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) Introduction

In QFTs, the entanglement entropy (EE) provides us
a universal physical quantity (Yorder parameter).

For example, we can characterize the degrees of freedom
of CFTs (~central charges) from the EE for ground states.

(i) 2d CFT SA — E]Og L [Holzhey-Larsen-Wilczek 94,
Calabrese-Cardy 04,..
E lab d ]
(“) 3d CFT S =y ,i_ F. [F-th: Jafferis-Klebanov-Pufu-Safdi 11,
A(=S") P Entropic proof: Casini-Huerta 12]
(iii) 4d CFT |
[ [ [Ryu-TT 06, Solodukhin 08,

SA(:S2) =V T 4a - log — TS, Sinha-Myers 10,
& & Casini-Huerta-Myers 11,...]



’Il H,=H,®H; .

B pAzTrB“PX‘P‘ .
It is also helpful to look at (n-th) Renyi entanglement
entropy (REE) which generalizes the EE :

1

|7

S = ——-logTr|(p,)"].

limS” =-Tr[p, logp,]= . (Trlp]=1D).

n—1

If we know all of Si{”) , we find all eigenvalues of P ;.
(so called entanglement spectrum)



In gravity, we might expect that quantum entanglement
gives a quantum bit of spacetime (~ a plank size unit) .

(i) BH entropy o Area (X) _ Area(X)
BH

: : ~ D-2 °
[Bekenstein 73, Hawking 75,...] 4G | (/,)

(ii) Holographic EE (HEE) (iii) Entanglement/Gravity

[Ryu-TT 06, Hubeny-Rangamani-TT 07,...] [Swingle 09, Raamsdonk 09,
. i Area i Myers 12, ... ]
S, = Min (74)
4G

= AdS

Planck length




The entanglement entropy is also a useful quantity
to characterize excited states.

Well-studied examples are guantum quenches:
[Calabrese-Cardy 05, 07, ...., Liu’s talk]
lobal ntum nch
(a) Global quantum quenches m(t)

S,occ-(t/e) . J_‘ ‘

t*

(b) Local guantum quenches

Joint

S cc-log(t/s) . 2e 45—

Here we want to focus on more elementary excited states:
(c) Local operator insertions at a time
= SA = ? (The main aim of this talk)



Consider excited states defined by local operators:

0(x)) = 0(x)]0).

We study ASX]) = S'(A”)HO(X»]— Sf\”)ﬂ0>] '

(n) . .
SA ~ Loss of information when we assume

that the region B is invisible.

~ “degrees of freedom’’ of the operator O.



Two limits ‘I ZB

(1) / — 0 limit (= small energy limit)
In this case, we find a property analogous to

the first law of thermodynamics: AS,@"OHOCAEA

[Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13,
Wong-Klich-Pando Zayas-Vaman 13 ..., Raamsdonk’s talk]

(2) / - oo limit (~ large energy limit)
This leads to a very entropic’ quantity !

= The main purpose of this talk.

[Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14,
Caputa-Nozaki-TT 14]
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(2 Replica Calculations of EE for locally excited states

(2-1) Replica method for ground states
A basic method to find EE in QFTs is the replica method.

0

S, Z_a_ logTr, (pA )n et
14

In the path-integral formalism, the ground state wave
function |'¥) can be expressed as follows:

} Path integrate
= x X




Then we can express
0, :TrB‘\PX\P‘ as follows: [0al =

Glue each boundaries successively. —® o0

Tr (PA )n =

Z(Z.) n -sheeted
B Z(z,)" " Riemannsurface X,

n sheets {



(2-2) Replica Method for Excited States

We want to calculate Tr(p,)" for

pa(t,x) =e"e™O(x)|0)(0|O(x)e " e™
=O(z,,X)[0)(0|O(z;, X),
(r,=—c—1It, 1, =—€+I1),
where ¢ Is the UV regulator for the operator.

Here we considerad +1dim. CFTon R%™.
(7,%, %X, X, ) e R = Weset x +ir=re".



In this way, the Renyi EE can be expressed in terms of

correlation functions (2n-point function etc.) on 2n :

i'[log<0<r.,6.“)0(';,9;')---0(nﬁﬁ)O(reﬁe%

ASY =

~n-1og(0(r, 6, )0 6,)), |

‘

O(ry, OF)O(re, 6F)

|
4 |

r/ X /,' . : J

e -3 A /
X |
(9(7“1, 9f+1)0(rey 0§+1):
T _— 2 |

/ = // AN J zn

K ‘o1’

~ 4 A /

n-sheets

x
~
do=_ 1wl




(3 Case 1: Free scalar CFTs in any dimensions
[Numasawa-Nozaki-TT 14]

We focus on the free massless scalar field theory on 2n
. d+1
s = [d*x[o, g0"¢]
and calculate 2n-pt functions using the Green function:

1 a1/n . a—l/n

Anzrs(a—1/a) a’"+a " —2cos((@—¢)/n)’

rs
= _ ? AT
1+a® |X—=V [ +r°+s° O.(T’H’x> 9

Gy [(r, 0, %) (s, 0, V)] =

where

The operator O Is chosen as
O, =:¢"




Time evolution in free massless scalar theory

ASP) for O=¢: (ie.k=1) (

Note:

0.8
0.6

04F

2 dim. (O =¢"")

Operator
n) f !
AS (™ -
Interested y o
quantities | | e
[ <

4

2t
E.g. ASigm = Iog( j

t? +1°

ASX‘” is topologically invariant’
under deformations of A.

Wechose x, =-I with | =10

|




AS(M' for O=¢" in d+1>2dim.

TABLE 1. ASY and ASY, (: ASDT ) for free massless

scalar field theories in dimensions higher than two (d > 1).

nlk=1 k=2 k=1
2 lflog 2 logg — log (5%1‘ Z;:u (ICJ)Q)
ASTY | 3fl10g2 | Llog 32 = log (2,.—1I >0 (16'3)3)
Ren\li :
Entr :
2m—1 ™
m\ log 2 ﬁlogﬁn—_iﬁ ﬁlog(g_rjr_ﬂ Z;:D(ij) )
AS% |1 Nog: = log 2 : JIDEQ—%Z;:DECJ log1C;
EE

EPR state !

[For a proof: Nozaki 14]




Heuristic Explanation

First , notice that in free CFTs, there are definite
(quasi) particles moving at the speed of light.

= ¢= ¢ + ¢y - |L=A|R=B

left-moving  right -moving
#|vac)~ 3 Ci- () (4:)" | vac)
_ k : :
=2 k/Zijo‘\/ kCJ' ‘ J>|_‘k_ J>R'

= AS{' :ilog[?”kzl;:o (ij)”] Agree with
f 1-n o  replica
AS, =klog2-2- ijo C;-log[,C;]. | calculations !



@ Case 2: Rational 2d CFTs [He-Numasawa-Watanabe-TT 14]
(4-1) Free Scalar CFT in 2d

Consider following two operators in the free scalar CFT:

(i) O =¢e": = AS{' =0.

O,)=¢e'"*|0) ®e'“*|0) = Direct product state
L R

(i) O,=e":+:e7: = AS{"" =log2.

0,)=¢"4|0), ®e“[0), +e“4[0), @& 0),
DM+ V). = PR state



(4-2) General Results for 2d Rational CFTs

First, focus on n=2 REE and assume O = a primary op.
We can employ the following conformal map: 22 AN 21

z=~Jw=+re' .

It is straightforward to rewrite the n=2 REE in terms of
4-pt functions on X, = C.

(O(w,, W,)O(W,, W, )O(W,, W )O(W,, W, ))

:l 213245, |_4AO 'GO(Z’ Z)-

w, =—i(e+it) =1, W, =i(e+it)—1.

w, =i(e—1t)-1, w, =-1(e—it)—1I,
L1923, _

: : L., L
.27 _ p27 13524
W, =e"wW, W,=€"W,. 3



We can show that the limit & —> O leads to

(i) Earlytime: ) <t <|
(z,2) = (O(£°),0(£%)) —(0,0).

) . Chiral Fusion
(i) Latetime: t > | Transformation

(z,Z) = 1+0(&?),0(£%)) — (1,0). 212

O(x) )
; Subsystem A

—1 0
Note: It is straightforward to confirm
ASX‘) — (0 at early time (i).

» X



In terms of conformal block, we find at late time:

O O
GO(Z’Z)ZZCSO'FO(MZ)'Ifo(mz) 2 >—<
p rg P o

= Fo(112)-F(112)

(z,Z
—(1,0)

= F, ,[0]-(1—2z) % .77,
where Fp,q [O] is so called the fusion matrix, defined by

Fo(pll-2)=> F, [O]-Fy(q] 2).

O O O O
X <

O O O O



Then the n=2 REE is simply expressed at late time:
AS?" =—log F, ,[O].

In rational 2d CFTs, we can rewrite this in term of
the quantum dimension d ,

_Sio 1

O — — )
S| N I:| N [O] [Moore-Seiberg 89]

as follows: AS{?" =logd,, .
Actually, more generally we can prove ASX‘” =logd,
for any n.



Example: Ising model

3 conformal blocks: [1], [o], [£].
[HI®[1]=[1]. [e]® [e]=[1]. =d, =d, =1.

[6]1®[o]=[11®[¢].
= [o]" = [1®[e)" =2 [11®2" " [¢]

2N particles

—d_=+/2.
Thus wefind: 4SY[1]=4SV[£]=0,
AS™[5] = log /2.



(5 Case 3: Large N CFTs and AdS/CFT [caputa-Nozaki-TT 14]
(5-1) Free U(N) Yang-Mills at large N

We choose O(X) = TI’[CI)(X)J ] (@ = N x N Hermitian matrix scalar)

Forexample, when J =2, wefind theexactresult:

AS/&n)f _ ]j-n Iog[21‘2” 42 J>I 2(1—Jn)]

can be neglected only if n>1

In general, we find
if n>1 = AS(' :‘]n—_11I092+O(N2).

Jn_ Enhance
if n=1 = ASP" ==logN +O(N™?). at n=1

2 ~deconfinement ?



Actually, the behavior ASQ" « J log N is easy to explain.

Tr|(@, +®,)’ ||0)
= ((I)L)ala2 '”((DL)aJ_laJ ‘O>|_ ®((I)R)ala2 ”'(CDR)aJ_laJ ‘O>R T

N

EE ~ J-Log[N?]

cf. Log [N] behavior for a heavy quark

[Lewkowycz-Maldacena 13]



(5-2) Holographic Results from AdS/CFT

AS{™? in d dim CFTs

= Holographic 2n-point functions (M - 4nAO t
. . . AS — | .
in (d+1) dim. topological AdS BH T (n— 1) P

This calculation is based on naive large N limit.
Thus the n=1 limit and the late time limit t=c< are not trustable.

For n=1 (EE), we can employ the HEE formula
to find ASS) directly. [Nozaki-Numasawa-TT 13] A

For 2d CFT (AdS,/CFT,), I/2|

t )
ASY ~ %o (
~ 5 9

&) Boundary ’ z(z)l\fm




® Conclusions

In the large limit of A, the (Renyi) EEs AS,&”) for a locally excited
state describe the ‘degrees of freedom’ of a given local operator.

* Monotonic time evolution describes entangled pair propagation.

 The final values ASX‘” can be explained by entanglement
of finite number of states such as EPR states.
 They are topological invariant against deformations of A.

* |n 2d rational CFTs, AS(An)f is given by the log of quantum
dimension. [cf. Topological EE: Kitaev-Preskill, Levin-Wen 05]
 Inlarge N CFTs, 1/N subleading terms get important at n=1.

The von-Neumann EE sees N? degrees of freedom, while REE not.

In strongly coupled large N CFTs, we find a logarithmic time evolution.
(Does it approach to finite value or not ? —future problem.)



One lesson:

The Renyi EE and von-Neumann EE behave differently !
~Low temp. ~High temp.

In QFTs, the Renyi EE (REE) is easier to compute.

In Gravity, the von-Neumann EE (EE) is simpler.

= Why ??



