Nikolay Gromov

Based on
N. G., V. Kazakov, S. Leurent, D. Volin 1305.1939 , 1405.4857
N. G., F. Levkovich-Maslyuk, G. Sizov, S. Valatka 1402.0871
A. Cavaglia , D. Fioravanti, N. G., R. Tateo 1403.1859
N. G., G. Sizov 1403.1894
M. Alfimov,N. G., V. Kazakov to appear

Strings 2014

Integrability in gauge theory

Motivation from classics

$$
S=g \int \operatorname{str}\left(J^{(2)} \wedge * J^{(2)}-J^{(1)} \wedge J^{(3)}\right) \quad \square \quad \operatorname{PSU}(2,2 \mid 4) \text { current }
$$

EOM equivalent to $\begin{gathered}\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}+\left[\mathcal{A}_{\mu}, \mathcal{A}_{\nu}\right]=0 \\ \forall u \in \mathbb{C}\end{gathered}$ where $\mathcal{A}(u)=J^{(0)}+\frac{u}{\sqrt{u^{2}-4 g^{2}}} J^{(2)}-\frac{2 g}{\sqrt{u^{2}-4 g^{2}}} * J^{(2)}+$

$$
\underline{\Omega}(u, \tau)=\operatorname{Pexp} \oint \mathcal{A}_{\sigma} d \sigma \quad \text { on EOM } \quad \partial_{\tau} \operatorname{tr} \Omega(u, \tau)=0
$$

Eigenvalues of the monodromy matrix:

Analytic properties:
[Dorey, Vicedo] $\quad \oint p(u) d u=\mathbb{Z}$

From weak coupling

$\mathcal{O}_{i}(x)=\operatorname{tr} D_{+}^{n_{1}} Z D_{+}^{n_{2}} Z D_{+}^{n_{3}} Z D_{+}^{n_{4}} Z D_{+}^{n_{5}} Z$ Can be mapped to a spin chain state: $\left|n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right\rangle$
The one-loop dilatation operator coincides with $s l(2)$ Heisenberg spin chain Hamiltonian Sklyanin separation of variables allows to factorize the wave function

$$
\begin{aligned}
\Psi= & \prod_{i}^{L} Q\left(v_{i}\right) \text { where } T(u) Q(u)+(u-i / 2)^{L} Q(u-i)+(u+i / 2)^{L} Q(u+i)=0 \\
& \text { In the simplest case } T(u)=-2 u^{2}+S^{2}+S+\frac{1}{2}
\end{aligned}
$$

Two solutions: polynomial $Q_{1} \sim u^{S}$ singular solution $Q_{2} \sim u^{-1-S}$

Generalization to finite coupling

$g \rightarrow$ finite

1) We start exploring all DOS of the string $\quad s l(2) \rightarrow \operatorname{psu}(2,2 \mid 4)$

$$
\left(Q_{1}, Q_{2}\right) \rightarrow \underbrace{\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}\right.}_{S^{5}} \underbrace{\left.\mathbf{\mathbf { Q } _ { 1 }}, \mathbf{Q}_{2}, \mathbf{Q}_{3}, \mathbf{Q}_{4}\right)}_{A d S_{5}}
$$

2) Poles open into cuts

3) Need to know monodromies, when going under the cuts

"Miraculous" simplification

Q_{a}

\mathbf{P}_{a}

$\mathbf{P}_{a} \simeq u^{\mathrm{R}-\text { charge }}, u \rightarrow \infty$
Charges in S^{5} are integer

$$
?=\widetilde{\mathbf{Q}}_{a}
$$

Q_{a}

$$
\mathbf{Q}_{a} \sim u^{\text {conformal charge }}
$$

Charges in AdS_{5} contain anom.dimension

$\mathbf{P} \mu$-system

The system reduced to $4+6$ functions:

Analytical continuation to the next sheet:

$$
\tilde{\mathbf{P}}_{a}=\tilde{\mathbf{P}}_{a_{a b}} \mathbf{P}^{b}
$$

$$
\tilde{\mu}_{a, b}=\mu_{a, b}+\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \tilde{\mathbf{P}}_{a}
$$

$\mathbf{P} \mu$-system
is a closed system of equtions!

Quadratic branch cuts:

$$
\tilde{\mathbf{P}}_{a}=\mathbf{P}_{a} \Rightarrow \mu_{a b} \mu^{b c}=\delta_{a}^{c} \quad \mathbf{P}_{a} \simeq(\text { conformal charges }) u^{\mathrm{R}-\text { charge }}, u \rightarrow \infty
$$

Examples: near-BPS expansion

Near BPS limit: small S

In the BPS limit: $\quad \mathbf{P}_{b} \rightarrow 0, \mu_{a b}$ - entire periodic function
For $\operatorname{tr} D^{S} Z^{2}$ in the small S limit:

$$
\mathbf{P}_{a}(u-i 0)=\mu_{a b} \mathbf{P}^{b}(u+i 0) \text { - simple Riemann-Hilbert problem }
$$

$$
\mathbf{P}_{3}(u-i 0)+\mathbf{P}_{3}(u+i 0)=0
$$

$$
\mathbf{P}_{4}(u-i 0)-\mathbf{P}_{4}(u+i 0)=\mathbf{P}_{3}(u+i 0) \sinh (2 \pi u)
$$

Solution:

$$
\begin{aligned}
& \mathbf{P}_{3}=\sqrt{u^{2}-4 g^{2}} \\
& \mathbf{P}_{4}=\int_{-2 g}^{2 g} \frac{\sqrt{v^{2}-4 g^{2}} \sinh (2 \pi v)}{v-u} \propto \frac{I_{1}(4 \pi g)-I_{3}(4 \pi g)}{u^{2}}+\mathcal{O}\left(\frac{1}{u^{4}}\right)
\end{aligned}
$$

More orders in small S

Not hard to iterate the procedure and go further away from BPS.
Extrapolating results to finite spin
[Basso][NG. Sizov, Valatka, Levkovich-Maslyuk]

$$
\Delta_{\text {Konish } i}=2 \lambda^{1 / 4}+\frac{2}{\lambda^{1 / 4}}+\frac{-3 \zeta(3)+\frac{1}{2}}{\lambda^{3 / 4}}+\frac{\frac{15 \zeta(5)}{2}+6 \zeta(3)-\frac{1}{2}}{\lambda^{5 / 4}}
$$

Gubser, Klebanov, Polyakov `98

Gromov, Serban, Shenderovich, Volin`11; Roiban, Tseytlin`11; Vallilo, Mazzucato 11 Plefka, Frolov`13

We also extract pomeron intercept:

Costa,

Goncalves,
Penedones` 12

Gubser, Klebanov,
Polyakov `98

$$
j(0)=2+S(0)=2-\frac{2}{\lambda^{1 / 2}}-\frac{1}{\lambda}+\frac{1}{4 \lambda^{3 / 2}}+(6 \zeta(3)+2)-+\left(18 \zeta(3)+\frac{361}{64}\right) \frac{1}{\lambda^{5 / 2}}+\left(39 \zeta(3)+\frac{447}{32}\right) \frac{1}{\lambda^{3}}
$$

BFKL regime

BFKL regime

Important class of single trace operators:

$\operatorname{tr} D^{S} Z^{2}+$ permutations

Spectrum for different spins:

BFKL
BFKL regime:
$S \rightarrow-1, g \rightarrow 0 \quad$ So that: $\quad \frac{g^{2}}{S+1} \simeq 1 \quad$ Resumming to all loops terms $\quad\left(\frac{g^{2}}{S+1}\right)^{n}$
In this regime SYM is undistinguishable from the real QCD

BFKL limit of $\mathbf{P} \mu$-system

Small coupling \Rightarrow no branch cuts

$$
\mu_{a b}=\text { Polynom }+ \text { Polynom } e^{+2 \pi u}+\text { Polynom } e^{-2 \pi u}
$$

$S=-1$ is when for the first time this ansatz is consistent for non-integer Δ Plugging it into $\mathbf{P} \mu$ - system we get:

$$
\mathbf{P}_{1}=\frac{1}{u} \quad \mathbf{P}_{2}=\frac{1}{u^{2}} \quad \mathbf{P}_{3}=-u \frac{i\left(\Delta^{2}-1\right)\left(\Delta^{2}-25\right)}{96}-\frac{i\left(\Delta^{2}-1\right)^{2}}{96 u} \quad \mathbf{P}_{4}=-\frac{i\left(\Delta^{2}-1\right)\left(\Delta^{2}-9\right)}{32}
$$

The problem is essentially about gluons, i.e. it is more natural to pass to AdS

$$
\mathbf{Q}_{i}(u+i)+\mathbf{Q}_{i}(u-i)-\left(2+\frac{1-\Delta^{2}}{4 u^{2}}\right) \mathbf{Q}_{i}(u)=0
$$

Can be solved explicitly
[Kotikov, Lipatov]
$\mathbf{Q}_{1}=2 i u_{3} F_{2}\left(i u+1, \frac{1}{2}-\frac{\Delta}{2}, \frac{1}{2}+\frac{\Delta}{2} ; 1,2 ; 1\right) \Rightarrow \frac{S(\Delta)+1}{g^{2}}=-\Psi\left(\frac{1}{2}-\frac{\Delta}{2}\right)-\Psi\left(\frac{1}{2}+\frac{\Delta}{2}\right)-2 \gamma_{E}$
Enters into the Q-function of Lipatov, de Vega; Korchemsky, Faddeev!

ABJM Theory

Spectral curve for ABJM

$\mathbf{P}_{a}, \quad \mu_{a b}, \quad a, b=1, \ldots, 4$

Constrains
Pf $\mu_{a b}=1$
$\mu_{A B}=$ biliniar combinations of

$$
\nu_{1}, \nu_{2}, \nu_{3}, \nu_{4}
$$

define

$$
\mathbf{P}_{a b}=\left(\begin{array}{cccc}
0 & \mathbf{P}_{1} & \mathbf{P}_{2} & \mathbf{P}_{3} \\
-\mathbf{P}_{1} & 0 & \mathbf{P}_{6} & \mathbf{P}_{4} \\
-\mathbf{P}_{2} & -\mathbf{P}_{6} & 0 & \mathbf{P}_{5} \\
-\mathbf{P}_{3} & -\mathbf{P}_{4} & -\mathbf{P}_{5} & 0
\end{array}\right)
$$

Discontinuities
$\tilde{\mathbf{P}}_{a}=\mu_{a b} \mathbf{P}^{a}$
$\tilde{\mu}_{a b}=\mu_{a b}+\mathbf{P}_{a} \tilde{\mathbf{P}}_{b}-\mathbf{P}_{b} \tilde{\mathbf{P}}_{a}$

$$
\begin{aligned}
& \tilde{\nu}_{a}=\mathbf{P}_{a b} \nu^{a} \\
& \widetilde{\mathbf{P}}_{a b}=\mathbf{P}_{a b}+\nu_{a} \tilde{\nu}_{b}-\nu_{b} \tilde{\nu}_{a}
\end{aligned}
$$

Spectral curve for ABJM

Algebraically \mathbf{P} and μ interchanged their roles, but not analytically

SYM:

ABJM:

$\mathbf{P}_{a b}$

ν_{a} i-(anti)periodic

Another important difference is the position of the branch points:
SYM: $\quad \pm 2 g(\lambda)= \pm \frac{\sqrt{\lambda}}{2 \pi}$

$$
\text { ABJM: } \quad \pm 2 h(\lambda)=?
$$

$h(\lambda)$ enters into many important quantities: cusp dimension, magnon dispertion

Finding Interpolation function h

In the near BPS limit we should be able to match with localization

Integrability: Elliptic type integral

Comparing cross-ratios of the branch points:

$$
\kappa=4 \sinh (2 \pi h)
$$

Interpolation function h

$$
\lambda=\frac{\sinh (2 \pi h)}{2 \pi}{ }_{3} F_{2}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2} ; 1, \frac{3}{2} ;-\sinh ^{2}(2 \pi h)\right)
$$

Minahan, Zarembo

Reproduces ~ 4 nontrivial coefficients!

Minahan, Ohlsson Sax, Sieg \& Leoni, Mauri, Minahan, Ohlsso Sax, Santambrogio, Sieg, Tartagli: Mazzucchelli,

McLoughlin, Roiban Tseytlin
Abbott, Aniceto, Bombardelli Lopez-Arcos, Nastase

$$
\begin{aligned}
& h(\lambda)=\lambda-\frac{\pi^{2} \lambda^{3}}{3}+\frac{5 \pi^{4} \lambda^{5}}{12}-\frac{893 \pi^{6} \lambda^{7}}{1260}+\mathcal{O}\left(\lambda^{9}\right) \\
& h(\lambda)=\sqrt{\frac{\lambda}{2}-\frac{1}{48}-\frac{\log 2}{2 \pi}+\mathcal{O}\left(e^{-\pi \sqrt{8 \lambda}}\right)} \underset{\text { Bergman, Hirano }}{ }
\end{aligned}
$$

Conclusions

- QSC unifies all integrable structures: BFKL/ local operators, classical strings/ spin chains.
- Mysterious relation between ABJM and $\mathrm{N}=4 \mathrm{SYM}$ integrable structures. Sign for an unifying theory? What is QSC for AdS ${ }^{3}$?
- Q-functions should give a way to the exact wave function in separated variables. Can we use it to compute general 3-point correlation functions to all loops?
- Established links between exact results in integrability and localization. Does there exist a unified structure which works for both non-BPS and non-planar? Discretization of Zhukovsky cut?

