Toda Theory From Six Dimensions

Clay Córdova Harvard University

Strings, Princeton June 25th, 2014 Daniel Jafferis & C.C. ArXiv: 1406.XXXX

General Motivation

• Reductions of 6d (2,0) ---> geometric perspective on SQFTs

– s-dualities, mirror symmetries, ...

Supersymmetric localization ---> new partition functions

- instanton sums, sphere partition functions, indices, ...

 Fusion ---> novel interpretations of partition functions for QFTs with 6d parent

Specific Motivation

6d (2,0) on $S^4 \times \Sigma$

6d conformal invariance + twisting on Σ + supersymmetry

Ζ

---> Z independent of $vol(\Sigma)$ and $vol(S^4)$

Specific Motivation

6d (2,0) on S⁴×Σ ~

[Witten, Gaiotto]

[Nekrasov, Pestun]

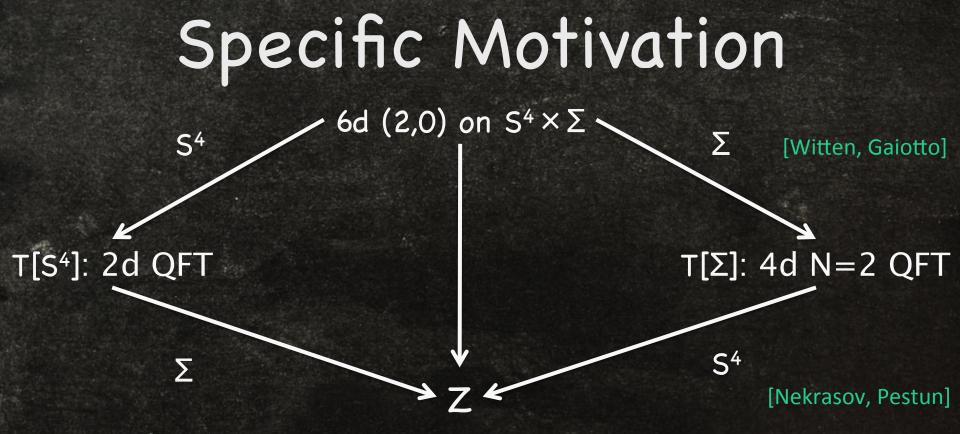
T[Σ]: 4d N=2 QFT

Σ

S⁴

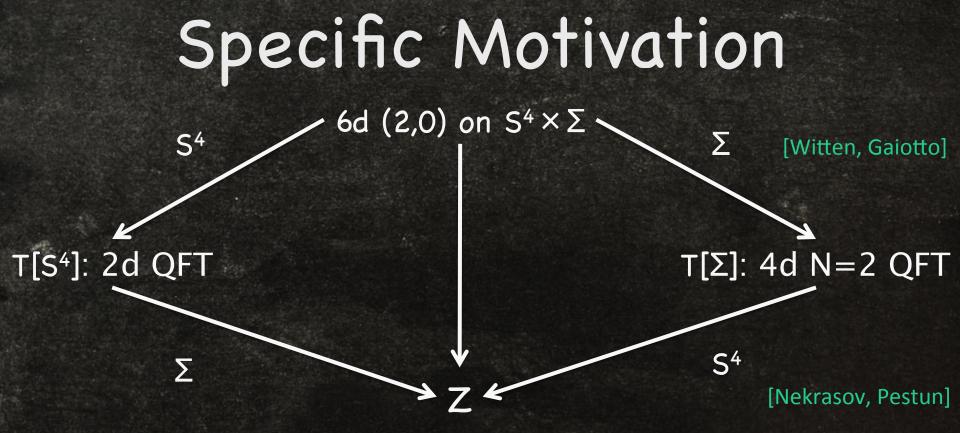
6d conformal invariance + twisting on Σ + supersymmetry

---> Z independent of $vol(\Sigma)$ and $vol(S^4)$



6d conformal invariance + twisting on Σ + supersymmetry

---> Z independent of $vol(\Sigma)$ and $vol(S^4)$



6d conformal invariance + twisting on Σ + supersymmetry

---> Z independent of $vol(\Sigma)$ and $vol(S^4)$

AGT conjecture: $T[S^4] = Toda \ CFT \longrightarrow N-1 \ real \ scalars \ \Phi^i$

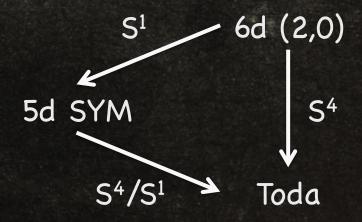
 $L \sim \Sigma_{ij} C_{ij} d_{\mu} \Phi^{i} d_{\mu} \Phi^{j} - \Sigma_{i} \exp(\frac{1}{2} \Sigma_{j} C_{ij} \Phi^{j})$ ($C_{ij} = SU(N)$ Cartan matrix)

Result & Method

Result: derivation of Toda theory via reduction from 6d

Method: factorize reduction:

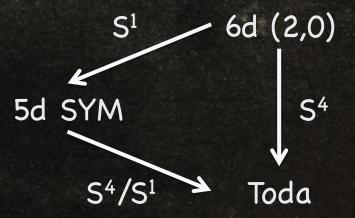
[Kim-Kim-Kim, Fukada-Kawana-Matsumiya, Lee-Yamazaki, Jafferis-C.C.]



Result & Method

Result: derivation of Toda theory via reduction from 6d

 Method: factorize reduction:
 [Kim-Kim, Fukada-Kawana-Matsumiya, Lee-Yamazaki, Jafferis-C.C.]
 why it works:



- Higher derivative corrections to 5d SYM unimportant

- suppressed by small r(S¹)
- Q exact

- S^4/S^1 not smooth but at singularity, $g^2_{ym} \sim r(S^1) \rightarrow 0$

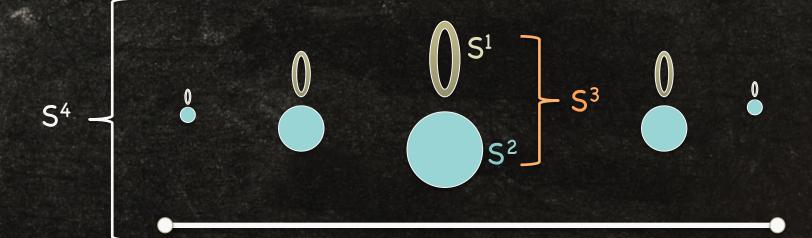
---> understand with weakly coupled 5d physics

- Compactification on $S^4 \times R^{1,1}$ has OSP(2|4) symmetry
- 5d SUSY ---> reduce on Hopf circle of equatorial S³ in S⁴

S⁴ Geometry

• Compactification on $S^4 \times R^{1,1}$ has OSP(2|4) symmetry

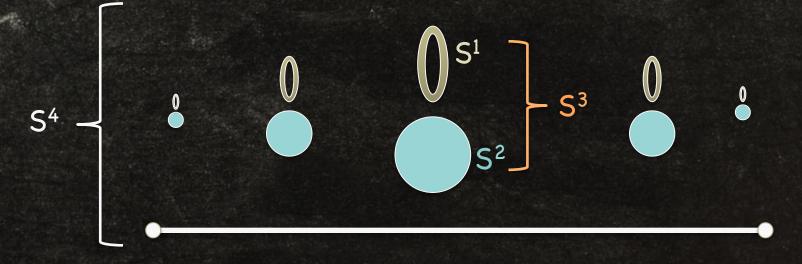
• 5d SUSY ---> reduce on Hopf circle of equatorial S³ in S⁴



S⁴ Geometry

• Compactification on $S^4 \times R^{1,1}$ has OSP(2|4) symmetry

• 5d SUSY ---> reduce on Hopf circle of equatorial S³ in S⁴

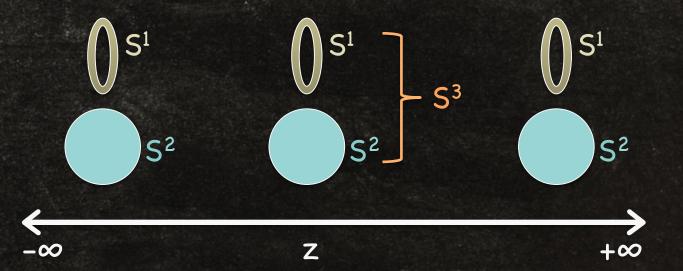


Use 6d Weyl invariance to stretch interval to ∞ length

S⁴ Geometry

• Compactification on $S^4 \times R^{1,1}$ has OSP(2|4) symmetry

• 5d SUSY ---> reduce on Hopf circle of equatorial S³ in S⁴



Use 6d Weyl invariance to stretch interval to ∞ length
 ---> S³ now constant radius
 ---> ds² = (dΩ₃)² + dz² + cosh²(z/r)(-dt²+dx²)

Plan of Attack

- Reduce from 6d (2,0) to 5d SYM on Hopf circle of S^3
- Reduce 5d SYM on S^2 with one unit of RR-flux
- Place resulting 3d theory on manifold R^{1,2} with non-trivial metric:

$$ds^2 = dz^2 + \cosh^2(z/r)(-dt^2 + dx^2)$$

- Add suitable boundary conditions at $|z| = \infty$
- Determine effective boundary theory

Relation To Chern-Simons

 5d SYM on S² with 1 unit of RR-flux ---> complex CS in 3d [Lee-Yamazaki, Jafferis-C.C.]

- complex SL(N,C) gauge field $\mathcal{B} = A + i X$

 $- L = \frac{1}{8\pi} \left[\operatorname{Tr} \left(\mathcal{B} \, \mathrm{d}\mathcal{B} + \frac{2}{3} \, \mathcal{B}^3 \right) + \operatorname{Tr} \left(\overline{\mathcal{B}} \, \mathrm{d}\overline{\mathcal{B}} + \frac{2}{3} \, \overline{\mathcal{B}}^3 \right) \right]$

Relation To Chern-Simons

 5d SYM on S² with 1 unit of RR-flux ---> complex CS in 3d [Lee-Yamazaki, Jafferis-C.C.]

- complex SL(N,C) gauge field $\mathcal{B} = A + i X$

 $- L = \frac{1}{8\pi} \left[\operatorname{Tr} \left(\mathcal{B} \, \mathrm{d}\mathcal{B} + \frac{2}{3} \, \mathcal{B}^3 \right) + \operatorname{Tr} \left(\bar{\mathcal{B}} \, \mathrm{d}\bar{\mathcal{B}} + \frac{2}{3} \, \bar{\mathcal{B}}^3 \right) \right]$

 Puzzle: How does SUSY reduction of SU(N) gauge theory result in bosonic SL(N,C) gauge theory?

• Answer: the two concepts are equivalent!

SU(N) covariant Lorenz gauge condition D^aX_a = 0
 breaks SL(N,C) to SU(N)

- fermions reinterpreted as Faddeev-Popov ghosts

Boundary Data – One Side

D6

D4

From IIA perspective --> D4 ending on D6

- scalars have a Nahm pole X_a ~ T_a /w
 [Diaconescu]
- T_a valued in SU(2), $[T_a, T_b] = \varepsilon_{abc} T_c$
- A chosen so that SL(N,C) field, \mathcal{B} , is flat
- ---> $\mathcal{B} = (iT_3) dw/w + (T_+) dx_+/w$
- Fermions lifted by Dirichlet condition

Boundary Data – One Side

D6

D4

W

From IIA perspective --> D4 ending on D6

scalars have a Nahm pole X_a ~ T_a /w
 [Diaconescu]

• T_a valued in SU(2), $[T_a, T_b] = \varepsilon_{abc} T_c$

• A chosen so that SL(N,C) field, \mathcal{B} , is flat

---> $\mathcal{B} = (iT_3) dw/w + (T_+) dx_+/w + ...$

Fermions lifted by Dirichlet condition

The terms ... are less singular in w, and are fluctuating fields.
 They give rise to a chiral Toda theory

Executive Summary

Question: What are the Toda fields?

• Answer:

The Toda fields are modes of the 5d scalars X_a localized at the poles of the S⁴

[Nekrasov-Witten]

Map to Toda

CS Theory --> boundary theory of currents (WZW-model) [Witten]

 $\mathcal{B} = F^{-1} d F + F^{-1} (H^{-1} dH) F$ (pure gauge HF)

F is background giving Nahm pole, H is dynamical

$\begin{array}{l} & \textbf{Map to Toda} \\ & \textbf{CS Theory --> boundary theory of currents (WZW-model)} \\ & \textbf{B} = F^{-1} d F + F^{-1} (H^{-1} dH) F & (pure gauge HF) \end{array}$

F is background giving Nahm pole, H is dynamical

<u>Properties of H</u>:

- Gauge $D^aX_a = 0 \rightarrow H$ is SU(N) valued not SL(N,C) valued

- $H = H(x_{+}, x_{-})$ depends only on boundary coordinates

- Flatness of $H^{-1} dH \rightarrow H = H(x_{+})$ is chiral

- Regularity of ... --> H fixed by N-1 real scalars = Toda fields

Map to Toda

 More Briefly: Nahm boundary conditions provide constraints on WZW currents which reduce it to Toda [Balog-Fehér-Forgács-O'Raifeartaigh-Wipf]

 Each boundary (region near a pole in S⁴) gives a chiral half of Toda. Together they form the full non-chiral Toda.

[Elitzer-Moore-Schwimmer-Seiberg]

Map to Toda

 More Briefly: Nahm boundary conditions provide constraints on WZW currents which reduce it to Toda [Balog-Fehér-Forgács-O'Raifeartaigh-Wipf]

 Each boundary (region near a pole in S⁴) gives a chiral half of Toda. Together they form the full non-chiral Toda.
 <u>Central Charge</u>: [Elitzer-Moore-Schwimmer-Seiberg]

• Toda central charge, $c = N-1 + N(N^2-1)(b+b^{-1})^2$. S⁴ gives b = 1

 $() S^{1}$

squashed S³

Recover b by squashing geometry

Future Directions

Understand the dictionary between Toda operators, and 6d defect operators

 Use similar techniques to study 6d (2,0) on other geometries. An interesting case is S⁶ which should lead to direct information about 6d correlation functions

Future Directions

Understand the dictionary between Toda operators, and 6d defect operators

 Use similar techniques to study 6d (2,0) on other geometries. An interesting case is S⁶ which should lead to direct information about 6d correlation functions

Thanks for Listening!