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Classical string model of the Regge spectrum
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The string theory of QCD was originally formulated to explain
remarkable, robust patterns in hadronic spectral data.



Classical string model of the Regge spectrum

W
@ |
o
Pl
= | P d
5| w2250/ 91_(2350)
pray
3f y :
: sy S A
2 / oifs0)
| R
P
730 R
| IR ST Ta( J S =%
7 Fe

The string theory of QCD was originally formulated to explain
remarkable, robust patterns in hadronic spectral data.



Classical string model of the Regge spectrum

[ |
o
i o
= | P d
5| w2250/ 91_(2350)
“ _‘p,_[iizo)_ 4
3| y :
: LULT A
2 / oifs0)
| R
P
730 R
| IR ST Ta( J_ S =%
7 Fe

The string theory of QCD was originally formulated to explain
remarkable, robust patterns in hadronic spectral data.



Classical string model of the Regge spectrum

.
% |
o |
o B}
- Pl b
5| edazsond / 91_(2350]
45 ez
| pl1700) & / _;,(IEGD‘]
i / o450y
j R
| Jetrn0) R -
1| B :-T":" i e L]
J P

All hadronic states appear to lie in a tower of resonances that can
be plotted on a graph of mass-squared versus angular momentum,
as straight lines with a common, universal slope.
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Classical string model of the Regge spectrum
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We know today that the string theory of QCD is JUST WRONG at
distances ;\/E

However we can still treat string theory as a perfectly good
effective theory at scales >> v/o/.
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For a string with large angular momentum, its length is ~ v/ Ja/ so
we should be able to use the effective theory of the string
worldsheet when J >> 1.
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This point of view predicts corrections to the Regge spectrum
in the form

mzzé-{l%—O(J*’“)}, k>0.
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The leading large-J behavior represents a venerable story that
motivated the development of string theory in the first place,
during the 1970s. Since that time, no general theory of the
subleading large-J corrections has ever been developed.
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This talk will describe the development of such a theory.



Classical string model of the Regge spectrum

You might ask: Why does this work at all, in any
approximation?

When the string is large, the short-distance structure
should become irrelevant, in the technical sense of the
renormalization group.

The dynamics should be described by the most relevant
terms one can write in a local action for a string, invariant
under all the appropriate symmetries.

The most relevant term invariant under the Poincaré
symmetry of D-dimensional spacetime is the Nambu-Goto

action:
SNG = Tstring - Areayorldsheet s

1
2ol

Tstring =



Classical string model of the Regge spectrum

The Nambu-Goto action describes the spectrum with
arbitrarily good precision when the string is large, with typical
size sale "R".

Less relevant terms in the action should contribute with
powers (perhaps including logarithms) of R/va'.

An operator scaling as Length ™" contributes to any
observable at relative order R~(P+2) ("Relative" to the leading
Nambu-goto contribution, that is).

The coarse analysis of large-R corrections is easy — to learn
the power laws that appear rather than their coefficients, just
classify possible invariant operators up to some order in
inverse length.
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in the large-J expansion of M2 —is calculable and
universal
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Classical string model of the Regge spectrum

For this talk we are exclusively interested in the first
subleading correction to any given amplitude.

The first question should be "Is the Nambu-Goto action
enough"?

In certain situations, the answer is yes — assuming the theory

The leading corrections to the NG action — including the
curvature-squared term — scale as | X|

Therefore these operators contribute to M2, at order J~1
at most.

Therefore the asymptotic Regge intercept — the order JO term
in the large-J expansion of M? — is calculable and

meson

universal — i.e. independent of details of the Lagrangian.



Classical string model of the Regge spectrum

To carry out the analysis, we must pick a gauge.

The two most commonly used gauges (for D not equal to the
critical dimension) are orthogonal gauge and static gauge.

The analysis in these two gauges has mostly been done
disjointly, with little comparison between the two approaches.
Recently, the two gauges, properly renormalized at the
quantum level, have been found to be equivalent up to
relative order (1ength)~°. (Aharony et al. ; Dubovsky,
Flauger, Gorbenko)

The evidence for the agreement of gauges is overwhelming.



Classical string model of the Regge spectrum

In practice, orthogonal gauge is much simpler because it is
free at leading order.

Furthermore, we'll be interested in non-static situations, such
as rotating strings, which makes static gauge complicated!

| will not give a review of the old-fashioned approach to
orthogonal gauge.

I'll begin by constructing effective string theory in conformal
gauge and placing it in a simplified framework by embedding
it in the Polyakov formalism.



Covariant effective string theory simplified

Let's begin by considering the usual Polyakov action for the
bosonic string, but with an arbitrary number D of embedding
coordinates.: The Polyakov string is defined by the path

integral Polvak
Z = / DM[gci yakov eXp (*SPolyakov) 5

DX Dpag
D Polyakov = M
M[g] D[g]Q

SPolyakov :/ d20 V ‘goo‘LPolyakov 5

g7 9. X" X,

£Polyakov = dral
The action Spolyakov is Weyl-invariant but the measure

DM[P;lyakov is not.
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Covariant effective string theory simplified

People familiar with the old covariant effective string
formalism of Polchinski and Strominger (1989) in orthogonal
gauge will recognize this Lagrangian as the ad hoc anomaly
term- - -

modulo terms proportional to the free equations of
motion, which can be removed by field redefinitions.

Here, we have derived the same term from a starting point
with more gauge invariance by embedding it in the Polyakov
path integral and canceling the Weyl anomaly. | will refer to
this as the simplified covariant formalism.



Effective string theory for rotating strings

For rotating strings we know the length R should scale as
va'J when Jis large.

So calculating the relative-order R=2 corrections for rotating
strings corresponds to calculating the relative-order J~!
corrections.

The leading-order value of the mass-squared for an open
string in four dimensions is

5 J
mleading Regge — &
In fact, this relationship defines the (asymptotic) Regge slope

o

Computing a relative order J~! term would corrspond to
computing the asymptotic Regge intercept on the "leading
trajectory" — that is, the set of states of lowest mass for a
given angular momentum.



Effective string theory for rotating strings

Formally, the relative order J~1 correction to the dispersion
relation on the leading trajectory is particularly simple,
because the lowest state with given Noether charges is
automatically Virasoro-primary, so the physical state
conditions are automatically satisfied, except the mass-shell
condition from Ly.

The correction to the mass-squared of the string state is given

by
AM? 2 AE
‘ﬁx:tlofiier - o Ws‘ﬁrst—order )
1
2 J—
AM ‘[;,-ngf:;der B O/ A WS’ﬁrst—order )
AEws ‘ﬁrst—order = <( )|free Hfirst—order ‘(P7 J)>free )



Effective string theory for rotating strings

This in turn is given by the Casimir energy —?, plus the
classical value of the interaction Hamiltonian in the classical

rotating solution with the appropriate angular momenta.

The classical value of the perturbing Hamiltonian is equal to
the negative of the classical value of the perturbing
Lagrangian. This follows from elementary manipulations in
classical mechanics and applies only to the lowest state of a
system with fixed Noether charges.

No higher loops or even one-loop diagrams involving
interaction vertices contribute at NLO in J. Each additional
interaction vertex, and each additional quantum loop, is
suppressed by at least one additional power of J.



Effective string theory for rotating strings

Let's see how this works, concretely, for open strings in
conformal gauge.

The solution for the lowest-lying state with angular
momentum J in a single plane is of the form

X% = 24/ P50,
Z = —ivaJ (ei"++eig_)

with ! running from 0 to 7. The classical solution satsifies
the Neumann boundary condition at o' = 0, 7.
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Effective string theory for rotating strings

For this case, our analysis breaks down in its own terms.

The Lagrangian is singular near o = 0, 7 in the classical
solution.
This is a non-integrable singularity. The integral diverges:

64 sin?(201)
L PS = - :
rotating solution 27T2 (1 - COS(2O—]_))2




Effective string theory for rotating strings

For the open string, this singularity is present because the
boundary is moving at the speed of light and there is a
curvature singularity in the Lorentzian induced metric.

For the closed string, there is a singularity representing a fold
in the string.

In both cases, the integrated anomaly term diverges.

We will first consider a model calculation that avoids this
singularity.

This breakdown of the theory is a short-distance singularity, to
be removed by renormalization.

But first, let us consider a simpler case, where there is no such
singularity.



Closed strings with rotation in two planes

Let us now perform a calculation in a simple case to illustrate
the general idea of large-J universality at subleading order.

The properties of rotations are different in higher dimensions.
So we consider closed strings rotating in D > 5, which need
not have folds: The Polchinski-Strominger denominator is
nonvanishing everywhere.

We consider closed strings in D > 5, with nonzero classical
angular momenta J; 2 in two planes simultaneously.
In terms of the SO(4) = SU(2)+ x SU(2)— subgroup of the

SO(D — 1) little group, the total angular momenta are
Jy = %(Jl + J) where we assume WLOG that J; > J, > 0.



Closed strings with rotation in two planes

The classical solution is

X0 = o/ POg0

. o Z; _joT ~Z; o~
Zi = —i > a”e’ +a’ie ,
v . o Z’ —io™T ~Z,' —ioc~
Zi = i > aj'e +aj'e ,

Here, the mode amplitudes are

Zy _ ~7y ~Zy
1 =4y =ay = v,

a{ll =

Z 2o =Ty =Ty
ai=oP=—aF =-a’=vh.



Closed strings with rotation in two planes

Evaluated in this rotating solution, the contribution of the PS
anomaly term, evaluated in the rotating ground state, takes
the form

BJ? sin?(207)
L Ps = — .
rotating solution 27T2 (J+ - Jf COS(2U]_))2

This Lagrangian density becomes singular at the endpoints
o1 =0 and 7, in the limit J. = J_. This limit is imposed
automatically in D = 4, as the little group SO(D — 1) has
rank one, and J> must vanish.

But for generic biplanar angular momenta, this density is
smooth.



Closed strings with rotation in two planes

The resulting mass shift is

D -2
2(J1+J2)*T

1 1\ 2
+26 - D ﬂ i é 4
12 b h
The contribution from the PS term is nonzero unless J; = J»,
or D = 26.

When J; is taken to zero, this diverges as a fold develops.

M2

losed — T
closed o

+ 0.

At present, we do not understand how to renormalize the
singular Hamiltonian at the fold.



Renormalization of boundary singularities

Since we don't understand that, let us return to our original
focus on strings with boundaries.

Our approach is to regulate and renormalize the boundary
singularities in the standard way.

This works, because all UV-divergences are local terms.



Renormalization of boundary singularities

The classical solution is

X% = 2a/P%°
Zl = | 50(11 ( e '? + e '? y
Z
2 = iy %/%22 ( e 20" 4 e2i"_>
Zy = —i %a{ll < e’ 4 e > ,
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Renormalization of boundary singularities

Remember that we can modify our choice for the composite
Liouville field ¢.

We would like to do so so that it our choice is smooth near
the boundary.

Such a choice is

1 ~
o= ~2 ln(Ifl —eta/ 1—22) ,

T12721

Top =Top — Tn

Tpg=0PX- 07X

Near the boundary, this behaves as T oo =~ —To, which is
nonzero and smooth.



Renormalization of boundary singularities

Now, modulo terms that do not contribute, the density of the
PS term is

B T121o1
£PS, reg = A5 1 o

Note that wherever and whenever 717 # 0, we have

Lps, reg = Lps. The short-distance modification is irrelevant,
whenever the leading-order action is nonzero. The
short-distance modification kicks in only at boundaries and
folds.

The integral is

g2 _126-D

OPeR e 240/

(J1 4 842)* + (finite) .




Renormalization of boundary singularities

The short-distance singularity can be cancelled by a local term
at the boundary, of the form

1 A 1
Oquark = (122)+Z — (_222)+71

This operator corresponds to an infinitesimal change in a
renormalized quark mass.

This may seem like a peculiar operator, but in fact all
boundary operators for open strings with Neumann boundaries
are nonsingular operators 74 dressed with powers of 7.



Renormalization of boundary singularities

After renormalization, we find

D-2
Mo = 2y — ==
open J1 +2J o
26 — D 3 +4
+ gy AL o0y,

o
24 2 VI + 8%

For angular momenta lying in a single plane (i.e., when
J» = 0), the mass-squared equals /\/IUpen =(h—-1)/d,
independent of D. Of course, when D = 26, we obtain
/\/Igpcn =(h+2h-1)/.

This is the case in which the bosonic string theory is
well-defined microscopically, and the singular PS anomaly

term is absent.



Renormalization of boundary singularities

It is worth emphasizing that we have fine-tuned the coefficient
of the quark mass operator O(quark) S0 that there is no term
of order J1/# in the mass-squared formula.

Generically we should expect a J'/# term in the open-string
mass-squared, unless the mass of the quark at the endpoint is
light compared to the scale of the string tension.



Renormalization of boundary singularities

In real QCD there will be additional degrees of freedom at the
endpoints, carrying spin and flavor degrees of freeedom.
These degrees of freedom carry symmetries that constrain the
allowed operators. In particular, chiral symmetry forbids quark
masses, which are associated with the J*# term in the
boundary action. We therefore speculate that in the correct
effective boundary CFT of the real QCD string, the J+711 term
in the action may be completely fixed when exact chiral
symmetry holds.



Structure of boundary operators

Several questions now arise.
One might ask, why is the answer universal at all?

And why do the boundary operators appear containing these

AR A



Structure of boundary operators

AV VA

string theory with Neumann boundary conditions.
Let us consider any short-distance modification of the theory

A~

string theory with an organization of operators such as we
have described, with operators dressed with powers of 711 —

generically negative integer ones.

This is so for artificial short-distance cutoffs preserving the
symmetries — such as the one we have considered — but also
for real short-distance effective theories.



Structure of boundary operators

The result is that all boundary operators are of the form
k
(Hpq IPQ)/ZZQ'

VAV VN

operators of vanishing X-scaling.
First, use the EOM to reduce all derivatives of X to the form
O X or Ofn X.

Then use Neumann boundary conditions to eliminate the
latter.



Structure of boundary operators

Now, all bilinear invariants of X at the boundary are of the
form B(pq) = 95X - 03 X.

All all boundary operators are of the form (]],, B(pq))/B(k22).
Now consider only marginal boundary operators.

If the "undressed" operator (the numerator) has dimension

A=}, P+ q, then the dressing is Béé?*”/“_



Structure of boundary operators

Then in order to have positive or zero X-scaling, the
undressed operator must have A < 5.

The operators By; and Bis vanish as independent operators
because they are proportional to free-field stress tensors and

The only marginal operator with A =5 is B(23)/B(22) Which is
a total derivative along the boundary.

So after modding out by Virasoro descendants, the only
marginal operator with nonnegative X-scaling is the quark
mass term, corresponding to A = 4.
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Structure of boundary operators

The remaining question is:
Why should operators be organized in this form — with only
By, appearing to negative or fractional powers?

This is indeed counterintuitive — but it appears to be true, for
every good short-distance regulator we have examined that
preserves all the symmetries of the system.
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Structure of boundary operators

Let us begin by examining a "naturally occurring" regulator —
that is, a well-defined short-distance theory — used by
Polchinski and Strominger in their original paper on the
covariant effective string theory.
The authors start out in D + 1 dimensions where the D + 15¢
direction ¢ is anisotropic with the others, due to the effect of
a dilaton gradient, a tachyon profile, and a massive stringy
condensate.
The worldsheet Lagrangian is

L= Efree + Etachyon + L massive

stringy
Eta(:hy()n = /L2 CeXp (+7 (b)
Lmassive = 1’ "2 exp (v ¢) (73, + o(D™Y) ,

stringy

=-24+0(DY, v'=+4+240(D7Y).



Structure of boundary operators

We will analyze the system in the limit D — —oc.

Finite-D corrections do not appear to change the qualitative
structure of the organization of operators.
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Structure of boundary operators

To understand how the Liouville direction gets integrated out,
first put the D Lorentz-invariant directions into an arbitrary
nonsingular configuration X* (o).

Then solve for the Liouville field ¢ classically.

For a nonsingular configuration of the the closed string, we
find

¢ = _% ln(Ill) )

where we have ignored quantum corrections.
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Let's look at this calculation in a bit more detail. It will be

ArAAAAAAAAA

The semiclassical Lagrangian for ¢ is

. D]

0~ 157 (00)" + p® exp (=20) + '~ exp (+20) 11,
Restrict for the moment to the case where 717 is

time-independent, with a dependence only on the spatial
worldsheet coordinate .

Then oo o



Structure of boundary operators

Ignoring quantum corrections is strictly justified at D = —oc.
But of course we want to consider finite (and positive) D.

For many purposes the 1/D expansion is not very useful at
finite positive D, but for some purposes it is useful.

In particular, it is not sufficient or necessary for deriving the
power laws to which 717 occurs in the effective action
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Structure of boundary operators

Ignoring quantum corrections is strictly justified at D = —oc.
But of course we want to consider finite (and positive) D.
For many purposes the 1/D expansion is not very useful at
finite positive D, but for some purposes it is useful.

In particular, it is not sufficient or necessary for deriving the
power laws to which 711 occurs in the effective action — these
are fixed by conformal invariance.

Nor is the large-D expansion useful for deriving the
coefficients with which effective operators appear in the
effective string theory.
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Structure of boundary operators

This form of the mass term is robust under conformally
invariant modifications of the microscopic action, in the
following sense.

We always have Mﬁ o Z11 + lower order in X

Now one can compute the exact effective action for the string
at the quantum level.

The propagators for ¢ are of the form 711 plus lower order
terms that can be treated as a perturbation when the string is
large.

Thus it is Z11 and only 711 that ever appears in the
denominator of an effective operator.



Structure of boundary operators

When the string has a Neumann boundary the only difference
is that the classical solution has

¢ = —11n(Z2,) + (const) + lower order in X near the
boundary.

The solution is still M; o 711 + lower order in X in the bulk
of the worldsheet.

As a result, bulk operators are dressed with powers of 717 and
boundary operators are dressed with powers of 755.

Thus the organization of operators is as we have said.
This is also true for every other regulator we have examined.

The set of allowed operators in a given effective theory — as
opposed to the coefficients of those operators — should be

RNAAAAAAA,

UV completion.
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Conclusions

We have found that the effective string theory framework is
predictive for large-J corrections to the spectrum of rotating
strings.

For closed strings in D = 4 and open strings in any dimension,
the leading power corrections are AM o J=% with a
theory-dependent coefficient. These terms are associated with
localized terms at bounaries and folds.

The (asymptotic) Regge intercept is is universal and
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So is every other observable at NLO.
Thank you.



