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IntroducJon	  

In	  the	  last	  twenty	  years	  there	  has	  been	  important	  
progress	  in	  supersymmetric	  field	  theory.	  At	  the	  same	  
Jme,	  many	  qualitaJve	  and	  quanJtaJve	  phenomena	  
remain	  mysterious.	  Today,	  I’d	  like	  to	  discuss	  an	  
example	  of	  this,	  which	  involves	  a	  class	  of	  theories	  that	  
naturally	  generalizes	  SQCD	  and	  follows	  an	  ADE	  
classificaJon.	  	  



Outline	  
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N=1	  SQCD	  is	  a	  gauge	  theory	  with	  gauge	  group	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  
and	  	  	  	  	  	  	  	  	  flavors	  of	  chiral	  superfields	  that	  transform	  in	  
the	  fundamental	  representaJon	  of	  the	  gauge	  
group,	  	  	  	  	  	  	  	  	  	  	  	  .	  The	  low	  energy	  dynamics	  of	  this	  theory	  
varies	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  as	  follows:	  
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Although	  the	  gauge	  coupling	  runs	  with	  the	  scale,	  one	  
can	  think	  of	  the	  discrete	  parameter	  
	  
	  
as	  a	  `t	  Hoob	  coupling	  that	  measures	  the	  strength	  of	  	  	  	  	  	  	  	  	  	  
gauge	  interacJons	  	  in	  the	  infrared	  (compare	  to	  the	  `t	  
Hoob	  coupling	  	  	  	  	  	  	  of	  N=4	  SYM,	  and	  to	  the	  discrete	  
coupling	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  of	  CS	  theory).	  	  	  

x = Nc/Nf

Nc/k
�



•  For	  x<1/3,	  the	  theory	  is	  not	  asymptoJcally	  free,	  
so	  the	  IR	  dynamics	  is	  free,	  like	  in	  (massless)	  QED.	  

•  For	  1/3<x<2/3,	  the	  gauge	  interacJons	  are	  non-‐
vanishing	  in	  the	  IR,	  and	  the	  theory	  approaches	  a	  
non-‐trivial	  fixed	  point.	  As	  x	  increases,	  this	  fixed	  
point	  becomes	  more	  strongly	  coupled,	  which	  
means	  that	  the	  scaling	  dimensions	  of	  operators	  
deviate	  further	  from	  their	  free	  values.	  	  

•  For	  x>2/3,	  the	  descripJon	  of	  the	  IR	  theory	  in	  
terms	  of	  the	  original	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  degrees	  of	  freedom	  
breaks	  down	  and	  one	  needs	  to	  find	  an	  alternaJve	  
one.	  	  	  	  

SU(Nc)



Seiberg	  proposed	  such	  a	  descripJon,	  in	  terms	  of	  a	  dual	  
theory,	  similar	  to	  the	  original	  one,	  with	  gauge	  
group	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  similar	  charged	  majer,	  and	  
singlet	  meson	  fields	  M,	  dual	  to	  the	  electric	  gauge	  
invariant	  chiral	  operators	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  which	  are	  
coupled	  to	  the	  magneJc	  quarks	  	  	  	  	  	  	  	  	  	  	  via	  the	  
superpotenJal	  	  
	  
	  
	  

SU(Nf �Nc)
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The	  rank	  of	  the	  magneJc	  gauge	  group	  implies	  that	  
the	  magneJc	  `t	  Hoob	  coupling	  is	  	  
	  
	  
	  
Thus,	  as	  the	  electric	  theory	  becomes	  more	  strongly	  
coupled,	  the	  magneJc	  one	  becomes	  more	  weakly	  
coupled.	  In	  parJcular,	  it	  provides	  a	  weakly	  coupled	  
descripJon	  of	  the	  problemaJc	  region	  x>2/3.	  	  
	  
Conversely,	  the	  electric	  theory	  provides	  a	  weakly	  
coupled	  descripJon	  of	  the	  magneJc	  theory	  when	  
the	  lajer	  is	  strongly	  coupled.	  

xm =
Nf �Nc

Nf
= 1� x



N=1	  SQCD	  has	  a	  family	  of	  generalizaJons	  obtained	  by	  
adding	  to	  the	  theory	  an	  adjoint	  chiral	  superfield	  X	  with	  
superpotenJal	  	  
	  
	  
with	  k=1,	  2,	  3,	  …	  	  	  	  	  
	  
For	  k=1,	  the	  adjoint	  superfield	  is	  massive,	  and	  can	  be	  
integrated	  out,	  leading	  back	  to	  SQCD.	  	  
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For	  k=2,	  the	  superpotenJal	  W	  is	  marginal.	  Gauge	  
interacJons	  make	  it	  relevant	  for	  all	  x>1/2;	  thus	  
adding	  W	  to	  the	  Lagrangian	  leads	  to	  a	  non-‐trivial	  
fixed	  point.	  
	  
For	  k>2,	  the	  superpotenJal	  is	  superficially	  
irrelevant,	  however	  it	  turns	  out	  that	  for	  sufficiently	  
large	  x,	  gauge	  interacJons	  reduce	  its	  dimension	  
enough	  that	  it	  become	  relevant	  in	  the	  IR	  for	  all	  k.	  	  
	  
A	  stable	  supersymmetric	  vacuum	  only	  exists	  in	  the	  
range	  	  
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The	  strong	  coupling	  region	  is	  bejer	  described	  in	  terms	  
of	  a	  dual	  theory	  with	  the	  following	  properJes:	  
•  Gauge	  group:	  

•  Charged	  majer	  fields:	  	  

•  Gauge	  singlet	  mesons:	  	  

•  MagneJc	  superpotenJal:	  	  

•  MagneJc	  `t	  Hoob	  coupling:	  	  

SU(kNf �Nc)

q, q̃, bX

1. Introduction

Shortly after Seiberg’s work on the infrared behavior of N = 1 supersymmetric QCD,

and in particular his discovery of strong-weak coupling duality in this theory [1], it was

pointed out [2-4] that there is an infinite family of generalizations of SQCD that has similar

properties. These theories have gauge group SU(Nc), Nf flavors of chiral superfields Q, eQ
that transform in the (anti) fundamental representation of the gauge group and a chiral

superfield X that transforms in the adjoint representation, with superpotential

W = s0TrX
k+1 . (1.1)

Here k is a positive integer, and s0 is a coupling. Naively, this coupling is irrelevant for

k > 2 and thus flows to zero in the IR. However it was argued in [2-4] that for su�ciently

small Nf it actually influences the infrared behavior for all k, presumably because the

quantum scaling dimension of the operator (1.1) is reduced by the gauge interaction. The

detailed mechanism for this was not understood until much later, but these theories were

conjectured to have the following properties:

(1) A stable supersymmetric vacuum for

Nc  kNf . (1.2)

(2) A dual description in terms of a “magnetic” theory with gauge group SU(kNf �Nc),

Nf chiral superfields in the (anti) fundamental representation qi, eqi, an adjoint field

bX, and k gauge singlets Mj , j = 1, · · · , k, which transform in the bifundamental

representation of the SU(Nf ) ⇥ SU(Nf ) flavor group. The magnetic superpotential

takes the form

W ⇠ Tr bXk+1 +
kX

j=1

Mjeq bXk�jq (1.3)

where we omitted the coe�cients of the di↵erent terms. The duality relates electric

and magnetic chiral operators,

eQXj�1Q $ Mj , TrXj $ Tr bXj . (1.4)

For k = 1, the electric and magnetic adjoint fields X, bX are massive, and the duality

of [2-4] reduces to that of [1].

1

Mj $ eQXj�1Q

xm = k � x



The	  study	  of	  the	  theories	  with	  the	  adjoint	  X	  revealed	  a	  
relaJon	  to	  mathemaJcal	  singulariJes	  of	  type	  	  	  	  	  	  	  .	  This	  
point	  of	  view	  was	  parJcularly	  helpful	  when	  analyzing	  
deformaJons	  of	  the	  adjoint	  superpotenJal.	  
	  
J.	  Brodie	  further	  developed	  this	  relaJon	  	  by	  asking	  
what	  happens	  if	  one	  replaces	  the	  A-‐series	  singularity	  
with	  a	  D-‐series	  one.	  	  

Ak



There	  are	  now	  two	  adjoints,	  X	  and	  Y,	  and	  superpotenJal	  
	  
	  
	  
Brodie	  found	  a	  very	  similar	  structure	  to	  the	  A-‐series,	  but	  
with	  important	  new	  elements.	  
	  	  

(3) The infrared behavior of these theories appears to be related to the study of math-

ematical singularities, a point of view that was particularly helpful when analyzing

deformations of the superpotential (1.1) [4].

The last point was further developed in [5]. Viewing the superpotential (1.1) as corre-

sponding to an Ak singularity, J. Brodie asked what happens if one replaces it with a

Dk+2 one,

W ⇠ Tr
�
Xk+1 +XY 2

�
. (1.5)

He found a very similar structure to the Ak case. There is again a lower bound on the

number of flavors for which a stable supersymmetric vacuum exists,

Nc  3kNf (1.6)

and a dual description in terms of a magnetic theory with gauge group SU(3kNf � Nc)

with the same charged matter, coupled to 3k singlet mesons

Mlj = eQX l�1Y j�1Q ; l = 1, · · · , k; j = 1, 2, 3 (1.7)

via the superpotential

W ⇠ Tr bXk+1 +Tr bX bY 2 +
kX

`=1

3X

j=1

M`jeq bXk�` bY 3�jq . (1.8)

This example includes two new elements compared to the Ak case. One involves the matrix

nature of the adjoint superfields. Although the superpotentials (1.1), (1.5) look like the

corresponding potential functions in singularity theory, they are functions of Nc ⇥ Nc

matrices rather than single variables. In the Ak case this distinction does not play a major

role, since one can use the gauge symmetry and D-term constraints to diagonalize X, and

view the superpotential (1.1) as a function of its eigenvalues. The D-series involves two

massless adjoints, X and Y , and while one can use the above constraints to diagonalize

one of them, one cannot diagonalize both at the same time. Thus, the D-series is the first

case in which the matrix nature of the variables appearing in the superpotential plays a

non-trivial role.

The second new element in the work of [5] is the notion of quantum constraints on

the chiral ring. Such constraints appeared already in the Ak case (see e.g. [4]), but they

play a more central role in the D-series. Since similar constraints will feature prominently

in our discussion below, we next briefly review the main idea.
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The	  similar	  part:	  
	  
•  For	  general	  k,	  the	  naively	  irrelevant	  superpotenJal	  for	  X	  
actually	  becomes	  relevant	  for	  sufficiently	  strong	  coupling.	  

•  An	  upper	  bound	  on	  the	  coupling	  x,	  above	  which	  no	  stable	  
SUSY	  vacuum	  exists,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  

	  
•  A	  dual	  descripJon	  of	  	  the	  infrared	  dynamics	  in	  terms	  of	  a	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
gauge	  theory	  with	  gauge	  group	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  charged	  
fields	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  singlet	  mesons	  	  

x  3k

SU(3kNf �Nc)

q, eq, bX, bY

(3) The infrared behavior of these theories appears to be related to the study of math-

ematical singularities, a point of view that was particularly helpful when analyzing

deformations of the superpotential (1.1) [4].

The last point was further developed in [5]. Viewing the superpotential (1.1) as corre-

sponding to an Ak singularity, J. Brodie asked what happens if one replaces it with a

Dk+2 one,

W ⇠ Tr
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Xk+1 +XY 2

�
. (1.5)

He found a very similar structure to the Ak case. There is again a lower bound on the

number of flavors for which a stable supersymmetric vacuum exists,

Nc  3kNf (1.6)

and a dual description in terms of a magnetic theory with gauge group SU(3kNf � Nc)

with the same charged matter, coupled to 3k singlet mesons

Mlj = eQX l�1Y j�1Q ; l = 1, · · · , k; j = 1, 2, 3 (1.7)

via the superpotential

W ⇠ Tr bXk+1 +Tr bX bY 2 +
kX

`=1

3X

j=1

M`jeq bXk�` bY 3�jq . (1.8)

This example includes two new elements compared to the Ak case. One involves the matrix

nature of the adjoint superfields. Although the superpotentials (1.1), (1.5) look like the

corresponding potential functions in singularity theory, they are functions of Nc ⇥ Nc

matrices rather than single variables. In the Ak case this distinction does not play a major

role, since one can use the gauge symmetry and D-term constraints to diagonalize X, and

view the superpotential (1.1) as a function of its eigenvalues. The D-series involves two

massless adjoints, X and Y , and while one can use the above constraints to diagonalize

one of them, one cannot diagonalize both at the same time. Thus, the D-series is the first

case in which the matrix nature of the variables appearing in the superpotential plays a

non-trivial role.

The second new element in the work of [5] is the notion of quantum constraints on

the chiral ring. Such constraints appeared already in the Ak case (see e.g. [4]), but they

play a more central role in the D-series. Since similar constraints will feature prominently

in our discussion below, we next briefly review the main idea.
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The	  new	  elements:	  
	  
•  The	  matrix	  nature	  of	  the	  adjoint	  fields	  X,	  Y:	  In	  the	  
A	  series,	  at	  low	  energies	  one	  can	  use	  the	  gauge	  
symmetry	  and	  D-‐term	  constraints	  to	  diagonalize	  
the	  adjoint	  field	  X,	  and	  study	  the	  dynamics	  of	  the	  
eigenvalues.	  In	  the	  D	  series,	  we	  have	  two	  
massless	  adjoints,	  which	  cannot	  	  be	  diagonalized	  
at	  the	  same	  Jme.	  This	  leads	  to	  sJll	  unresolved	  
complicaJons	  in	  the	  analysis	  of	  the	  vacuum	  
structure	  of	  the	  theory	  in	  the	  presence	  of	  general	  
deformaJons	  of	  the	  superpotenJal.	  



•  Quantum	  constraints	  on	  chiral	  operators:	  the	  F-‐term	  
constraints	  of	  the	  D-‐series	  superpotenJal	  are	  	  

	  
Naively,	  one	  can	  use	  these	  to	  construct	  chiral	  operators	  
of	  the	  form	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  with	  	  	  

This	  looks	  incompaJble	  with	  Brodie’s	  duality,	  according	  
to	  which	  only	  operators	  with	  j=1,	  2,	  3	  should	  survive.	  

The F-term constraints of the superpotential (1.5) are1

Xk = Y 2 ; {X,Y } = 0 . (1.9)

Chiral operators are constructed from dressed quarks, ⇥Q, where ⇥ = ⇥(X,Y ) is a poly-

nomial in the adjoint fields, which satisfies the constraints (1.9). Superficially, these con-

straints lead to the infinite set

⇥lj = X l�1Y j�1 ; l = 1, · · · , k ; j = 1, 2, · · · . (1.10)

For odd k the set (1.10) is actually further truncated to a finite one, since Y 3 = 0. Indeed,

using the F-term constraints (1.9) one has Y 3 = Y · Y 2 = Y · Xk = �Xk · Y = �Y 3.

Thus, the index j in (1.10) runs only over the values j = 1, 2, 3, in agreement with the

fact that Brodie’s duality only requires mesons with these quantum numbers (1.7), and

baryons made of the corresponding truncated set of dressed quarks.

For even k this truncation appears to be absent, which is puzzling since the duality of

[5] is expected to be valid for both even and odd k (e.g. because one can flow from odd to

even k by deforming the adjoint superpotential by relevant operators). The solution to this

conundrum proposed in [5] was that for even k the constraint Y 3 = 0 appears quantum

mechanically, so that the truncation to j  3 in (1.10) is the same for even and odd k in

the quantum theory, but not in the classical one.

The origin of this quantum constraint in theories with even k is not well understood.

This is related to the fact that the vacuum structure of the theory with a general super-

potential W (X,Y ) obtained by a relevant deformation of the Dk+2 superpotential (1.5) is

not fully understood either. For the Ak case this analysis is easier, essentially because the

single matrix X can be diagonalized [2-4], while for the D-series the non-abelian structure

comes into play.

The understanding of RG flow in theories of the sort described above improved signif-

icantly with the advent of a-maximization [6]. In particular, it was shown in [6,7] that the

gauge theory with one adjoint superfield X and no superpotential indeed has the property

anticipated in [3], that as Nc/Nf increases, the dimension of the chiral operator (1.1) de-

creases in such a way that eventually it becomes relevant for all k(< Nc). It was also shown

1 Here and below we often neglect the contributions of Lagrange multipliers enforcing the

tracelessness of X, Y , which do not change the qualitative structure of what follows. We also pick

a convenient relative normalization of the fields X and Y .
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The understanding of RG flow in theories of the sort described above improved signif-

icantly with the advent of a-maximization [6]. In particular, it was shown in [6,7] that the

gauge theory with one adjoint superfield X and no superpotential indeed has the property

anticipated in [3], that as Nc/Nf increases, the dimension of the chiral operator (1.1) de-

creases in such a way that eventually it becomes relevant for all k(< Nc). It was also shown

1 Here and below we often neglect the contributions of Lagrange multipliers enforcing the

tracelessness of X, Y , which do not change the qualitative structure of what follows. We also pick

a convenient relative normalization of the fields X and Y .
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For	  odd	  k	  it’s	  actually	  OK,	  since	  one	  can	  use	  the	  F-‐term	  
equaJons	  to	  conclude	  that	  	  
	  
	  
	  
For	  even	  k,	  the	  situaJon	  is	  more	  puzzling.	  On	  the	  one	  
hand,	  at	  least	  classically	  the	  constraint	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  not	  
valid,	  but	  on	  the	  other	  it	  is	  required	  by	  the	  duality.	  	  
	  
Brodie	  	  proposed	  that	  in	  that	  case,	  the	  constraint	  
appears	  quantum	  mechanically,	  although	  its	  origin	  is	  
not	  well	  understood.	  	  
	  

Y 3 = Y · Y 2 = Y ·Xk = �Xk · Y = �Y 3 = 0

Y 3 = 0



The	  understanding	  of	  the	  above	  theories	  improved	  
significantly	  aber	  the	  advent	  of	  a-‐maximizaJon	  (by	  K.	  
Intriligator	  and	  B.	  Wecht)	  in	  2003.	  These	  authors	  
classified	  all	  possible	  fixed	  points	  that	  can	  be	  obtained	  
in	  N=1	  supersymmetric	  gauge	  theory	  with	  SU(N)	  gauge	  
group	  and	  majer	  in	  the	  fundamental	  and	  adjoint	  
representaJons.	  	  

ADE	  



They	  showed	  that	  such	  fixed	  points	  have	  an	  ADE	  
classificaJon:	  
	  

in these papers that the properties of adjoint SQCD are consistent with the dualities of

[2-4] and with the a-theorem.

An important step in uncovering the ADE structure underlying the results of [2-5] was

taken in [8]. These authors used the techniques of [6,7] to classify all possible non-trivial

fixed points of N = 1 supersymmetric SU(Nc) gauge theory with Nf fundamentals Qi, eQi

and Na adjoints X↵ that preserve the global SU(Nf ) ⇥ SU(Nf ) symmetry acting on the

quarks. For Na > 3 the gauge theory is not asymptotically free and thus is expected to

be trivial in the infrared. For Na = 3 interacting theories can only occur at Nf = 0 (for

the same reason), which from the general perspective is an isolated case. Thus, to have a

non-trivial infrared behavior for non-zero Nf one must take Na = 2 (or smaller).

The authors of [8] considered models with two adjoint chiral superfields X and Y ,with

superpotential W = W (X,Y ), and a tunable number of fundamentals Nf . Interestingly,

they found that non-trivial fixed points correspond to superpotentials with an ADE struc-

ture,
bO WbO = 0
bA WbA = TrY 2

bD WbD = TrXY 2

bE WbE = TrY 3

Ak WAk = Tr(Xk+1 + Y 2)
Dk+2 WDk+2 = Tr(Xk+1 +XY 2)
E6 WE6 = Tr(Y 3 +X4)
E7 WE7 = Tr(Y 3 + Y X3)
E8 WE8 = Tr(Y 3 +X5) .

(1.11)

These models naturally split into two classes. The first four ( bO, bA, bD, bE) are fixed points

that exist for all Nf satisfying the asymptotic freedom bound,2 Nf < Nc, and can be

thought of as UV ancestors of the rest. We will not discuss them further here. The last

five have an ADE structure very reminiscent of that of mathematical singularities.

The Ak and Dk+2 theories in (1.11) were discussed above. The exceptional ones are

new, and much about them remains mysterious. In particular:

(1) The A and D series fixed points only exist when the number of flavors is above a

certain critical value, Nf � N
(cr)
f , (1.2), (1.6). As we discuss below, there are reasons

to believe that the same is true for the exceptional theories, but the bound is not

known.

2 The b
A theory can be thought of as having one adjoint superfield, X, and thus is asymptoti-

cally free for Nf < 2Nc.
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•  The	  ADE	  classificaJon	  is	  due	  to	  gauge	  dynamics.	  

•  The	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  theories	  are	  interesJng,	  but	  we	  will	  
not	  discuss	  them	  further	  today.	  

	  
•  The	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  theories	  are	  those	  reviewed	  above.	  	  

•  	  Our	  goal	  in	  the	  rest	  of	  this	  talk	  will	  be	  to	  try	  	  to	  
understand	  the	  excepJonal	  theories.	  	  

	  

bO, bA, bD, bE

Ak, Dk



The	  transformaJon	  properJes	  of	  the	  various	  gauge	  
theory	  fields	  under	  the	  symmetries	  are:	  

One might hope to see the quantum constraint Y 3 = 0 explicitly in the index by

expanding it to appropriate order in the fugacities. Unfortunately, the presence or absence

of this constraint is obscured by the appearance of many operators at the same order as

Y 3. We discuss the details in Appendix B.

4. E
7

The E
7

theory is again N = 1 SQCD with two adjoint chiral superfields X,Y , but

with the superpotential

W = TrY 3 +TrY X3 . (4.1)

This determines the R-charges of the fields to be those listed in Table 5. The corresponding

single-particle index (1.5) is given by eq. (3.2) but with rX , rY , rQ taking the values from

Table 5.

Field SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q f f 1 1 1� 1

9

Nc
Nf

eQ f 1 f �1 1� 1

9

Nc
Nf

V adj. 1 1 0 0

X adj. 1 1 0 4

9

Y adj. 1 1 0 2

3

Table 5: The field content of the E
7

electric theory.

In [7] we proposed a magnetic dual description for this theory, that has gauge group

SU(30kNf �Nc), coupled to thirty singlet mesons Mj $ eQ⇥j(X,Y )Q, j = 1, . . . , 30 via a

superpotential similar to (3.4). The specific form of the ⇥j(X,Y )’s as ordered products of

X,Y can be found in [7]. As with the Dk+2

theories with even k, the classical chiral ring is

larger. In particular, the number of operators ⇥j that can be used to make chiral mesons

is larger than thirty (and depends on Nc). In [7] we proposed a quantum constraint on the

chiral ring of the electric theory, that truncates this classical set to the thirty operators

compatible with the duality. To provide further evidence for the validity of this constraint,

we would like to repeat the discussion of the A and D series for this case.

14

E7



•  The	  superpotenJal	  for	  the	  adjoints	  is	  
	  

•  	  The	  F-‐term	  constraints	  that	  follow	  from	  this	  
superpotenJal	  	  are	  

•  Classical	  chiral	  meson	  operators	  take	  the	  
form	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  with	  	  
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electric theory.

In [7] we proposed a magnetic dual description for this theory, that has gauge group

SU(30kNf �Nc), coupled to thirty singlet mesons Mj $ eQ⇥j(X,Y )Q, j = 1, . . . , 30 via a

superpotential similar to (3.4). The specific form of the ⇥j(X,Y )’s as ordered products of

X,Y can be found in [7]. As with the Dk+2

theories with even k, the classical chiral ring is

larger. In particular, the number of operators ⇥j that can be used to make chiral mesons

is larger than thirty (and depends on Nc). In [7] we proposed a quantum constraint on the

chiral ring of the electric theory, that truncates this classical set to the thirty operators

compatible with the duality. To provide further evidence for the validity of this constraint,

we would like to repeat the discussion of the A and D series for this case.
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where s1, s2 are couplings whose RG evolution depends on Nf , Nc. It is convenient to

define the parameter [7,8]

x =
Nc

Nf
(2.2)

which determines the strength of gauge interactions at long distances. It is of course a

discrete parameter, that takes rational values; one can study the theory in the Veneziano

limit Nf , Nc ! 1, x fixed, in which x becomes continuous. This simplifies some of the

formulae, and is not expected to make a qualitative di↵erence in the dynamics. We will

mostly work with general finite Nf , Nc; some of the numerical results below are stated in

the Veneziano limit.

Since we are interested in interacting IR fixed points, we will study the theory (2.1)

in the asymptotically free range x > 1. As discussed in [8], for all x in this range, the

coupling s1 in the superpotential (2.1) is relevant; turning it on drives the theory to the

bE fixed point in (1.11). The coupling s2 can be relevant or not, depending on the R-

charge of the operator TrY X3 at the bE fixed point. This problem can be addressed using

a-maximization; one finds [8] that in the Veneziano limit this coupling is relevant for

x > xmin ' 4.12. Thus, for 1 < x  xmin, the E7 fixed point coincides with the bE one,

while for larger x the two are distinct.

The E7 fixed point, when it exists, has a global symmetry familiar from the A and

D series models, SU(Nf ) ⇥ SU(Nf ) ⇥ U(1)B ⇥ U(1)R under which the chiral superfields

transform as follows:
Q (Nf , 1, 1, 1�

x

9
)

eQ (1, Nf ,�1, 1� x

9
)

X (1, 1, 0,
4

9
)

Y (1, 1, 0,
2

3
).

(2.3)

The superpotential (2.1) leads to a truncation of the chiral ring. The equations of motion

for X and Y set
Y 2 = X3

X2Y +XYX + Y X2 = 0
(2.4)

where we neglected D-terms and chose a convenient relative normalization of X and Y

(by choosing an appropriate normalization of the Kahler potential). As in the A and D

series, we expect an important role to be played by the dressed quarks ⇥(X,Y )Q, where

6

eQ⇥Q

⇥ = Xn, Y Xn, XY Xn, Y XY Xn



•  One	  can	  show	  that	  at	  large	  coupling	  the	  UV	  
variables	  in	  terms	  of	  which	  the	  theory	  is	  
defined	  must	  break	  down,	  like	  in	  the	  other	  
examples.	  

	  
•  We	  assume	  that	  the	  strong	  coupling	  region	  is	  
governed	  by	  a	  dual	  descripJon	  similar	  to	  the	  
other	  cases.	  



The	  quantum	  numbers	  of	  the	  dual	  fields	  are	  
taken	  to	  be:	  
	  
	  

Thus, we again assume the existence of a magnetic dual with gauge group SU( eNc) =

SU(↵Nf �Nc) for an unknown integer ↵, and the fields

Field SU( eNc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q f f 1 Nc/fNc 1� 1

9

eNc
Nf

eq f 1 f �Nc/fNc 1� 1

9

eNc
Nf

eV adj. 1 1 0 0

eX adj. 1 1 0 4

9

eY adj. 1 1 0 2

3

Mj , j = 1, . . .↵ 1 f f 0 2rQ + rj

Table 6: The “conjectured” field content of the E
7

magnetic theory.

Here rj are the U(1)R charges of ⇥j and, as before, we do not place any constraints on

them.

The single-letter index of the theory of Table 6 is given by (3.5) with the the appro-

priate R-charges. Taking the large N limit, the analog of (2.9) obtained from reading o↵

the f, g, h functions (1.9) of the electric and magnetic single-letter indices and using (2.8)

now reads
↵X

j=1

trj =
1 + t

1
9 + t

2
9 + . . .+ t

↵�1
9

1 + t
1
9 � t

1
3 � t

4
9 � t

5
9 + t

7
9 + t

8
9

. (4.2)

(4.2) can again only be satisfied with finite ↵ if every root of the denominator on the r.h.s.

coincides with a root of the numerator, which are ↵th roots of unity. However, it is easy

to check that this is in fact the case when ↵ = 30.4 The r.h.s. is then a sum of thirty

terms of the form trj , with the rj coinciding with the meson spectrum found in [7]. This

provides further support for the picture proposed in [7].

Expanding the index to the level of the constraint, one encounters again the same

situation as in the D series, as discussed in Appendix B.

In principle, one can go beyond the Veneziano large N limit, and compare the indices

of the electric and magnetic theories for all Nf , Nc. Following [16,17] and the building

4 Again, we discard solutions with ↵ = 30n for positive integer n > 1.

15



•  The	  rank	  of	  the	  dual	  gauge	  group	  must	  take	  the	  
general	  form	  	  	  

	  
where	  	  	  	  	  	  	  is	  the	  	  number	  of	  gauge	  singlet	  mesons	  in	  
the	  magneJc	  theory.	  This	  follows	  from	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  `t	  
Hoob	  anomaly	  matching.	  	  This	  number,	  as	  well	  as	  
the	  R-‐charges	  of	  these	  mesons,	  	  	  	  	  	  ,	  are	  kept	  free.	  	  	  	  rj

eNc = ↵Nf �Nc

↵
SU(Nf )

3



•  To	  determine	  them,	  we	  demand	  that	  the	  
superconformal	  indices	  of	  the	  electric	  and	  
magneJc	  theories	  coincide.	  	  

•  In	  general,	  these	  indices	  are	  very	  complicated	  
funcJons	  of	  the	  chemical	  potenJals,	  but	  Dolan	  
and	  Osborn	  observed	  that	  they	  simplify	  
significantly	  in	  the	  large	  N	  Veneziano	  limit.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (See	  J.	  Lin’s	  talk)	  
	  
	  



This	  gives	  a	  constraint	  of	  the	  form	  
	  
	  
	  
which	  determines	  	  	  	  	  	  	  	  	  	  	  	  .	  	  One	  finds	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  
and	  a	  certain	  set	  of	  	  	  	  	  	  	  ,	  which	  can	  be	  thought	  of	  
as	  arising	  from	  applying	  the	  constraint	  	  	  
	  
	  
to	  the	  full	  list	  of	  operators.	  	  
	  

Thus, we again assume the existence of a magnetic dual with gauge group SU( eNc) =

SU(↵Nf �Nc) for an unknown integer ↵, and the fields
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3
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Table 6: The “conjectured” field content of the E
7

magnetic theory.

Here rj are the U(1)R charges of ⇥j and, as before, we do not place any constraints on

them.

The single-letter index of the theory of Table 6 is given by (3.5) with the the appro-

priate R-charges. Taking the large N limit, the analog of (2.9) obtained from reading o↵

the f, g, h functions (1.9) of the electric and magnetic single-letter indices and using (2.8)

now reads
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2
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1
9 � t

1
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4
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5
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9
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(4.2) can again only be satisfied with finite ↵ if every root of the denominator on the r.h.s.

coincides with a root of the numerator, which are ↵th roots of unity. However, it is easy

to check that this is in fact the case when ↵ = 30.4 The r.h.s. is then a sum of thirty

terms of the form trj , with the rj coinciding with the meson spectrum found in [7]. This

provides further support for the picture proposed in [7].

Expanding the index to the level of the constraint, one encounters again the same

situation as in the D series, as discussed in Appendix B.

In principle, one can go beyond the Veneziano large N limit, and compare the indices

of the electric and magnetic theories for all Nf , Nc. Following [16,17] and the building

4 Again, we discard solutions with ↵ = 30n for positive integer n > 1.
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↵, rj ↵ = 30
rj

which together with (2.12) gives n = 15 and α = 30. Thus, duality relates the electric

gauge group SU(Nc) to the magnetic one SU(30Nf −Nc).

We conclude that if a duality of the sort found in the A and D series is to exist in the

E7 theory, one must impose on the spectrum (2.7) a quantum constraint of the form

aY X6 + bXYX5 = 0 (3.8)

where a, b are constants that are not determined by the above considerations. This con-

straint truncates the infinite set of mesons to a finite set, which is (uniquely) consistent

with such a duality.

An important check of duality in other cases is the matching of ‘t Hooft anomalies for

the global currents. In the electric theory, the non-vanishing anomalies take the form

SU(Nf )
3 Ncd

(3)(Nf )

SU(Nf )
2U(1)R −

x

9
Ncd

(2)(Nf )

SU(Nf )
2U(1)B Ncd

(2)(Nf )

U(1)R −
1

9
(N2

c + 1)

U(1)3R
577

729
(N2

c − 1)−
2

729

N4
c

N2
f

U(1)2BU(1)R −
2

9
N2

c

(3.9)

where d(3)(Nf ) ∼ TrT a{T b, T c}, d(2)(Nf ) ∼ TrT aT b, with the traces taken in the funda-

mental representation.

The anomalies in the magnetic theory can be expressed in terms of rj , the R-charges

of the operators Θj in (3.4). Denoting rj = 2Nj/9, the spectrum we found above contains

one operator each at N = 0, 2, 3, 4, 6, 15, 17, 18, 19, 21, and two operators for each of N =

5, 7−14, 16. The operators with N and 21−N are paired by the magnetic superpotential,

as explained around (3.6).

The SU(Nf )3 anomaly in the magnetic theory is −N̂c + αNf . Its matching with the

first line of (3.9) is the origin of the condition (3.3). The matching of the other anomalies

can be shown to reduce to the three conditions
∑

rj =
α2

9
− α

∑
r2j =

4α3

243
−

2α2

9
−

334α

243
∑

r3j =
2α4

729
−

4α3

81
−

334α2

729
+

496α

81
.

(3.10)
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Thus,	  we	  conclude	  that	  the	  dual	  of	  a	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  theory	  	  
has	  gauge	  group	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  This	  proposal	  
saJsfies	  a	  number	  of	  detailed	  consistency	  	  condiJons:	  
	  
•  There	  are	  precisely	  30	  mesons,	  and	  the	  list	  of	  	  	  	  	  	  	  	  is	  
such	  that	  	  one	  can	  write	  a	  magneJc	  superpotenJal	  
for	  the	  magneJc	  meson	  fields.	  	  	  	  

	  
•  `t	  Hoob	  anomaly	  matching	  is	  non-‐trivially	  saJsfied.	  	  

•  PotenJal	  unitarity	  violaJons	  are	  resolved.	  

SU(Nc)
SU(30Nf �Nc)

rj



Open	  problems	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  we	  saw	  that	  	  the	  	  	  	  	  	  	  	  	  theory	  has	  a	  very	  
similar	  structure	  to	  the	  A	  and	  D	  series	  ones.	  Using	  
the	  superconformal	  index	  one	  can	  show	  that	  	  this	  
cannot	  be	  the	  case	  for	  the	  remaining	  excepJonal	  
theories.	  Thus,	  in	  these	  cases	  there	  must	  be	  
qualitaJve	  new	  elements.	  What	  are	  they?	  

E6, E8 : E7



•  In	  some	  of	  the	  theories	  we	  found	  that	  there	  must	  be	  
quantum	  constraints	  on	  the	  chiral	  ring.	  Can	  one	  
derive	  them?	  

•  The	  D	  and	  E	  series	  seem	  to	  involve	  some	  type	  of	  
matrix	  singularity	  theory,	  which	  is	  important	  for	  
studying	  deformaJons	  of	  the	  adjoint	  superpotenJal.	  
How	  does	  it	  work?	  

•  Can	  one	  relate	  the	  dynamical	  ADE	  structure	  that	  
arises	  in	  these	  theories	  to	  a	  geometric	  or	  algebraic	  
ADE	  structure,	  e.g.	  by	  embedding	  these	  theories	  in	  
string	  theory?	  


