul Chesler

Work done with Hong Liu & Antonio Garcia-Garcia

QFT with 2^{nd} order phase transition:

- Example: **superfluid**
- Symmetry group U(1) broken for $T < T_c$.
- Order parameter $\psi \neq 0$ for $T < T_c$.
- What happens when T is dynamic?

$$\epsilon(t) \equiv 1 - \frac{T(t)}{T_c}$$

QFT with 2^{nd} order phase transition:

- Example: **superfluid**
- Symmetry group U(1) broken for $T < T_c$.
- Order parameter $\psi \neq 0$ for $T < T_c$.
- What happens when T is dynamic?

$$\epsilon(t) \equiv 1 - \frac{T(t)}{T_c}$$

QFT with 2^{nd} order phase transition:

- Example: **superfluid**
- Symmetry group U(1) broken for $T < T_c$.
- Order parameter $\psi \neq 0$ for $T < T_c$.
- What happens when T is dynamic?

$$\epsilon(t) \equiv 1 - \frac{T(t)}{T_c}$$

$$\zeta$$

QFT with 2^{nd} order phase transition:

- Example: **superfluid**
- Symmetry group U(1) broken for $T < T_c$.
- Order parameter $\psi \neq 0$ for $T < T_c$.
- What happens when T is dynamic?

$$\epsilon(t) \equiv 1 - \frac{T(t)}{T_c}$$

• Density of defects after quench:

$$n \sim \xi^{-(d-D)}$$

Zurek's estimate of correction length Critical slowing down

- Critical exponents: $\xi_{eq} = \xi_o |\epsilon|^{-\nu}$ and $\tau_{eq} = \tau_o |\epsilon|^{-z\nu}$.
- Inevitable $\exists t_{\text{freeze}}$ such that $\frac{\partial \tau_{\text{eq}}}{\partial t}\Big|_{t=t_{\text{freeze}}} \sim 1.$

• Characteristic scale: $\xi_{\text{freeze}} \equiv \xi_{\text{eq}}(t = t_{\text{freeze}}).$

The Kibble-Zurek scaling

• Assume linear quench: $\epsilon(t) = t/\tau_Q$.

$$\Rightarrow t_{\text{freeze}} \sim \tau_Q^{\nu z/(1+\nu z)}, \qquad \qquad \xi_{\text{freeze}} \sim \tau_Q^{\nu/(1+\nu z)}$$

• Density of topological defects when condensate first forms:

$$n_{KZ} \sim \frac{1}{\xi_{\text{freeze}}^{d-D}} \sim \tau_Q^{-(d-D)\nu/(1+\nu z)}$$

- 1. Dynamics after $+t_{\text{freeze}}$ need not be adiabatic.
 - Adiabatic evolution only after $t_{eq} \gg t_{freeze}$.
- **2.** No well-defined condensate until t_{eq} .
- 3. Dynamics after $T < T_c$ responsible for KZ scaling.
- 4. $\xi(t_{eq}) \gg \xi_{freeze} \Rightarrow far fewer defects formed$

- **1.** Dynamics after $+t_{\text{freeze}}$ need not be adiabatic.
 - Adiabatic evolution only after $t_{eq} \gg t_{freeze}$.
- **2.** No well-defined condensate until t_{eq} .
- 3. Dynamics after $T < T_c$ responsible for KZ scaling.
- 4. $\xi(t_{eq}) \gg \xi_{freeze} \Rightarrow far fewer defects formed$

excerpt from [Del Campo & Zurek]

served in numerics. A better estimate is obtained by using a factor f, to multiply $\hat{\xi}$ in the above equations, where $f \approx 5-10$ depends on the specific model.^{29,31–35} Thus, while KZM provides an order-of-magnitude estimate

- **1.** Dynamics after $+t_{\text{freeze}}$ need not be adiabatic.
 - Adiabatic evolution only after $t_{eq} \gg t_{freeze}$.
- **2.** No well-defined condensate until t_{eq} .
- 3. Dynamics after $T < T_c$ responsible for KZ scaling.
- 4. $\xi(t_{eq}) \gg \xi_{freeze} \Rightarrow far fewer defects formed$

excerpt from [Del Campo & Zurek]

served in numerics. A better estimate is obtained by using a factor f, to multiply $\hat{\xi}$ in the above equations, where $f \approx 5-10$ depends on the specific model.^{29,31-35} Thus, while KZM provides an order-of-magnitude estimate

Employ holographic duality

- **1.** Dynamics after $+t_{\text{freeze}}$ need not be adiabatic.
 - Adiabatic evolution only after $t_{eq} \gg t_{freeze}$.
- **2.** No well-defined condensate until t_{eq} .
- **3.** Dynamics after $T < T_c$ responsible for KZ scaling.
- 4. $\xi(t_{eq}) \gg \xi_{freeze} \Rightarrow far fewer defects formed$

excerpt from [Del Campo & Zurek]

served in numerics. A better estimate is obtained by using a factor f, to multiply $\hat{\xi}$ in the above equations, where $f \approx 5-10$ depends on the specific model.^{29,31–35} Thus, while KZM provides an order-of-magnitude estimate

Employ holographic duality

First holographic study: [Sonner, del Campo, Zurek: two weeks ago]

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

$$S_{\rm grav} = \frac{1}{16\pi G_{\rm N}} \int d^4x \sqrt{-G} \left[R + \Lambda + \frac{1}{q^2} \left(-F^2 - |D\Phi|^2 - m^2 |\Phi|^2 \right) \right],$$

where $\Lambda = -3$ and $m^2 = -2$.

- Near-boundary asymptotics of Φ encodes QFT condensate $\langle \psi \rangle$.
- Spontaneous symmetry breaking:
 - Black-brane solutions with $T > T_c$ have $\Phi = 0$.
 - Black-brane solutions with $T < T_c$ have $\Phi \neq 0$.

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

$$S_{\rm grav} = \frac{1}{16\pi G_{\rm N}} \int d^4x \sqrt{-G} \left[R + \Lambda + \frac{1}{q^2} \left(-F^2 - |D\Phi|^2 - m^2 |\Phi|^2 \right) \right],$$

where $\Lambda = -3$ and $m^2 = -2$.

- Near-boundary asymptotics of Φ encodes QFT condensate $\langle \psi \rangle$.
- Spontaneous symmetry breaking:
 - Black-brane solutions with $T > T_c$ have $\Phi = 0$.
 - Black-brane solutions with $T < T_c$ have $\Phi \neq 0$.

Game plan:

- Start at $T > T_c$ in distant past.
- Cool black brane through T_c .
- Watch Φ and $\langle \psi \rangle$ form.

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

$$S_{\rm grav} = \frac{1}{16\pi G_{\rm N}} \int d^4x \sqrt{-G} \left[R + \Lambda + \frac{1}{q^2} \left(-F^2 - |D\Phi|^2 - m^2 |\Phi|^2 \right) \right],$$

where $\Lambda = -3$ and $m^2 = -2$.

- Near-boundary asymptotics of Φ encodes QFT condensate $\langle \psi \rangle$.
- Spontaneous symmetry breaking:
 - Black-brane solutions with $T > T_c$ have $\Phi = 0$.
 - Black-brane solutions with $T < T_c$ have $\Phi \neq 0$.

Game plan:

- Start at $T > T_c$ in distant past.
- Cool black brane through T_c .
- Watch Φ and $\langle \psi \rangle$ form.

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

$$S_{\rm grav} = \frac{1}{16\pi G_{\rm N}} \int d^4x \sqrt{-G} \left[R + \Lambda + \frac{1}{q^2} \left(-F^2 - |D\Phi|^2 - m^2 |\Phi|^2 \right) \right],$$

where $\Lambda = -3$ and $m^2 = -2$.

- Near-boundary asymptotics of Φ encodes QFT condensate $\langle \psi \rangle$.
- Spontaneous symmetry breaking:
 - Black-brane solutions with $T > T_c$ have $\Phi = 0$.
 - Black-brane solutions with $T < T_c$ have $\Phi \neq 0$.

Game plan:

- Start at $T > T_c$ in distant past.
- Cool black brane through T_c .
- Watch Φ and $\langle \psi \rangle$ form.

Stochastic driving

- **1.** Stochastic processes choose different vacua at different \mathbf{x} .
- **2.** Boundary conditions $\lim_{u\to 0} A_{\nu} = \mu \delta_{\nu 0}$, $\lim_{u\to 0} \partial_u \Phi = \varphi$.
- **3.** Statistics $\langle \varphi^*(t, \mathbf{x}) \varphi(t', \mathbf{x}') \rangle = \zeta \delta(t t') \delta^2(\mathbf{x} \mathbf{x}').$
- 4. Mimics backreaction of G_N suppressed **Hawking radiation**.

 $\zeta \sim 1/N^2$

Stochastic driving

- **1.** Stochastic processes choose different vacua at different \mathbf{x} .
- **2.** Boundary conditions $\lim_{u\to 0} A_{\nu} = \mu \delta_{\nu 0}$, $\lim_{u\to 0} \partial_u \Phi = \varphi$.
- **3.** Statistics $\langle \varphi^*(t, \mathbf{x}) \varphi(t', \mathbf{x}') \rangle = \zeta \delta(t t') \delta^2(\mathbf{x} \mathbf{x}').$
- 4. Mimics backreaction of G_N suppressed **Hawking radiation**.

 $\zeta \sim 1/N^2$

Results illustrated Movies show $|\langle \psi(t, \mathbf{x}) \rangle|^2$

Fast quench

Slow quench

Results illustrated Movies show $|\langle \psi(t, \mathbf{x}) \rangle|^2$

Fast quench

Slow quench

Results illustrated Movies show $|\langle \psi(t, \mathbf{x}) \rangle|^2$

Fast quench

Slow quench

Non-adiabatic condensate growth

- Correlation function $C(t,r) \equiv \langle \psi^*(t,\mathbf{x}+\mathbf{r})\psi(t,\mathbf{x})\rangle.$
- Linear response

$$C(t,q) = \zeta \int dt \, |G_R(t,t',q)|^2.$$

• Relation to black brane quasinormal modes

$$G_R(t, t', q) = \theta(t - t')H(q)e^{-i\int_t^{\prime t} dt''\omega_o(\epsilon(t''), q)}$$

where ω_o is $\epsilon < 0$ quasinormal mode analytically continued to $\epsilon > 0$

• Instability for $\epsilon > 0$

$$\operatorname{Im} \omega_o = b\epsilon^{z\nu} - a\epsilon^{(z-2)\nu}q^2 + O(q^4) > 0.$$

• Modes with $q < q_{\max}$ with $q_{\max} \sim \epsilon(t)^{\nu}$ form condensate.

Non-adiabatic condensate growth (II)

At $t > t_{\text{freeze}}$,

$$C(t,r) \sim C_0(t) e^{-\frac{r^2}{\ell_{\rm co}(t)^2}},$$

where

$$C_0(t) \sim \zeta t_{\text{freeze}} \,\ell_{\text{co}}(t)^{-d} \exp\left\{\left(\frac{t}{t_{\text{freeze}}}\right)^{1+\nu z}\right\}$$

٠

and

$$\ell_{\rm co}(t) = \xi_{\rm freeze} \left(\frac{t}{t_{\rm freeze}}\right)^{\frac{1+(z-2)\nu}{2}}$$

Non-adiabatic condensate growth (II)

At $t > t_{\text{freeze}}$,

$$C(t,r) \sim C_0(t) e^{-\frac{r^2}{\ell_{\rm co}(t)^2}},$$

where

$$C_0(t) \sim \zeta t_{\text{freeze}} \,\ell_{\text{co}}(t)^{-d} \exp\left\{\left(\frac{t}{t_{\text{freeze}}}\right)^{1+\nu z}\right\}$$

٠

and

$$\ell_{\rm co}(t) = \xi_{\rm freeze} \left(\frac{t}{t_{\rm freeze}}\right)^{\frac{1+(z-2)\nu}{2}}.$$

Linear response breaks down when $C_0(t) \sim \epsilon(t)^{2\beta}$

$$t_{\rm eq} \sim [\log R]^{\frac{1}{1+\nu z}} t_{\rm freeze}, \qquad \qquad R \sim \zeta^{-1} \tau_Q^{\frac{(d-z)\nu - 2\beta}{1+\nu z}}.$$

Comparing to unstable mode analysis (I)

Comparing to unstable mode analysis (II) For holography (mean field exponents) • $R \sim \frac{1}{\zeta \sqrt{\tau_Q}}$ and $t_{\text{freeze}} \sim \sqrt{\tau_Q}$. • $t_{\rm eq} \sim \sqrt{\log R} t_{\rm freeze}$ 10² 0 00000 2.5 • $t_{\rm freeze}/\sqrt{\tau_Q}$ • $t_{\rm eq}/\sqrt{\tau_Q}$ 0 0 000000 **10¹** -const. 0 $-c_{\sqrt{\log \frac{c'}{\sqrt{\tau o}}}}$ • $t_{\rm freeze}$ 1.5 $t_{\rm eq}$ $\sqrt{\tau_Q}$ 10⁰ 10³ 10^{2} 10^{1} 1500 1200 300 600 900 au_Q

Consequences of extended non-adiabatic growth

If $t_{\rm eq} \gg t_{\rm freeze}$ then

• No well-defined vortices form until $t \sim t_{eq}$.

•
$$\ell_{\rm co}(t_{\rm eq}) = \xi_{\rm freeze} \left(\frac{t_{\rm eq}}{t_{\rm freeze}}\right)^{\frac{1+(z-2)\nu}{2}} \gg \xi_{\rm freeze}.$$

• Far fewer defects formed than KZ predicts

$$n/n_{KZ} \sim (t_{\rm eq}/t_{\rm freeze})^{-\frac{(d-D)(1-(z-2)\nu)}{2}}$$

• State at $t = -t_{\text{freeze}}$ is irrelevant.

How natural is $t_{eq} \gg t_{freeze}$?

- 1. All holographic theories have $t_{\rm eq} \gg t_{\rm freeze}$.
 - $G_{\rm N}$ suppressed Hawking $\Rightarrow \zeta \sim 1/N^2$ and

$$t_{\rm eq} \sim [\log N]^{1/(1+\nu z)} t_{\rm freeze}.$$

- 2. Universality classes $(d-z)\nu 2\beta > 0$ have $t_{eq} \gg t_{freeze}$.
 - $t_{\rm eq} \sim [\log \tau_Q]^{1/(1+\nu z)} t_{\rm freeze}$.
 - Example: superfluid ⁴He.
- \Rightarrow Log correction to density of defects

$$\frac{n}{n_{KZ}} \sim \left[\log \tau_Q\right]^{-\frac{(d-D)(1+(z-2)\nu)}{2(1+z\nu)}} n_{KZ}.$$

IR coarsening before condensate formation

• Smear over scales $\sim \xi_{\text{freeze}}$.

5

IR coarsening before condensate formation

• Smear over scales $\sim \xi_{\text{freeze}}$.

5

IR coarsening before condensate formation

• Smear over scales $\sim \xi_{\text{freeze}}$.

Due to explosive growth of IR modes after $+t_{\text{freeze}}$.

Counting defects

O(25) fewer vortices than KZ estimate

Summary

- For wide class of theories there exists new scale t_{eq} .
- Exposive growth of IR modes between $t_{\text{freeze}} < t < t_{\text{eq}}$.
- If $t_{\rm eq} \gg t_{\rm freeze}$
 - Initial correlation ξ_{freeze} not imprinted on final state.
 - Far fewer defects formed than KZ predicts.
 - Log corrections to KZ scaling law.

Sudden quenches

 $\ell_{\rm co} \sim 1/q_{\rm max} \sim \epsilon_{\rm final}^{-\nu}$

