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In QFTs,  the entanglement entropy (EE)  provides us 

a universal physical quantity (~order parameter). 

For example, we can characterize the degrees of freedom

of CFTs  (~central charges) from the EE for ground states.

(i)   2d CFT

(ii)  3d CFT

(iii) 4d CFT

① Introduction

[Holzhey-Larsen-Wilczek 94, 
Calabrese-Cardy 04,..]

[Ryu-TT 06, Solodukhin 08, 
Sinha-Myers 10, 
Casini-Huerta-Myers 11,…]

[F-th: Jafferis-Klebanov-Pufu-Safdi 11,
Entropic proof: Casini-Huerta  12]



It is also helpful to look at  (n-th) Renyi entanglement   

entropy (REE) which generalizes the EE :

If we know all of          , we find all eigenvalues of       .

(so called entanglement spectrum)  
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In gravity,  we might expect that quantum entanglement

gives a quantum bit of spacetime (~ a plank size unit) .

(i)  BH entropy
[Bekenstein 73, Hawking 75,…]

(ii)  Holographic EE (HEE)         (iii)  Entanglement/Gravity
[Ryu-TT 06, Hubeny-Rangamani-TT 07,…]     [Swingle 09, Raamsdonk 09,

Myers 12, … ]
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The entanglement entropy is also a useful quantity 

to characterize excited states.

Well-studied examples are quantum quenches: 

[Calabrese-Cardy 05, 07,  …., Liu’s talk]

(a)  Global quantum quenches

(b)  Local quantum quenches 

Here we want to focus on more elementary excited states:

(c)  Local operator insertions at a time  

⇒ (The main aim of this talk)
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~ Loss of information when we assume                      

that the region B  is invisible. 

~ ``degrees of freedom’’ of the operator O.
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Consider excited states defined by local operators: 

We study



Two limits

(1)

In this case, we find a property analogous to 

the first law of thermodynamics:    

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13,

Wong-Klich-Pando Zayas-Vaman 13 …,  Raamsdonk’s talk]

(2)

This leads to a very `entropic’ quantity !

⇒ The main purpose of this talk.
[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14, 

Caputa-Nozaki-TT 14]                                                                            
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(2-1) Replica method for ground states

A basic method to find EE in QFTs is the replica method.

In the path-integral formalism, the ground state wave 

function          can be expressed as follows:
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② Replica Calculations of EE for locally excited states 



Then we can express 

as follows:                                            BA Tr abA ][
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(2-2) Replica Method for Excited States

We want to calculate                   for  

 operator. for theregulator   UV theis   where
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In this way, the Renyi EE can be expressed in terms of

correlation functions (2n-point function etc.) on Σn :
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We focus on the free massless scalar field theory on Σn

and calculate 2n-pt functions using the Green function:
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③ Case 1: Free scalar CFTs in any dimensions
[Numasawa-Nozaki-TT 14]



Time evolution in free massless scalar theory
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Heuristic Explanation

First , notice that in free CFTs, there are definite 
(quasi) particles moving at the speed of light.
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④ Case 2: Rational 2d CFTs

(4-1) Free Scalar CFT in 2d

Consider following two operators in the free scalar CFT:

(i)   

(ii) 
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⇒Direct  product  state

⇒ EPR  state

[He-Numasawa-Watanabe-TT 14]



(4-2) General Results for 2d Rational CFTs

First, focus on n=2 REE and assume O = a primary op.

We can employ the following conformal map:

It is straightforward to rewrite the n=2 REE in terms of 

4-pt functions on                 .
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We can show that the limit                leads to 

(i) Early time:

(ii) Late time:

Note: It is straightforward to confirm 

at early time (i).  
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In terms of conformal block, we find at late time:

where                   is so called the fusion matrix, defined by
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Then the n=2 REE is simply expressed at late time:

In rational 2d CFTs,  we can rewrite this in term of 

the quantum dimension 

as follows:

Actually, more generally we can prove

for any n.
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Example: Ising model
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⑤ Case 3: Large N CFTs and AdS/CFT

(5-1) Free U(N) Yang-Mills at large N
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Actually, the behavior                               is easy to explain.

cf.  Log [N] behavior for a heavy quark 

[Lewkowycz-Maldacena 13]
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(5-2) Holographic Results from AdS/CFT

CFTs dim in   )2( dS n
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⇒ Holographic 2n-point functions 
in (d+1) dim. topological AdS BH
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This calculation is based on naïve large N limit. 
Thus  the n=1 limit and the late time limit t=∞ are not trustable.

For n=1 (EE),  we can employ the HEE formula 
to find            directly. [Nozaki-Numasawa-TT 13]  
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⑥ Conclusions
In the large limit of A,  the (Renyi) EEs              for a locally excited 
state describe the `degrees of freedom’ of a given local operator.  

• Monotonic time evolution describes entangled pair propagation.

• The final values                 can be explained by entanglement           

of  finite number of states such as EPR states.  

• They are topological invariant against deformations of A.

• In 2d rational CFTs,                  is given by the log of quantum 

dimension. [cf. Topological EE: Kitaev-Preskill, Levin-Wen 05]

• In large N CFTs,  1/N subleading terms get important at n=1.   

The von-Neumann EE sees N2 degrees of freedom, while REE not. 

• In strongly coupled large N CFTs, we find a logarithmic time evolution.

(Does it approach to finite value or not ? –future problem.)  
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One lesson:

The Renyi EE and von-Neumann EE behave differently !

In QFTs,  the Renyi EE (REE) is easier to compute.

In Gravity,  the von-Neumann EE (EE) is simpler.

⇒ Why ??

~High temp.~Low temp.


