Meromorphic functions and giant topology

Jeff Murugan (UCT)

Collaborators: Robert de Mello Koch, Yolanda Lozano, Michael Abbott, Andrea Prinsloo \& Nitin Raghoonauth

Based on: IOOI.2306, IIO3.|163, |108.3084, 1202.4925 1305.6932 \& 13|2.4900 Strings 2014 - Princeton

B

Motivation

How is spacetime emergent?

Gauge/Gravity Duality

Jeff Murugan (UCT)

Giant Gravitons in Gravity

- In type IIB string theory giant gravitons are D3-branes wrapping a 3-sphere in $A d S_{5} \times S^{5}$

- Some properties:
- They are classically stabilized through coupling to an RR 5-form flux in the supergravity background
- admit a microscopic description as a large number of coincident gravitons that couple to the background $R R C_{p+1}$ potential and polarize into a macroscopic Dp-brane.
[Myers 99,
Lozano et.al. O2]
- They come in two forms, depending on which 3-sphere the D3-brane wraps.

Giant Gravitons in Gauge Theory

[Corely-

$$
\chi_{R}(Z)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi_{R}(\sigma) Z_{i_{\sigma(1)}}^{i_{1}} \cdots Z_{i_{\sigma(n)}}^{i_{n}}
$$

- Some properties:
- The Schur label R is a Young diagram with n boxes.
o In the completely antisymmetric representation $\chi_{R}(Z)$ collapses to a subdeterminant operator.
[Balasubramanian et al 'OI]
- Schurs satisfy a nice product rule that follows from the Schur-Weyl duality

$$
\chi_{R}(Z) \chi_{S}(Z)=\sum_{T} f_{R S ; T} \chi_{T}(Z)
$$

Emergent topology

How is the topology of the brane encoded in the Schur operators?

Emergent topology

- The spherical D3-brane giant graviton must satisfy Gauss'Law: every source must match with a corresponding sink:

- Giants with strings attached are dual to restricted Schur operators:
[de Mello Koch et al '07-14]

$$
\chi_{R, R_{1}}^{(k)}=\frac{1}{(n-k)!} \sum_{\sigma \in S_{n}} \operatorname{Tr}_{R_{1}}\left(\Gamma_{R}(\sigma)\right) \operatorname{Tr}\left(\sigma Z^{\otimes n-k}\left(W^{(1)}\right)_{i_{\sigma(n-k+1)}}^{i_{n-k+1}} \cdots\left(W^{(k)}\right)_{i_{\sigma(n)}}^{i_{n}}\right)
$$

- The number of operators that can be constructed for a given representation matches precisely the number of allowed states in the string theory.
- How do we see non-trivial topology?
[Nishioka-Takayanagi’O9
Berenstein-Park '09]
Jeff Murugan (UCT)

Giants \& Holomorphic Surfaces

- A holomophic function $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$ defines a supersymmetric D 3 -brane in $\mathbb{R} \times S^{5} \in A d S_{5} \times S^{5}$ as a surface
[Mikhailov 'OO]

$$
f\left(e^{-i t} Z_{1}, e^{-i t} Z_{2}, e^{-i t} Z_{3}\right)=0, \quad \sum_{i}\left|Z_{i}\right|^{2}=1
$$

- The amount of SUSY preserved depends on the number of arguments:

$$
f\left(Z_{1}\right)=0 \Rightarrow \frac{1}{2} \mathrm{BPS} ; \quad f\left(Z_{1}, Z_{2}\right)=0 \Rightarrow \frac{1}{4} \mathrm{BPS} ; \quad f\left(Z_{1}, Z_{2}, Z_{3}\right)=0 \Rightarrow \frac{1}{8} \mathrm{BPS}
$$

- Example (I,0,0): The usual sphere giant corresponds to the linear polynomial $f\left(Z_{1}\right)=Z_{1}-\alpha=0$
- The spatial part of the brane worldvolume Σ is parameterized by Z_{2} and Z_{3} with

$$
\left|Z_{2}\right|^{2}+\left|Z_{3}\right|^{2}=1-\alpha^{2}
$$

- The brane rigilly rotates in the Z_{1}-plane.
- Σ is an S^{3} with radius $\sqrt{1-\alpha^{2}}$ so that the maximal giant corresponds to $\alpha=0$
- A holomorphic function with multiple zeros leads to multiple concentric giants - case ($m, 0,0$)

1/4-BPS giants (i): meromorphic functions

- Now let's add to $f\left(Z_{1}\right)$ some meromorphic function of Z_{2} and see if we can read off the topology.
- Example (I,I,O): $f\left(Z_{1}, Z_{2}\right)=Z_{1}-\alpha+\frac{\epsilon}{Z_{2}}$
- The spatial part of the D3 worldvolume is parameterized by ϕ_{3} and some portion of the Z_{2}-plane

$$
\mathcal{D}=\left\{Z_{2}| | \alpha-\left.\frac{\epsilon}{Z_{2}}\right|^{2}+\left|Z_{2}\right|^{2}\right\} \leq 1
$$

- The topology of the 3-manifold Σ can be read off from \mathcal{D}
- When $\epsilon=0$ the base space is a disc and the giant is a round 3-sphere.

- For a simple pole:

$$
\begin{aligned}
& \Sigma \simeq S^{2} \times S^{1} \text { when } 0<\epsilon<\epsilon_{\text {crit }} \\
& \Sigma \simeq S^{3} \text { when } \epsilon>\epsilon_{\text {crit }}
\end{aligned}
$$

1/4-BPS giants (iii): higher order and multiple poles

- $(1,1,0)$ with higher order poles: $f\left(Z_{1}, Z_{2}\right)=Z_{1}-\alpha+\frac{\epsilon}{\left(Z_{2}\right)^{N}}$
- The geometry exhibits and additional an N-fold symmetry under $Z_{2} \rightarrow e^{i 2 \pi / N} Z_{2}$
- For example, when $N=5$:

$$
\Sigma \simeq S^{1} \times S^{2} \text { when } 0<\epsilon<\epsilon_{\text {crit }}
$$

- For a class (I,l,O) meromorphic function with order N pole:

$$
\Sigma \simeq \bigsqcup_{j=1}^{N} S^{3} \text { when } \epsilon>\epsilon_{\text {crit }}
$$

$\circ(1, \mathrm{n}, \mathrm{O})$ with multiple simple poles: $f\left(Z_{1}, Z_{2}\right)=Z_{1}-\alpha+\sum_{j=1}^{n} \frac{\epsilon_{j}}{Z_{2}-\beta_{j}}$

- The topology is a connected sum:

$$
\Sigma \simeq \sharp^{n}\left(S^{2} \times S^{1}\right)
$$

1/4-BPS giants (iii): higher order and multiple poles

- $(1,3,0)$ with simple poles:

- To see the topology, cut \mathcal{D} along the red lines to isolate the poles.
- Each line is an $[0,1] \times S^{1}$ with the S^{1} shrinking to zero size on $\partial \mathcal{D}$
- Gluing everything back together $\Sigma \simeq\left(S^{2} \times S^{1}\right) \sharp\left(S^{2} \times S^{1}\right) \sharp\left(S^{2} \times S^{1}\right)$
- Increasing the residue is more complicated with multiple poles.
- The $\epsilon \rightarrow 0$ limit gives a clean interpretation as 4 intersecting D-branes with $f\left(Z_{1}, Z_{2}\right) \rightarrow\left(Z_{1}-\frac{1}{2}\right) Z_{2}\left(Z_{2}^{2}-\frac{1}{4}\right)$
- A useful check $(1,3,0)=(3,1,0): f\left(Z_{1}, Z_{2}\right)=\left(Z_{1}^{3}-\alpha^{3}\right) Z_{2}+\epsilon$
- Here the area of the Z_{2}-plane occupied by the solution \mathcal{D} is a 3-sheeted Riemann surface.
- Each sheet is a disc with one hole and a branch cut from $Z_{2}=0 \rightarrow \epsilon / \alpha^{3}$

$$
\Rightarrow \Sigma \simeq \sharp^{3}\left(S^{2} \times S^{1}\right)
$$

1/4-BPS giants (iv): Jouet d'enfant

- The connected sum of two 3 -manifolds \mathcal{M} and \mathcal{N}, is formed by joining a point on \mathcal{M} to one on \mathcal{N} with a tube $S^{2} \times[0,1] \simeq S^{3}$ with two punctures:

$$
\mathcal{M} \sharp \mathcal{N}=\mathcal{M} \sharp S^{3} \sharp \mathcal{N}
$$

- Connecting the tube between two points on the same manifold adds an $S^{2} \times S^{1}$:

$$
\mathcal{M}+\left(S^{2} \times[0,1]\right)=\mathcal{M} \sharp\left(S^{2} \times S^{1}\right)
$$

- For more complicated topologies, it will be useful to introduce some new notation:
\square

$$
=S^{3}
$$

\square

$$
=S^{2} \times S^{1} ; \quad \int=S^{2} \times[0,1]
$$

- Examples (trivial): \square
 ए \square $=$ \square (3-sphere is the identity for prime factorisation)
\square \rightleftarrows \square

$$
=
$$

\qquad (adding a handle connects an $S^{2} \times S^{1}$)

1/4-BPS giants (v): Jouer avec les jouets

- Example (less trivial): The $(2,2,0)$ polynomial $f\left(Z_{1}, Z_{2}\right)=\left(Z_{1}^{2}-\alpha^{2}\right)\left(Z_{2}^{2}-\beta^{2}\right)+\epsilon$
- Old way: - Solve $f\left(Z_{1}, Z_{2}\right)=0$ for $Z_{1}\left(Z_{2}\right)$
- Determine the branch points and cut lines
- Draw the Riemann surfaces
- Cut and glue

- New way: - Use prime factorisation
- Count connections:

- Either way:

$$
\Sigma=\sharp^{5}\left(S^{2} \times S^{1}\right)
$$

1/4-BPS giants (vi): A general formula

- (m, n, O) with all simple poles:
- Draw an $m \times n$ grid of O 's
- Connect all sites on the lattice with \rrbracket or \longleftarrow

$$
\Sigma=\sharp^{K}\left(S^{2} \times S^{1}\right), \quad K=m n+(m-1)(n-1)
$$

- (m, n, O) with higher order poles:
- Let $n(m)$ be the number of poles in $Z_{2}\left(Z_{1}\right)$ with total order $N(M)$
- Draw an $m \times n$ grid of O 's
- Connect all sites on the lattice with M I's and $N \backsim$'s

$$
\Sigma=\left\{\begin{array}{c}
\sharp^{K}\left(S^{2} \times S^{1}\right), \quad K=1+M(n-1)+N(m-1), \quad \epsilon<\epsilon_{\text {crit }}, \\
\bigsqcup_{i=1}\left[\sharp^{K_{i}}\left(S^{2} \times S^{1}\right)\right] \bigsqcup_{j} S^{3}, \quad \epsilon>\epsilon_{\text {crit }}
\end{array}\right.
$$

1/4-BPS giants (vi): A general formula

- A worked example with $(3,3,0)$:

I/8-BPS giants

- A generic (m, n, l) holomorphic polynomial $f\left(Z_{1}, Z_{2}, Z_{3}\right.$) lacks the isometries required for our analysis, making a topological classification of $1 / 8-B P S$ giants difficult.
- However, our methods still hold for the class of functions (m, n, m):

$$
f\left(Z_{1}, Z_{2}, Z_{3}\right)=1+\sum_{k=1}^{m} \frac{\epsilon_{k}^{\prime}}{Z_{1} Z_{3}-\gamma_{k}}+\sum_{j=1}^{n} \frac{\epsilon_{j}}{Z_{2}-\beta_{j}}
$$

- For this case, the topology of the 3-manifold (for small ϵ)

$$
\Sigma=S^{1} \times \vdash^{K} T^{2}, \quad K=m n+(m-1)(n-1)
$$

- A check with $(3,1,3): \quad f\left(Z_{1}, Z_{2}, Z_{3}\right)=\left(\left(Z_{1} Z_{2}\right)^{3}-\alpha^{3}\right) Z_{2}+\epsilon$
- This case is simple enough to study directly.
- \mathcal{D} is a 3 -sheeted Riemann surface and $\Sigma=S^{1} \times \natural^{3} T^{2}$

Conclusions

- If $g\left(Z_{1}, Z_{2}\right)$ is a meromorphic function with number of poles in Z_{1} and Z_{2} counted by (m, M) and (n, N) respectively, the I/4-BPS giant in $A d S_{5} \times S^{5}$ given by $f\left(Z_{1}, Z_{2}\right)=1+\epsilon g\left(Z_{1}, Z_{2}\right)$ has topology given by the prime decomposition

$$
\mathcal{M}=\#^{K}\left(S^{2} \times S^{1}\right), \quad K=1+M(n-1)+N(m-1)
$$

- As ϵ is increased, K generically decreases and the brane may break up into several disjoint pieces, either 3 -spheres or connected sums of $S^{2} \times S^{1}$
- The case I/8-BPS giants is generally much more difficult but we have some limited results
- We are left with more questions than answers:
- Is there a corresponding systematic treatment of 1/8-BPS giants?
- What are the operators dual to these giants and how is the topology of the giant coded in the operators?
- Is there a similar classification for giants in the AdS4/CFT3 correspondence?

감사합니다 cпacuסi！
நன்றி Ndiyabulela！Ke a leboha！ oas suxaporéu！
＂thank Youtwe
Inkomu！Siyabonga！Danke！
iGracias धन्यवाई Grazie！ありがとう

