Bootstrapping the 3D Ising Model

David Simmons-Duffin

IAS

Strings 2014

with S. El-Showk, M. Paulos, F. Kos, D. Poland, S. Rychkov, A. Vichi

The Conformal Bootstrap

Polyakov '70: classify/solve CFTs using:

- conformal symmetry
- unitarity
- associativity of the OPE

Progress in d = 2 throughout 80's and 90's.

Huge revival for d > 2 a few years ago...

CFT Review

- Local operators $\mathcal{O}_1(x)$, $\mathcal{O}_2(x)$, ...
- Scaling dimensions $\langle \mathcal{O}_i(x)\mathcal{O}_i(y)\rangle = |x-y|^{-2\Delta_i}$
- Operator Product Expansion (OPE)

• Unitarity: Δ_i bounded from below, f_{ijk} are real

Bootstrap Revival

- $\phi(x)$: a real scalar primary operator.
- It has the OPE

$$\phi(x)\phi(0) = \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}} x^{\Delta_{\mathcal{O}}-2\Delta_{\phi}} \left(\mathcal{O}(0) + \ldots\right)$$

Rattazzi, Rychkov, Tonni, Vichi '08: Bootstrap constraints on $\langle \phi \phi \phi \phi \rangle$ imply universal bounds on

- OPE coefficients $f_{\phi\phi\mathcal{O}}$
- Dimensions, spins $\Delta_{\mathcal{O}}, \ell_{\mathcal{O}}$

Conformal Blocks & Crossing Symmetry

$$\langle \phi(x_1)\phi(x_2)\phi(x_3)\phi(x_4) \rangle = \sum_{\mathcal{O}} \sum_{2}^{1} \underbrace{\mathcal{O}}_{2} \langle x_3 \rangle$$

Crossing Symmetry

Bounds from Crossing Symmetry

$$0 = F_{0,0}(u,v) + \sum_{\mathcal{O}} f_{\phi\phi\mathcal{O}}^2 F_{\Delta,\ell}(u,v)$$

Make an assumption about spectrum of Δ, ℓ's.
Try to find a linear functional α such that

$$\begin{array}{rcl} \alpha(F_{0,0}) &> & 0 \\ \alpha(F_{\Delta,\ell}) &\geq & 0 \end{array}$$

(convex optimization problem)

• If α exists, assumption is ruled out.

1 Bounds in 3d CFTs

Outline

1 Bounds in 3d CFTs

2 Mixed Correlators

3 Future Directions

Universal Bound in 3d CFTs [EI-Showk, Paulos,

Poland, Rychkov, DSD, Vichi '12]

3d O(N) Vector Models [Kos, Poland, DSD '13]

Fractional Spacetime Dimensions [EI-Showk,

Paulos, Poland, Rychkov, DSD, Vichi '13]

c-Minimization

• Perhaps $\langle \sigma \sigma \sigma \sigma \rangle$ in 3d Ising lies on the boundary of the space of unitary, crossing-symmetric 4-pt functions.

Natural conjecture: Ising minimizes $c \propto \langle T_{\mu\nu}T_{\rho\sigma} \rangle$ [El-Showk, Paulos, Poland, Rychkov, DSD, Vichi '14]

$c \ {\rm at} \ {\rm High} \ {\rm Precision}$

Spectrum from *c*-Minimization [EI-Showk, Paulos,

Poland, Rychkov, DSD, Vichi '14]

year	Method	u	η	ω
1998	ϵ -exp	0.63050(250)	0.03650(500)	0.814(18)
1998	3D exp	0.63040(130)	0.03350(250)	0.799(11)
2002	ΗT	0.63012(16)	0.03639(15)	0.825(50)
2003	MC	0.63020(12)	0.03680(20)	0.821(5)
2010	MC	0.63002(10)	0.03627(10)	0.832(6)
	<i>c</i> -min	0.62999(5)	0.03631(3)	0.8303(18)

Critical exponents:

$$\Delta_{\sigma} = 1/2 + \eta/2, \quad \Delta_{\epsilon} = 3 - 1/\nu, \quad \Delta_{\epsilon'} = 3 + \omega.$$

1 Bounds in 3d CFTs

3 Future Directions

Mixed Correlators [Kos, Poland, DSD '14]

- So far, bootstrap studies have focused on 4-pt function of identical operators $\langle \phi \phi \phi \phi \rangle$.
- Full bootstrap requires crossing-symmetry & unitarity for all 4-pt functions.
- Mixed correlator: $\langle \sigma \sigma \epsilon \epsilon \rangle$ in 3d Ising.
- Consequences of unitarity are trickier:

$$\langle \sigma \sigma \epsilon \epsilon \rangle = \sum_{\mathcal{O}} f_{\sigma \sigma \mathcal{O}} f_{\epsilon \epsilon \mathcal{O}} g_{\Delta, \ell}(u, v)$$

 $f_{\sigma\sigma\mathcal{O}}f_{\epsilon\epsilon\mathcal{O}}$ not necessarily positive.

Positivity for Mixed Correlators

• Consider $\langle \sigma \sigma \sigma \sigma \rangle$, $\langle \sigma \sigma \epsilon \epsilon \rangle$, $\langle \epsilon \epsilon \epsilon \epsilon \rangle$ together. Crossing symmetry says:

$$\sum_{\mathcal{O}} \left(f_{\sigma\sigma\mathcal{O}} \quad f_{\epsilon\epsilon\mathcal{O}} \right) \begin{pmatrix} F_{\Delta,\ell}^{(1,1)}(u,v) & F_{\Delta,\ell}^{(1,2)}(u,v) \\ F_{\Delta,\ell}^{(2,1)}(u,v) & F_{\Delta,\ell}^{(2,2)}(u,v) \end{pmatrix} \begin{pmatrix} f_{\sigma\sigma\mathcal{O}} \\ f_{\epsilon\epsilon\mathcal{O}} \end{pmatrix} + \dots = 0$$

• Look for functionals $\alpha:F(u,v)\rightarrow \mathbb{R}$ such that

$$\begin{pmatrix} \alpha(F_{\Delta,\ell}^{(1,1)}) & \alpha(F_{\Delta,\ell}^{(1,2)}) \\ \alpha(F_{\Delta,\ell}^{(2,1)}) & \alpha(F_{\Delta,\ell}^{(2,2)}) \end{pmatrix} \succeq 0$$

is positive semidefinite. Analog of $\alpha(F_{\Delta,\ell}) \geq 0$.

Mixed Correlator Bound for $CFT_3 w / \mathbb{Z}_2$

- Monte-Carlo, c-min conjecture, rigorous bound
- Assuming σ, ϵ are only relevant scalars.

Outline

1 Bounds in 3d CFTs

2 Mixed Correlators

Future Directions

- Improve optimization algorithms/precision
- Find more boundary-dwelling CFTs ([3d, 5d: Nakayama, Ohtsuki] [4d N = 2, 4, 6d N = (2, 0): Beem, Lemos, Liendo, Peelaers, Rastelli, van Rees] [4d N = 4 Alday, Bissi] [3d N = 8: Chester, Lee, Pufu, Yacoby])
- Mixed correlators in other theories
- Four-point functions of operators with spin (stress tensor, symmetry currents)
- Nonlocal operators [Liendo, Rastelli, van Rees '12] [Gaiotto, Mazac, Paulos '13]
- Analytic results, new consistency conditions