Entanglement Negativity in Conformal Field Theory

Erik Tonni
SISSA
(Trieste, Italy)

P. Calabrese, J. Cardy and E.T.;	$[1206.3092]$
	$[1210.5359]$
P. Calabrese, L. Tagliacozzo and E.T.;	$[1302.1113]$
A. Coser, L. Tagliacozzo and E.T.;	$[1309.2189]$
P. Calabrese, A. Coser and E.T.;	$[14 x x . x x x x]$

Strings 2014
Princeton, June 2014

Outline

\rightarrow Entanglement in 2D CFT:
O Motivations for negativity and definitions
\bigcirc Entanglement entropies for disjoint intervals
\bigcirc Entanglement negativity: pure and mixed states
Entanglement negativity after a global quantum quench

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

B
$\begin{gathered}\text { Entanglement } \\ \text { entropy }\end{gathered} \quad S_{A} \equiv-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{Tr} \rho_{A}^{n}\right)}{1-n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}$
$\square S_{A}=S_{B}$ for pure states

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

$\begin{gathered}\text { Entanglement } \\ \text { entropy }\end{gathered} \quad S_{A} \equiv-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=\lim _{n \rightarrow 1} \frac{\log \left(\operatorname{Tr} \rho_{A}^{n}\right)}{1-n}=-\lim _{n \rightarrow 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_{A}^{n}$
$\square S_{A}=S_{B}$ for pure states

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

$\square S_{A}=S_{B}$ for pure states

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix $\rho_{A}=\operatorname{Tr}_{B} \rho$

Rényi entropies

Entanglement entropy

\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B}$

$$
\rho_{A_{1} \cup A_{2}} \text { is mixed }
$$

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix $\rho_{A}=\operatorname{Tr}_{B} \rho$

Rényi entropies

Entanglement entropy

\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$\square S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B Entanglement between A_{1} and A_{2} ?

Motivations for Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

Rényi entropies

Entanglement entropy

\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$\square S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B
Entanglement between A_{1} and A_{2} ?
\square The mutual information $S_{A_{1}}+S_{A_{2}}-S_{A_{1} \cup A_{2}}$ gives an upper bound
\square A computable measure of the entanglement is the logarithmic negativity [Vidal, Werner, (2002)]

Partial transpose \& Negativity: definitions

$\square \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state

Partial transpose \& Negativity: definitions

$\square \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state
$\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left.\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle\right) \quad\left(\left|e_{i}^{(k)}\right\rangle \text { base of } \mathcal{H}_{A_{k}}\right)
$$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]

Partial transpose \& Negativity: definitions

$\square \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state
$\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle \quad\left(\left|e_{i}^{(k)}\right\rangle \text { base of } \mathcal{H}_{A_{k}}\right)
$$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]

- Trace norm

$$
\left|\left|\rho^{T_{2}} \|=\operatorname{Tr}\right| \rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i}
$$

λ_{j} eigenvalues of $\rho^{T_{2}}$ $\operatorname{Tr} \rho^{T_{2}}=1$

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state
$\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]
\square Trace norm $\quad\left|\left|\rho^{T_{2}}\right|\right|=\operatorname{Tr}\left|\rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i}\left\{\begin{array}{l}\lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ \operatorname{Tr} \rho^{T_{2}}=1\end{array}\right.$
Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

\mathcal{E} measures "how much" the eigenvalues of $\rho^{T_{2}}$ are negative

Partial transpose \& Negativity: definitions

$\square \quad \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state
$\rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]
\square Trace norm $\left|\left|\rho^{T_{2}}\right|\right|=\operatorname{Tr}\left|\rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i}\left\{\begin{array}{l}\lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ \operatorname{Tr} \rho^{T_{2}}=1\end{array}\right.$
Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

\mathcal{E} measures "how much" the eigenvalues of $\rho^{T_{2}}$ are negative
\square Bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ in any state $\rho \quad \longrightarrow \quad \mathcal{E}_{1}=\mathcal{E}_{2}$

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\left.\left.\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\right) \quad \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}=\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}}, \rho^{T_{2}}\right)^{n_{o}}=\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}$.
\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]
$$

$$
\lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\ \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}} & =\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}\end{aligned}$
\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\left.\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]\right) \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

Pure states $\rho=|\Psi\rangle\langle\Psi|$ and bipartite system $\left(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]
\square A parity effect for $\left.\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\right) \quad \begin{aligned} & \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}=\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\ & \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}\end{aligned}$
\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\left.\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]\right) \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

Pure states $\rho=|\Psi\rangle\langle\Psi|$ and bipartite $\operatorname{system}\left(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

Replica approach to Negativity

[Calabrese, Cardy, E.T., (2012)]

\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\left.\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]\right) \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

\square Pure states $\rho=|\Psi\rangle\langle\Psi|$ and bipartite $\operatorname{system}\left(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

\square Taking $n_{e} \rightarrow 1$ we have

$$
\mathcal{E}=2 \log \operatorname{Tr} \rho_{2}^{1 / 2}
$$

(Renyi entropy $1 / 2$)

2D CFT: Renyi entropies as corvelation functions

$\operatorname{Tr} \rho_{A}^{n}$

2D CFT: Renyi entropies as corvelation functions

\square One interval $(N=1)$: the Renyi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

$$
\left.\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{1, n}}{\mathcal{Z}^{n}}=\left\langle\mathcal{T}_{n}(u) \overline{\mathcal{T}}_{n}(v)\right\rangle=\frac{c_{n}}{|u-v|^{2 \Delta_{n}}}\right)
$$

$$
\Delta_{n}=\frac{c}{12}\left(n-\frac{1}{n}\right)
$$

\square Twist fields have been largely studied in the 1980s [Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

2D CFT: Renyi entropies as corvelation functions

\square One interval $(N=1)$: the Renyi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

\square Twist fields have been largely studied in the 1980s [Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

A_{1}		A_{2}		A_{N-1}		A_{N}	
u_{1}	v_{1}	u_{2}	v_{2}	u_{N-1}	v_{N-1}	u_{N}	v_{N}
\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \quad \mathcal{F}_{N, n}(\boldsymbol{x})
$$

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular
Riemann surface of genus $g=(N-1)(n-1)$
obtained through replication

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

A		A_{2}		A_{N-1}		A_{N}	
u_{1}	v_{1}	u_{2}	v_{2}	u_{N-1}	v_{N-1}	u_{N}	v_{N}
\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}	$\overline{\mathcal{T}}_{n}$

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \mathcal{F}_{N, n}(\boldsymbol{x})
$$

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular Riemann surface of genus $g=(N-1)(n-1)$ obtained through replication

Periodic harmonic chain

\square Harmonic chain on a circle (critical for $\omega=0$)

$$
H=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right]
$$

[Peschel, Chung, (1999)] [Botero, Reznik, (2004)] [Audenaert, Eisert, Plenio, Werner,(2002)]

Periodic harmonic chain

\square Harmonic chain on a circle (critical for $\omega=0$)

$$
H=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right]
$$

[Peschel, Chung, (1999)] [Botero, Reznik, (2004)] [Audenaert, Eisert, Plenio, Werner,(2002)]

\square Decompactification regime
[Dijkgraaf, Verlinde, Verlinde, (1988)] [...] [Coser, Tagliacozzo, E.T., (2013)]

$$
\mathcal{F}_{N, n}^{\mathrm{dec}}(\boldsymbol{x})=\frac{\eta^{g / 2}}{\sqrt{\operatorname{det}(\mathcal{I})}|\Theta(\mathbf{0} \mid \tau)|^{2}}
$$

\square period matrix $\tau=\mathcal{R}+\mathrm{i} \mathcal{I}$ [Enolski, Grava, (2003)]
\square Riemann theta function Θ
\rightarrow Nasty n dependence

Periodic harmonic chain

\square Harmonic chain on a circle (critical for $\omega=0$)

$$
H=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right]
$$

[Peschel, Chung, (1999)] [Botero, Reznik, (2004)] [Audenaert, Eisert, Plenio, Werner,(2002)]

\square Decompactification regime
[Dijkgraaf, Verlinde, Verlinde, (1988)] [...] [Coser, Tagliacozzo, E.T., (2013)]

$$
\mathcal{F}_{N, n}^{\mathrm{dec}}(\boldsymbol{x})=\frac{\eta^{g / 2}}{\sqrt{\operatorname{det}(\mathcal{I})}|\Theta(\mathbf{0} \mid \tau)|^{2}}
$$

\square period matrix $\tau=\mathcal{R}+\mathrm{i} \mathcal{I}$ [Enolski, Grava, (2003)]
\square Riemann theta function Θ
Nasty n dependence

\square Numerical checks for the Ising model through Matrix Product States

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]
\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
B	u_{1}	A_{1}	$\bar{v}_{1} B$	${ }^{u} u_{2}$	A_{2}	\bar{v}_{2}	B

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
[Caraglio, Gliozzi, (2008)]
[Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)]
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

$$
\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}
$$

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle$
\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Renyi entropies us traces of the Partial Transpose

Renyi entropies us traces of the Partial Transpose

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

Renyi entropies us traces of the Partial Transpose

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$

Partial Transposition for bipartite systems: pure states

Partial Transposition for bipartite systems: pure states

$$
\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}
$$

Partial Transposition for bipartite systems: pure states

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle$
Partial $=$ exchange Transposition $=$ two twist fields

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}
\end{aligned}
$$

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}
\end{aligned}
$$

\square Two dimensional CFTs

$n=4$

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}
\end{aligned}
$$

\square Two dimensional CFTs

$$
\Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}}
$$

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$
\square

$$
\left.\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle\right)
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2}$
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}$
\square Two dimensional CFTs

$$
\Delta_{\mathcal{T}_{n_{o}}^{2}}=\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)=\Delta_{\mathcal{T}_{n_{o}}} \quad \Delta_{\mathcal{T}_{n_{e}}^{2}}=\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)
$$

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle$
$\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}\text { exchange } \\ \text { two twist fields }\end{gathered}$
$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one
Even $n=n_{e} \Longrightarrow$ decoupling

Partial Transpose in 2D CFT: two adjacent intervals

B
A_{1}
A_{2}
B

Partial Transpose in 2D CFT: two adjacent intervals

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

Partial Transpose in 2D CFT: two adjacent intervals

B	A_{1}	A_{2}	B
$\mathcal{T}_{n}\left(-\ell_{1}\right)$	$\overline{\mathcal{T}}_{n}^{2}(0)$		$\mathcal{T}_{n}\left(\ell_{2}\right)$

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}+\frac{1}{n_{e}}\right)} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}
\end{aligned}
$$

Partial Transpose in 2D CFT: two adjacent intervals

B	A_{1}		A_{2}
$\mathcal{T}_{n}\left(-\ell_{1}\right)$	$\overline{\mathcal{T}}_{n}^{2}(0)$		$\mathcal{T}_{n}\left(\ell_{2}\right)$

\square Three point function

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}} \propto\left(\ell_{1} \ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}-\frac{2}{n_{e}}\right)}\left(\ell_{1}+\ell_{2}\right)^{-\frac{c}{6}\left(\frac{n_{e}}{2}+\frac{1}{n_{e}}\right)} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}} \propto\left(\ell_{1} \ell_{2}\left(\ell_{1}+\ell_{2}\right)\right)^{-\frac{c}{12}\left(n_{o}-\frac{1}{n_{o}}\right)}
\end{aligned}
$$

\square

$$
\mathcal{E}=\frac{c}{4} \ln \left(\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\right)+\mathrm{const}
$$

Partial Transpose in 2D CFT: two disjoint intervals

Partial Transpose in 2D CFT: two disjoint intervals

Partial Transpose in 2D CFT: two disjoint intervals

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ by exchanging two twist fields

$$
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right)
$$

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ by exchanging two twist fields

$$
\begin{gathered}
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right) \\
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1}\left[\mathcal{F}_{n}\left(\frac{y}{y-1}\right)\right]
\end{gathered}
$$

Two adjacent intervals: harmonic chain \& Ising model

\square Critical periodic harmonic chain Finite system: $\ell \longrightarrow(L / \pi) \sin (\pi \ell / L)$

$$
r_{n}=\ln \frac{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}}=\ell}\right)^{n}}{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=L / 4}}\right)^{n}}
$$

$$
\frac{1}{4} \log \frac{\sin \left(\pi \ell_{1} / L\right) \sin \left(\pi \ell_{2} / L\right)}{\sin \left(\pi\left[\ell_{1}+\ell_{2}\right] / L\right)}+\mathrm{cnst}
$$

Two adjacent intervals: harmonic chain \& Ising model

\square Critical periodic harmonic chain
Finite system: $\ell \longrightarrow(L / \pi) \sin (\pi \ell / L)$

$$
r_{n}=\ln \frac{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=\ell}}\right)^{n}}{\operatorname{Tr}\left(\rho_{A}^{T_{A_{2}=L / 4}}\right)^{n}}
$$

$$
\frac{1}{4} \log \frac{\sin \left(\pi \ell_{1} / L\right) \sin \left(\pi \ell_{2} / L\right)}{\sin \left(\pi\left[\ell_{1}+\ell_{2}\right] / L\right)}+\mathrm{cnst}
$$

\square Ising model:
Monte-Carlo analysis [Alba, (2013)]

Tree Tensor Network [Calabrese, Tagliacozzo, E.T., (2013)]

Two disjoint intervals: periodic harmonic chains

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains

[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Two disjoint intervals
[Calabrese, Cardy, E.T., (2012)]

CFT curves

$$
R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}}
$$

$$
R_{n}=\left[\frac{(1-y)^{\frac{2}{3}\left(n-\frac{1}{n}\right)} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(y) F_{\frac{k}{n}}(1-y)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{y}{y-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-y}\right)\right)}\right]^{\frac{1}{2}}
$$

Two disjoint intervals: periodic harmonic chains

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains
[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Two disjoint intervals
[Calabrese, Cardy, E.T., (2012)]

CFT curves
$R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}}$
$R_{n}=\left[\frac{(1-y)^{\frac{2}{3}\left(n-\frac{1}{n}\right)} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(y) F_{\frac{k}{n}}(1-y)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{y}{y-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-y}\right)\right)}\right]^{\frac{1}{2}}$
\square Analytic continuation for $y \sim 1$

Two disjoint intervals: Ising model

Two disjoint intervals: Ising model

$$
0<y<1
$$

\square Tree tensor network:

Global quantum quench: CFT evolution

\square Global quench: \bigcirc System prepared in the ground state $\left|\psi_{0}\right\rangle$ of H_{0}
At $t=0$ sudden change of the Hamiltonian $H_{0} \rightarrow H$
Unitary evolution:

$$
|\psi(t)\rangle=e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle \quad \rho(t)=|\psi(t)\rangle\langle\psi(t)|
$$

Global quantum quench: CFT evolution

\square Global quench: \bigcirc System prepared in the ground state $\left|\psi_{0}\right\rangle$ of H_{0}
At $t=0$ sudden change of the Hamiltonian $H_{0} \rightarrow H$
Unitary evolution:

$$
|\psi(t)\rangle=e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle
$$

$$
\rho(t)=|\psi(t)\rangle\langle\psi(t)|
$$

\square Path integral formulation and critical H : correlation functions on the strip [Calabrese, Cardy, (2005), (2006), (2007)]

Analytic continuation $\tau=\tau_{0}+\mathrm{i} t$, then $t \gg \tau_{0}$ and $\left|u_{i}-u_{j}\right| \gg \tau_{0}$

Global quantum quench: CFT evolution

\square Global quench:
\bigcirc System prepared in the ground state $\left|\psi_{0}\right\rangle$ of H_{0}
\bigcirc At $t=0$ sudden change of the Hamiltonian $H_{0} \rightarrow H$
Unitary evolution:

$$
|\psi(t)\rangle=e^{-\mathrm{i} H t}\left|\psi_{0}\right\rangle
$$

$$
\rho(t)=|\psi(t)\rangle\langle\psi(t)|
$$

\square Path integral formulation and critical H : correlation functions on the strip [Calabrese, Cardy, (2005), (2006), (2007)]

Analytic continuation $\tau=\tau_{0}+\mathrm{i} t$, then $t \gg \tau_{0}$ and $\left|u_{i}-u_{j}\right| \gg \tau_{0}$
\square Rényi entropies and traces of the partial transpose:
$\bigcirc \operatorname{Tr} \rho_{A}^{n} \longrightarrow\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{2 i-1}\right) \overline{\mathcal{T}}_{n}\left(u_{2 i}\right)\right\rangle_{\text {strip }}$
[Calabrese, Cardy, (2005)]
$\bigcirc \operatorname{Tr}\left(\rho_{A}^{T_{0}}\right)^{n} \longrightarrow$ proper sequence of $\mathcal{T}_{n}, \overline{\mathcal{T}}_{n}, \mathcal{T}_{n}^{2}$ and $\overline{\mathcal{T}}_{n}^{2}$ within $\langle\ldots\rangle_{\text {strip }}$ [Calabrese, Coser, E.T., 14xx.xxxx]

Negativity after a global quench: bipartition of the system

\square Global quench of the mass in the periodic harmonic chain

$$
H(\omega)=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right] \quad \omega_{0}=100 \longrightarrow \omega=10^{-5}
$$

Negativity after a global quench: bipartition of the system

\square Global quench of the mass in the periodic harmonic chain

$$
H(\omega)=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right] \quad \xrightarrow{\omega_{0}=100 \longrightarrow \omega=10^{-5}}
$$

\square Bipartition of the system: pure state $\quad \rho(t)=|\psi(t)\rangle\langle\psi(t)| \quad t>0$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}= \begin{cases}\operatorname{Tr} \rho_{A_{2}}^{n} & \text { odd } n \\ \left(\operatorname{Tr} \rho_{A_{2}}^{n / 2}\right)^{2} & \text { even } n \longrightarrow \mathcal{E}_{A_{2}}(t)=S_{A_{2}}^{(1 / 2)}(t)\end{cases}
$$

Negativity after a global quench: bipartition of the system

\square Global quench of the mass in the periodic harmonic chain

$$
H(\omega)=\frac{1}{2} \sum_{j=1}^{L}\left[p_{j}^{2}+\omega^{2} q_{j}^{2}+\left(q_{j+1}-q_{j}\right)^{2}\right]
$$

$$
\omega_{0}=100 \longrightarrow \omega=10^{-5}
$$

\square Bipartition of the system: pure state $\quad \rho(t)=|\psi(t)\rangle\langle\psi(t)| \quad t>0$

$$
\underset{\sim}{\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}= \begin{cases}\operatorname{Tr} \rho_{A_{2}}^{n} & \text { odd } n \\
\left(\operatorname{Tr} \rho_{A_{2}}^{n / 2}\right)^{2}\end{cases} } \begin{aligned}
& \text { even } n
\end{aligned} \longrightarrow \mathcal{E}_{A_{2}}(t)=S_{A_{2}}^{(1 / 2)}(t)
$$

Negativity after a global quench: two adjacent intervals

Sudden death of entanglement

Negativity after a global quench: two disjoint intervals

$\left\langle\mathcal{T}_{n} \overline{\mathcal{T}}_{n} \mathcal{T}_{n} \mathcal{T}_{n}\right\rangle_{\text {strip }}$

Conclusions \& open issues

\square Entanglement for mixed states.
Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson on the line and Ising model
\square Some generalizations:
\rightarrow free compactified boson, systems with boundaries and massive case
\rightarrow topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]

Conclusions \& open issues

\square Entanglement for mixed states.
Entanglement negativity in QFT $(1+1 \mathrm{CFTs}): \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson on the line and Ising model
\square Some generalizations:
\rightarrow free compactified boson, systems with boundaries and massive case
\rightarrow topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
\Rightarrow Further checks of the CFT formulas
Analytic continuations
Finite temperature
Negativity for fermions
Higher dimensions
Interactions
Negativity in AdS/CFT

Conclusions \& open issues

\square Entanglement for mixed states.
Entanglement negativity in QFT $(1+1 \mathrm{CFTs}): \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson on the line and Ising model
\square Some generalizations:
\rightarrow free compactified boson, systems with boundaries and massive case
\rightarrow topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
\Rightarrow Further checks of the CFT formulas
Analytic continuations
Finite temperature
Negativity for fermions
Higher dimensions
Interactions
Negativity in AdS/CFT

Free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad \begin{aligned} & g=(N-1)(n-1) \\ & \text { [Enolski, Grava, (2003)] }\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]
Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{aligned}
& \tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
& \text { period matrix }
\end{aligned}
$$

\square Ising model

$$
\mathcal{F}_{N, n}^{\text {Ising }}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{e}}|\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)|}{2^{g}|\Theta(\mathbf{0} \mid \tau)|}
$$

Nasty n dependence

\square Two intervals case: [Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

