Sphere Partition Functions, the Zamolodchikov Metric and Surface Operators

Jaume Gomis

Princeton, Strings 2014

with Gerchkovitz, Komargodski, arXiv:1405.7271 with Le Floch, to appear

Introduction

• Recent years have seen dramatic progress in the <u>exact computation</u> of partition functions of supersymmetric field theories on curved spaces

• In geometries $\underline{S^1 \times \mathcal{M}_d}$, the partition function has a standard <u>Hilbert space</u> interpretation as a sum over states

$$Z[S^1 \times \mathcal{M}_d] = \operatorname{Tr}_{\mathcal{H}} \left[(-1)^F e^{-\beta H} \right]$$

1) What does the partition function of a (S)CFT on S^d compute?

- Physical Interpretation
- Ambiguities of Z_{S^d}

2) Sphere partition function \implies M2 \subset M5-brane surface operators

Sphere Partition Function in Conformal Manifold

• Exactly marginal operators $\int d^d x \lambda^i O_i$ define a family of CFTs spanning the conformal manifold S:

 λ^i are coordinates and O_i are vectors fields in \mathcal{S}

• Conformal manifold \mathcal{S} admits Riemannian metric: Zamolodchikov metric

$$\langle O_i(x)O_j(0)\rangle_p = \frac{G_{ij}(p)}{x^{2d}} \qquad p \in \mathcal{S}$$

• <u>CFT</u> can be canonically put on sphere for any $p \in S$

• Sphere partition function is an infrared finite observable

•
$$Z_{S^d}$$
 is a probe of the conformal manifold S

• <u>Observable</u> $\langle \mathcal{O} \rangle_{\lambda}$ defined by expansion around reference CFT

$$\langle \mathcal{O} \rangle_{\lambda} = \sum_{k} \frac{1}{k!} \left\langle \mathcal{O} \left(\int d^{d}x \sqrt{g} \lambda^{i} O_{i}(x) \right)^{k} \right\rangle$$

- Integrated correlation functions have ultraviolet divergences
- Need to <u>renormalize</u> so that $\langle \mathcal{O} \rangle_{\lambda}$ has a continuum limit
- The structure of divergences of sphere partition function is

$$\log Z_{S^{2n}} = A_1[\lambda^i](r\Lambda_{UV})^{2n}... + A_n[\lambda^i](r\Lambda_{UV})^2 + \underline{A[\lambda^i]}\log(r\Lambda_{UV}) + F_{2n}[\lambda^i]$$
$$\log Z_{S^{2n+1}} = B_1[\lambda^i](r\Lambda_{UV})^{2n+1}... + B_{n+1}[\lambda^i](r\Lambda_{UV}) + \underline{F_{2n+1}[\lambda^i]}$$

• Different renormalization schemes differ by diffeomorphism invariant local terms with $\Delta \leq d$ constructed from background fields $g_{mn}(x)$ and $\lambda^i \to \lambda^i(x)$

 $\mathcal{L}(g_{mn},\lambda^i)$

- All power-law divergences can be \underline{tuned} by appropriate counterterms
- In even dimensions:
 - The finite piece $F_{2n}[\lambda^i]$ is ambiguous, there is a <u>finite counterterm</u>

$$\int d^{2n}x \sqrt{g} F_{2n}[\lambda^i] E_{2n}$$

- There is no local counterterm for the $A[\lambda^i] \log(r \Lambda_{UV})$ term
- Consistency requires that $A[\lambda^i] = A$, the A-type anomaly
- In odd dimensions:
 - There is <u>no finite counterterm</u> for $\operatorname{Re}(F_{2n+1}[\lambda^i])$
 - Consistency requires that $\operatorname{Re}(F_{2n+1}[\lambda^i]) = \operatorname{Re}(F_{2n+1})$

- All power-law divergences can be \underline{tuned} by appropriate counterterms
- In even dimensions:
 - The finite piece $F_{2n}[\lambda^i]$ is ambiguous, there is a <u>finite counterterm</u>

$$\int d^{2n}x \sqrt{g} F_{2n}[\lambda^i] E_{2n}$$

- There is no local counterterm for the $A[\lambda^i] \log(r \Lambda_{UV})$ term
- Consistency requires that $A[\lambda^i] = A$, the A-type anomaly
- In odd dimensions:
 - There is <u>no finite counterterm</u> for $\operatorname{Re}(F_{2n+1}[\lambda^i])$
 - Consistency requires that $\operatorname{Re}(F_{2n+1}[\lambda^i]) = \operatorname{Re}(F_{2n+1})$

Summary

- Unambiguous quantities A and $\operatorname{Re}(F_{2n+1})$ are <u>constant</u> along S
- A and $\operatorname{Re}(F_{2n+1})$ measure entanglement entropy across a sphere in the CFT Casini, Huerta, Myers

SCFT Sphere Partition Functions

- Regulate the divergences in a supersymmetric way
- Preserve a "massive" subalgebra of superconformal algebra

 $\{Q,Q\} = SO(d+1) \oplus \mathbb{R}$ -symmetry

This is the general supersymmetry algebra of a <u>massive</u> theory on S^d

 \bullet Counterterms are diffeomorphism and supersymmetric invariant

 \implies supergravity counterterms

• Realize S^{2n} as supersymmetric background in a supergravity theory $$_{\rm Festuccia,Seiberg}$$

supergravity multiplet: g_{mn}, ψ_m, \ldots

- Represent $\underline{\lambda^i}$ as bottom component of a superfield $\Phi^i(x, \Theta) | = \lambda^i(x)$
- Supergravity invariant constructed from supergravity multiplet and Φ^i

 $\mathcal{L}(g_{mn},\psi_m,\ldots;\lambda^i,\ldots)$

Two Dimensional $\mathcal{N} = (2, 2)$ SCFTs

- Includes worldsheet description of string theory on Calabi-Yau manifolds
- Conformal manifold S is Kähler and locally $S_c \times S_{tc}$
- *A* an *N* = (2,2) superconformal invariant regulator. ∃ two massive
 N = (2,2) subalgebras on S²

$$SU(2|1)_A \xleftarrow{\text{mirror}} SU(2|1)_B$$

- Defines partition functions Z_A and Z_B Benini,Cremonesi; Doroud,J.G,Le Floch,Lee Doroud,J.G
- Compute the exact Kähler potential K on the conformal manifold

Jockers, Kumar, Lapan, Morrison, Romo

J.G,Lee

$$Z_A = e^{-K_{tc}} \qquad \qquad Z_B = e^{-K_c}$$

• Partition function subject to ambiguity under <u>Kahler transformations</u>

$$K \to K + \mathcal{F}(\lambda^i) + \bar{\mathcal{F}}(\bar{\lambda}^i)$$

 \mathcal{F} is a holomorpic function instead of an arbitrary <u>real</u> function of the moduli

• <u>Kähler</u> ambiguity <u>counterterm</u> in Type A/B 2d $\mathcal{N} = (2, 2)$ supergravity. Supergravities gauge either $U(1)_V$ or $U(1)_A$ R-symmetry

- Coordinates in \mathcal{S}_c are bottom components of chiral multiplets Φ^i
- Coordinates in S_{tc} are bottom components of twisted chiral multiplets Ω^i
- The $SU(2|1)_B$ Kähler ambiguity is due to the supergravity coupling

$$\int d^2x d^2\Theta \,\varepsilon R \,\mathcal{F}(\Phi^i) + c.c \ \supset \ \frac{1}{r^2} \int d^2x \sqrt{g} \,\mathcal{F}(\lambda^i) + c.c$$

- \mathcal{F} : holomorphic function
- R: chiral superfield containing ${\mathcal R}$ as top component
- $\varepsilon:$ chiral density superspace measure
- The $SU(2|1)_A$ Kähler ambiguity is parametrized by

$$\int d^2x d\Theta^+ d\tilde{\Theta}^- \hat{\varepsilon} F \mathcal{F}(\Omega^i) + c.c$$

4d $\mathcal{N} = 2$ SCFTs

- Conformal Manifold \mathcal{S} of 4d $\mathcal{N} = 2$ SCFTs is Kähler
- SCFT on S^4 can be deformed by exactly marginal operators

$$\int d^4x \sqrt{g} \sum_i \left(\tau_i \, C_i + \bar{\tau}_{\bar{i}} \, \bar{C}_{\bar{i}} \right)$$

 C_i : top component of 4d $\mathcal{N} = 2$ chiral multiplet with bottom component A_i τ_i : coordinates on conformal manifold S

- Regulate divergences of Z_{S^4} in an $OSp(2|4) \subset SU(2,2|2)$ invariant way
- Calculate by supersymmetric localization or using Ward identity

$$\partial_i \partial_{\bar{j}} \log Z_{S^4} = \left\langle \int_{S^4} d^4 x \sqrt{g} \, C_i(x) \, \int_{S^4} d^4 y \sqrt{g} \, \bar{C}_{\bar{j}}(y) \right\rangle$$
$$= \left\langle A_i(N) \, \bar{A}_{\bar{j}}(S) \right\rangle = G_{i\bar{j}} = \partial_i \partial_{\bar{j}} K$$

• Z_{S^4} of $\underline{\text{4d } \mathcal{N} = 2 \text{ SCFTs}}$ computes the Kähler potential on \mathcal{S}

$$\boxed{Z_{S^4} = e^{K/12}}$$

- How about $4d \mathcal{N} = 1 \text{ SCFTs}$?
 - Conformal Manifold S is <u>Kähler</u>
 - Partition Function regulated in an $OSp(1|4) \subset SU(2,2|1)$ invariant way
 - $\exists 4d \mathcal{N} = 1$ (old minimal) supergravity finite <u>counterterm</u>

$$\int d^4x \int d^2\Theta \, \varepsilon (\bar{D}^2 - 8R) R\bar{R} F(\Phi^i, \bar{\Phi}^{\bar{i}}) \supset \frac{1}{r^4} \int d^4x \sqrt{g} F(\lambda^i, \bar{\lambda}^{\bar{i}})$$

F arbitrary $\Longrightarrow Z_{S^4}$ for $\mathcal{N} = 1$ SCFTs is ambiguous

- How about $4d \mathcal{N} = 1 \text{ SCFTs}$?
 - Conformal Manifold S is <u>Kähler</u>
 - Partition Function regulated in an $OSp(1|4) \subset SU(2,2|1)$ invariant way
 - $\exists 4d \mathcal{N} = 1$ (old minimal) supergravity finite <u>counterterm</u>

$$\int d^4x \int d^2\Theta \, \varepsilon (\bar{D}^2 - 8R) R\bar{R} F(\Phi^i, \bar{\Phi}^{\bar{i}}) \supset \frac{1}{r^4} \int d^4x \sqrt{g} F(\lambda^i, \bar{\lambda}^{\bar{i}})$$

F arbitrary $\Longrightarrow Z_{S^4}$ for $\mathcal{N} = 1$ SCFTs is ambiguous

Summary

- S^{2n} partition function of SCFTs may have <u>reduced</u> space of ambiguities
- Sphere partition functions of 2d $\mathcal{N} = (2, 2)$ and 4d $\mathcal{N} = 2$ SCFTs capture the *exact* Kähler potential on their conformal manifold

Surface Operators and M2-branes

to appear J.G, Le Floch

• <u>M2-branes</u> ending on N_f <u>M5-branes</u>

insert a surface operator in the 6d $\mathcal{N} = (2,0) A_{N_f-1}$ SCFT

- Surface operators labeled by a representation \mathcal{R} of $SU(N_f)$
- M5-branes wrapping a punctured Riemann surface C realize a large class of 4d $\mathcal{N} = 2$ theories (class S) Gaiotto

• M2-branes ending on N_f M5-branes insert a surface operator in the corresponding 4d $\mathcal{N} = 2$ theory

• Surface operators in 4d gauge theories

- Order parameters that go beyond the Wilson-'t Hooft criteria
- Can be described by coupling 2d defect dof to the bulk gauge theory
- Coupled 4d/2d system can exhibit new dynamics and dualities

• M2-brane surface operators preserve a 2d $\mathcal{N} = (2,2)$ subalgebra of 4d $\mathcal{N} = 2$

• Surface operators in 4d gauge theories

Gukov, Witten

- Order parameters that go beyond the Wilson-'t Hooft criteria
- Can be described by coupling 2d defect dof to the bulk gauge theory
- Coupled 4d/2d system can exhibit new dynamics and dualities
- M2-brane surface operators preserve a 2d $\mathcal{N} = (2, 2)$ subalgebra of 4d $\mathcal{N} = 2$
- We have <u>identified</u> the 2d gauge theories corresponding to <u>M2-branes</u>

• Surface operator obtained by identifying the $SU(N_f) \times SU(N_f) \times U(1)$ symmetry of the 2d gauge theory with a corresponding gauge or global symmetry of 4d $\mathcal{N} = 2$ theory

• A superpotential on the defect couples 2d fields to 4d fields

• $\underline{S_b^4}$ partition function of \mathcal{T}_C is captured by <u>Toda CFT</u> correlator in C Pestun AGT

• Conjecturally, a degenerate puncture describes a surface operator AGGTV

• $\underline{S_b^4}$ partition function of \mathcal{T}_C is captured by <u>Toda CFT</u> correlator in C Pestun

• Conjecturally, a degenerate puncture describes a surface operator AGGTV

 S_b^4 partition function of \mathcal{T}_C

• + our 2d gauge theory on S^2 labelled by $\mathcal{R}(\Omega)$

 $\begin{array}{rcl} \text{Toda CFT correlator on } C \\ = & + \text{ extra } \underbrace{\text{degenerate}}_{\text{with momentum } \alpha} = -b\Omega \end{array}$

• S_h^4 partition function of \mathcal{T}_C is captured by <u>Toda CFT</u> correlator in C Pestun AGT

• Conjecturally, a degenerate puncture describes a surface operator AGGTV

 S_{h}^{4} partition function of \mathcal{T}_{C}

+ our 2d gauge theory on $S^2 = + \text{extra degenerate}$ labelled by $\mathcal{R}(\Omega)$

Toda CFT correlator on Cwith momentum $\alpha = -b\Omega$

• We explicitly verified this for the 4d $\mathcal{N} = 2$ theory associated to the trinion by using exact formulae for the S^2 partition function of 2d $\mathcal{N} = (2,2)$ theories

Benini, Cremonesi; Doroud, J.G. Le Floch, Lee

Gauge Theory Dualities as Toda CFT Symmetries

• Through our identification between 2d gauge theories and Toda CFT

Toda CFT Symmetries \implies 4d/2d and 2d Gauge Theory Dualities

 \rightarrow \rightarrow \rightarrow 2d Seiberg and $(2,2)^*$ dualities for quivers

Duality	Quiver	W	Dual parameters
Seiberg	$N_f \rightarrow N \rightarrow N_f$	0	$\begin{split} N^D &= N_f - N \\ z^D &= z, m^D = i/2 - m \end{split}$
$(2,2)^*$ -like	$N_f \rightarrow N \rightarrow N_f$	$\sum_t \widetilde{q}_t X^{l_t} q_t$	$N^D = \sum_t l_t - N$ $z^D = z^{-1}, \ m^D = m$
Kutasov– Schwimmer	$N_f \rightarrow N \rightarrow N_f$	$\mathrm{Tr}X^{l+1}$	$N^D = lN_f - N$ $z^D = z, \ m^D = i/2 - m$

Conclusion

• In nonsupersymmetric CFTs, F_{2n+1} and A-anomaly are the scheme independent pieces of sphere partition functions

• Sphere partition functions of 2d $\mathcal{N} = (2, 2)$ and 4d $\mathcal{N} = 2$ SCFTs capture the exact Kähler potential on their conformal manifold

$$Z_A = e^{-K_{tc}}$$
 $Z_B = e^{-K_c}$ $Z_{S^4} = e^{K/12}$

- Identified supergravity realization of Kähler transformation ambiguities
- Gave microscopic description of all M2-brane surface operators
- Dualities of 2d $\mathcal{N} = (2, 2)$ theories realized in Toda CFT