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Holographic perspectives on the
Kibble-Zurek mechanism



What is the Kibble-Zurek mechanism?

unbroken

broken

QFT with 2nd order phase transition:

• Example: superfluid

• Symmetry group U(1) broken for T < Tc.

• Order parameter  6= 0 for T < Tc.

• What happens when T is dynamic?

✏(t) ⌘ 1� T (t)

Tc
.

• Density of defects after quench:

n ⇠ ⇠�(d�D).
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Critical slowing down

• Critical exponents: ⇠eq = ⇠
o

|✏|�⌫

and ⌧eq = ⌧
o

|✏|�z⌫ .

• Inevitable 9 tfreeze such that

@⌧eq

@t

��
t=tfreeze

⇠ 1.

• Characteristic scale: ⇠freeze ⌘ ⇠eq(t = tfreeze).

Zurek’s estimate of correction length



• Assume linear quench: ✏(t) = t/⌧Q.

)tfreeze ⇠ ⌧⌫z/(1+⌫z)
Q , ⇠freeze ⇠ ⌧⌫/(1+⌫z)

Q .

• Density of topological defects when condensate first forms:

nKZ ⇠ 1

⇠d�D
freeze

⇠ ⌧�(d�D)⌫/(1+⌫z)
Q
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The Kibble-Zurek scaling



Motivational claims

1. Dynamics after +tfreeze need not be adiabatic.

• Adiabatic evolution only after teq � tfreeze.

2. No well-defined condensate until teq.

3. Dynamics after T < Tc responsible for KZ scaling.

4. ⇠(teq) � ⇠freeze ) far fewer defects formed
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of ε within the interval ε ∈ [−ε̂, ε̂], where

ε̂ ≡ |ε(t̂)| ∼
(

τ0
τQ

)
1

1+zν

. (8)

Spontaneous symmetry breaking entails degeneracy of the ground state.
In an extended system, causally disconnected regions will make independent
choices of the vacuum in the new phase. A summary of the topological
classification of the resulting defects using homotopy theory is presented in
the Appendix A. The KZM sets the average size of these domains by the
value of the equilibrium correlation length at ε̂,19

ξ̂ ≡ ξ[ε̂] = ξ0

(

τQ
τ0

)
ν

1+zν

. (9)

This is the main prediction of the KZM.
This simple form of a power law of t̂ (and, consequently, of ξ̂) arises

only when the relaxation time of the system scales as a power law of ε.
This need not always be the case. For example, in the Kosterlitz-Thouless
phase transition universality class, of relevance to 2D Bose gases, the critical
slowing down is described by a more complicated (exponential) dependence
on ε. A more complex dependence of t̂ and ξ̂ on τQ (rather than a simple
power law) would be then predicted as a result.30

The above estimate of the ξ̂ is often recast as an estimate for the result-
ing density of topological defects,

n ∼ ξ̂d

ξ̂D
=

1

ξ0
D−d

(

τ0
τQ

)(D−d) ν
1+zν

, (10)

where D and d are the dimensions of the space and of the defects (e.g.,
D = 3 and d = 1 for vortex lines in a 3D superfluid). This order-of-
magnitude prediction usually overestimates the real density of defects ob-
served in numerics. A better estimate is obtained by using a factor f , to
multiply ξ̂ in the above equations, where f ≈ 5−10 depends on the specific
model.29,31–35 Thus, while KZM provides an order-of-magnitude estimate
of the density of defects, it does not provide a precise prediction of their
number. However, if one were able to check the power law above, one could
claim that the KZM holds and show that the non-equilibrium dynamics
across the phase transition is also universal. This requires the ability to
measure the average number of excitations after driving the system at a
given quench rate, and repeating this measurement for different quench
rates.

excerpt from [Del Campo & Zurek]
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A holographic model of a charged superfluid

Action: [Hartnoll, Herzog & Horowitz: 0803.3295]

Sgrav =
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
R+ ⇤+

1

q
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2 � |D�|2 �m

2|�|2
��

,

where ⇤ = �3 and m

2
= �2.

• Near-boundary asymptotics of � encodes QFT condensate h i.

• Spontaneous symmetry breaking:

– Black-brane solutions with T > Tc have � = 0.

– Black-brane solutions with T < Tc have � 6= 0.
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Stochastic driving

1. Stochastic processes choose di↵erent vacua at di↵erent x.

2. Boundary conditions limu!0 A⌫ = µ�⌫0, limu!0 @u� = '.

3. Statistics h'⇤
(t,x)'(t0,x0

)i = ⇣�(t� t0)�2(x� x0
).

4. Mimics backreaction of GN suppressed Hawking radiation.

'

⇣ ⇠ 1/N2
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Non-adiabatic condensate growth

• Correlation function C(t, r) ⌘ h ⇤
(t,x+ r) (t,x)i.

• Linear response

C(t, q) = ⇣

Z
dt |G

R

(t, t0, q)|2.

• Relation to black brane quasinormal modes

G
R

(t, t0, q) = ✓(t� t0)H(q)e�i

R 0t
t

dt

00
!

o

(✏(t

00
),q)

where !
o

is ✏ < 0 quasinormal mode analytically continued to ✏ > 0

• Instability for ✏ > 0

Im!
o

= b✏z⌫ � a✏(z�2)⌫q2 +O(q4) > 0.

• Modes with q < q
max

with q
max

⇠ ✏(t)⌫ form condensate.



Non-adiabatic condensate growth (II)

At t > t
freeze

,

C(t, r) ⇠ C
0

(t)e
� r2

`
co

(t)2 ,

where

C
0
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freeze

`
co

(t)�d
exp

(✓
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t
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◆
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)
.

and

`
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✓
t
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◆ 1+(z�2)⌫
2
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⌧Q

For holography (mean field exponents)

• R ⇠ 1
⇣
p
⌧Q

and tfreeze ⇠
p
⌧Q.

• teq ⇠
p
logR tfreeze



Consequences of extended non-adiabatic growth

⇥10�4

t = tfreeze t = 0.7teq t = 0.85teq t = teq

If t
eq

� t
freeze

then

• No well-defined vortices form until t ⇠ t
eq

.

• `
co

(t
eq

) = ⇠
freeze

⇣
teq

tfreeze

⌘ 1+(z�2)⌫
2 � ⇠

freeze

.

• Far fewer defects formed than KZ predicts

n/nKZ ⇠ (t
eq

/t
freeze

)

� (d�D)(1�(z�2)⌫)
2 .

• State at t = �t
freeze

is irrelevant.



How natural is teq � tfreeze?

1. All holographic theories have teq � tfreeze.

• GN suppressed Hawking ) ⇣ ⇠ 1/N2 and

teq ⇠ [logN ]1/(1+⌫z)tfreeze.

2. Universality classes (d� z)⌫ � 2� > 0 have teq � tfreeze.

• teq ⇠ [log ⌧Q]1/(1+⌫z)tfreeze.

• Example: superfluid 4He.

) Log correction to density of defects

n

nKZ
⇠ [log ⌧Q]

� (d�D)(1+(z�2)⌫)
2(1+z⌫ nKZ .
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Due to explosive growth of IR modes after +tfreeze.

IR coarsening before condensate formation



Counting defects

⇥10�4

t = tfreeze t = 0.7teq t = 0.85teq t = teq
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Nvort ices
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1.92L
ξFWHM

)2

τ
−1/2
Q

⌧Q

O(25) fewer vortices

than KZ estimate

For holography,

n ⇠ 1p
logN

⌧�1/2
Q .



Summary

• For wide class of theories there exists new scale teq.

• Exposive growth of IR modes between tfreeze < t < teq.

• If teq � tfreeze

– Initial correlation ⇠freeze not imprinted on final state.

– Far fewer defects formed than KZ predicts.

– Log corrections to KZ scaling law.



Sudden quenches
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