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What is the Kibble-Zurek mechanism?
€(t)4

QFT with 2"! order phase transition:

e Example: superfluid

1
e Symmetry group U(1) broken for T < T..

e Order parameter v # 0 for T' < T.. unbroken broken

¢ What happens when 7' is dynamic?
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What 1s the Kibble-Zurek mechanism??

€(T)a
QFT with 2"¢ order phase transition: "
e Example: superfluid 4
e Symmetry group U(1) broken for T < T..
e Order parameter v # 0 for T' < T.. unbroken broken

¢ What happens when 7' is dynamic?

e Density of defects after quench:

n~§_(d_D).




Zurek’s estimate of correction length

Critical slowing down

e (Critical exponents: &oq = &ol€] ™" and Toq = To €|~

e Inevitable d tgeese such that =

unbroken :e(t) 1 : broken

_tfreeze _|_tfreeze

e Characteristic scale: &freeze = Eoq(t = ttreeze)-



The Kibble-Zurek scaling
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e Assume linear quench: €(t) =t/7g.
1% 1 1
:>tfreeze ~ TQZ/( —I—I/Z)) Sfreeze ~ Tg/( +VZ)-

e Density of topological defects when condensate first forms:
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Motivational claims

. Dynamics after +tfeeze Need not be adiabatic.
e Adiabatic evolution only after teq > tfreeze-
. No well-defined condensate until ..
. Dynamics after I' < T, responsible for KZ scaling.

. E(teq) > Etreere = far fewer defects formed
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Employ holographic duality

First holographic study:
'Sonner, del Campo, Zurek: two weeks ago



A holographic model of a charged superfluid

ACthD: [Hartnoll, Herzog & Horowitz: 0803.3295]

1 1
N d*z/ — At — (—F? — |D®|? — m?|®|?
Se 167TGN/ v G{Rnt +q2( DO> —m?|®%) |,

where A = —3 and m? = —2.

e Near-boundary asymptotics of ® encodes QFT condensate ().
e Spontaneous symmetry breaking:

— Black-brane solutions with 1" > 7. have ® = 0.
— Black-brane solutions with 1" < T, have ® # 0.
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A holographic model of a charged superfluid

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

1 1
oy = d*z/ — A+ = (=F? — |DO|* — m?|d|?
Se 167TGN/ x G{}H +q2( D®)* — m?|®[*)|
where A = —3 and m? = —2.

e Near-boundary asymptotics of ® encodes QFT condensate ().
e Spontaneous symmetry breaking:

— Black-brane solutions with 1" > T, have ® = 0.
— Black-brane solutions with 17" < T, have & # 0.

Game plan:

e Start at 1" > T, in distant past.
e Cool black brane through T..

e Watch & and (1)) form.
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Stochastic driving

. Stochastic processes choose different vacua at different x.
. Boundary conditions lim,_,g A, = ud,g, lim,_,g 9, P = .
. Statistics (p*(t,x)(t',x")) = (6(t — t')6%(x — x/).

. Mimics backreaction of G suppressed Hawking radiation.
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Results illustrated
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Condensate growth
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Condensate growth
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Non-adiabatic condensate growth

Correlation function C(t,r) = (¥*(t,x + r)(t, X)).
Linear response
C(t,q) = C/dt\GR(t,t’,Q)\z-
Relation to black brane quasinormal modes
Gr(t,t',q) = 0(t — ') H(g)e "o«
where w, 1s € < 0 quasinormal mode analytically continued to € > 0
Instability for € > 0

Imw, = be®™” — ae*"2¢? + O(¢*) > 0.

Modes with ¢ < ¢max With gna.x ~ €(t)” form condensate.



Non-adiabatic condensate growth (II)

At t > tfreezea

r2

C(t, 7“) Y Co(t)e—eco(t)z ,

where
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" 1+vz)
Co(t) ~ (tireese Eco(t)_d exp X ( ) > .
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Non-adiabatic condensate growth (II)

At t > tfreezea

r2

C(t, 7“) Y Co(t)e—eco(t)z ,

where

( " 14v2)

Co(t) ~ Ctireese Eco(t)_d exp X ( ) > .

\ tfreeze )

and 14+ (z—2)v
t p)
gco(t) — ‘Sfreeze (—>
tfreeze

Linear response breaks down when Cy(t) ~ €(t)?”

(d—z)vr—28

; — V=
teq ~ [log R] 1tz tfreezea R~ C 17_@ o




Comparing to unstable mode analysis (I)
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Comparing to unstable mode analysis (II)

For holography (mean field exponents)

o R~ C\/lﬁ and Tereeze ~ +/TQ-

® teq ™ \/logRtfreeze
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Consequences of extended non-adiabatic growth
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If Toq > tfreeze then

e No well-defined vortices form until ¢ ~ 2.

14+(z—2)v

2
> ffreeze .

o 6(:0 (teq) — ffreeze ( Leq

tfreeze

e Far fewer defects formed than KZ predicts

. (d—D)(1—(z—2)v)
n/nKZ ~ (teq/tfreeze) 2

o State at t{ = —{feepe 1S Irrelevant.



How natural is teq > tfreeze !

1. All holographic theories have teq > ttreeze-

e Gy suppressed Hawking = ¢ ~ 1/N* and

teq ™~ [k)g N]l/(l_l_yz)tfreeze-

2. Universality classes (d — z)v — 28 > 0 have teq > tfrocge-

® 1o ~ |log TQ]l/(1+VZ)tf

e Example: superfluid *He.

recze-

= Log correction to density of defects

n _ (d=D)(1+4(2—2)v)
— ~Y [log TQ] 2(14zv nKZ
NKz




IR coarsening before condensate formation

e Smear over scales ~ Efreeze-

C(t,r)/C(t,r =0)
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e Smear over scales ~ Efreeze-

C(t,r)/C(t,r =0)

0 0.5 1 1
I . .

100 "
N
D,
D)
S
50 SV
\
t =
am
’ =
L |
-50 0 .
0 0 1 2 3 4 5

t/tfreeze



IR coarsening before condensate formation

e Smear over scales ~ Efreeze-

C(t,r)/C(t,r =0)
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Due to explosive growth of IR modes after
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COllIltiIlg defects
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Summary

e Lor wide class of theories there exists new scale teq.
e bExposive growth of IR modes between feeeze <t < Teg-

o If teq > Tfreeze

— Initial correlation &geeze NOt imprinted on final state.
— Far fewer defects formed than KZ predicts.

— Log corrections to KZ scaling law.



Sudden quenches
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