Entanglement Negativity in Conformal Field Theory

Erik Tonni

SISSA

(Trieste, Italy)

P. Calabrese, J. Cardy and E.T.;

 $\boldsymbol{[1206.3092]}$

[1210.5359]

P. Calabrese, L. Tagliacozzo and E.T.;

[1302.1113]

A. Coser, L. Tagliacozzo and E.T.;

[1309.2189]

P. Calabrese, A. Coser and E.T.;

[14xx.xxxx]

Strings 2014

Princeton, June 2014

Outline

Entanglement in 2D CFT:

- Motivations for negativity and definitions
- Entanglement entropies for disjoint intervals
- Entanglement negativity: pure and mixed states
- Entanglement negativity after a global quantum quench

Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Reduced density matrix

$$\rho_A = \mathrm{Tr}_B \rho$$

Entanglement entropy

$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \frac{\log(\text{Tr}\rho_A^n)}{1-n} = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_A^n$$

 \square $S_A = S_B$ for pure states

Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Reduced density matrix

 $\rho_A = \mathrm{Tr}_B \rho$

Rényi _ entropies

Entanglement entropy

$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \left(\frac{\log(\text{Tr}\rho_A^n)}{1-n} \right) = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_A^n$$

 \square $S_A = S_B$ for pure states

Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Reduced density matrix

 $\rho_A = \mathrm{Tr}_B \rho$

Rényi entropies

Entanglement entropy

$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \frac{\log(\text{Tr}\rho_A^n)}{1-n}$$

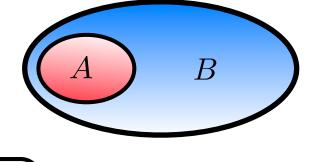
 \square $S_A = S_B$ for pure states

Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Reduced density matrix

$$\rho_A = \mathrm{Tr}_B \rho$$

Rényi entropies



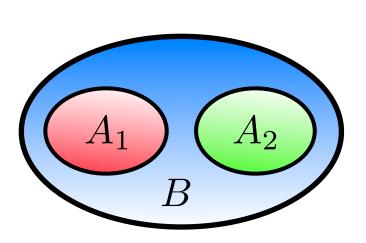
Entanglement entropy

$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \frac{\log(\text{Tr}\rho_A^n)}{1-n}$$

 $S_A = S_B$ for pure states

$$Tripartite system $\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2} \otimes \mathcal{H}_B$$$

 $\rho_{A_1 \cup A_2}$ is mixed

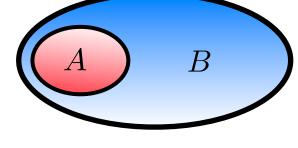


Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

Reduced density matrix

$$\rho_A = \mathrm{Tr}_B \rho$$

Rényi entropies

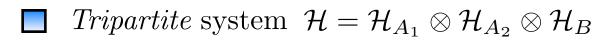


 $Entanglement\\entropy$

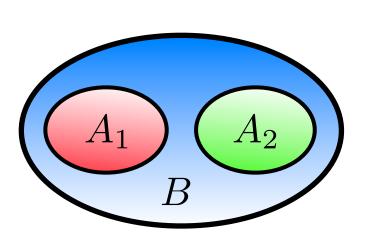
$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \frac{\log(\text{Tr}\rho_A^n)}{1-n}$$

 $\frac{\log(\operatorname{Tr}\rho_A^n)}{1-n} = -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr}\rho_A^n$

 \square $S_A = S_B$ for pure states



 $\rho_{A_1 \cup A_2}$ is mixed



 \blacksquare $S_{A_1 \cup A_2}$: entanglement between $A_1 \cup A_2$ and B

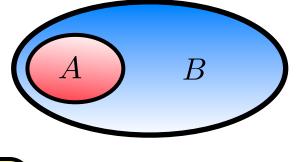
Entanglement between A_1 and A_2 ?

Ground state $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

> Reduced density matrix

$$\rho_A = \operatorname{Tr}_B \rho$$

Rényi entropies

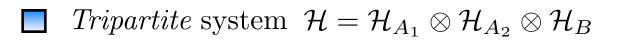


Entanglement entropy

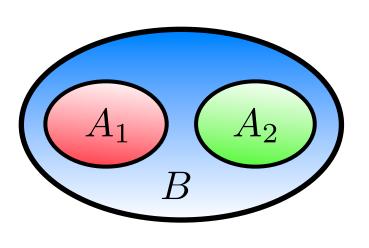
$$S_A \equiv -\text{Tr}(\rho_A \log \rho_A) = \lim_{n \to 1} \frac{\log(\text{Tr}\rho_A^n)}{1-n} =$$

$$= -\lim_{n \to 1} \frac{\partial}{\partial n} \operatorname{Tr} \rho_A^n$$

 \square $S_A = S_B$ for pure states



 $\rho_{A_1 \cup A_2}$ is mixed

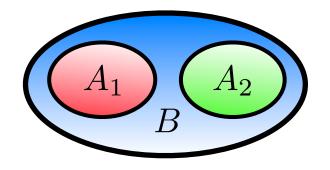


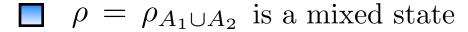
 \blacksquare $S_{A_1 \cup A_2}$: entanglement between $A_1 \cup A_2$ and B

Entanglement between A_1 and A_2 ?

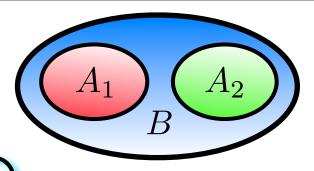
- The mutual information $S_{A_1} + S_{A_2} S_{A_1 \cup A_2}$ gives an upper bound
- A computable measure of the entanglement is the logarithmic negativity [Vidal, Werner, (2002)]

$$\rho = \rho_{A_1 \cup A_2}$$
 is a mixed state





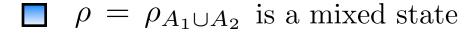
is the partial transpose of ρ



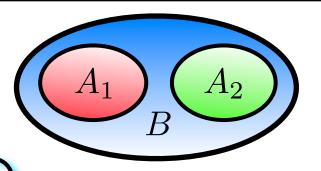
$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

$$(|e_i^{(k)}\rangle$$
 base of \mathcal{H}_{A_k})

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]



is the partial transpose of ρ



$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

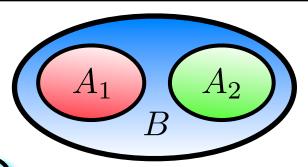
 $(|e_i^{(k)}\rangle$ base of \mathcal{H}_{A_k}

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]

Trace norm
$$||\rho^{T_2}|| = \text{Tr}|\rho^{T_2}| = \sum_i |\lambda_i| = 1 - 2\sum_{\lambda_i < 0} \lambda_i$$

 λ_j eigenvalues of ρ^{T_2} $\operatorname{Tr} \rho^{T_2} = 1$

- $\rho = \rho_{A_1 \cup A_2}$ is a mixed state
 - is the partial transpose of ρ



$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

 $(|e_i^{(k)}\rangle \text{ base of } \mathcal{H}_{A_k})$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]

Trace norm
$$||\rho^{T_2}|| = \text{Tr}|\rho^{T_2}| = \sum_i |\lambda_i| = 1 - 2\sum_{\lambda_i < 0} \lambda_i$$

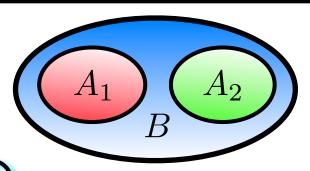
 λ_j eigenvalues of ρ^{T_2} $\operatorname{Tr} \rho^{T_2} = 1$

Logarithmic negativity

$$\mathcal{E}_{A_2} = \ln ||\rho^{T_2}|| = \ln \text{Tr}|\rho^{T_2}|$$

 \mathcal{E} measures "how much" the eigenvalues of ρ^{T_2} are negative

- $\rho = \rho_{A_1 \cup A_2}$ is a mixed state
 - is the partial transpose of ρ



$$\langle e_i^{(1)} e_j^{(2)} | \rho^{T_2} | e_k^{(1)} e_l^{(2)} \rangle = \langle e_i^{(1)} e_l^{(2)} | \rho | e_k^{(1)} e_j^{(2)} \rangle$$

 $(|e_i^{(k)}\rangle \text{ base of } \mathcal{H}_{A_k})$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Vidal, Werner, (2002)]

Trace norm
$$||\rho^{T_2}|| = \text{Tr}|\rho^{T_2}| = \sum_i |\lambda_i| = 1 - 2\sum_{\lambda_i < 0} \lambda_i$$

 λ_j eigenvalues of ρ^{T_2} $\operatorname{Tr} \rho^{T_2} = 1$

Logarithmic negativity

$$\mathcal{E}_{A_2} = \ln ||\rho^{T_2}|| = \ln \text{Tr}|\rho^{T_2}|$$

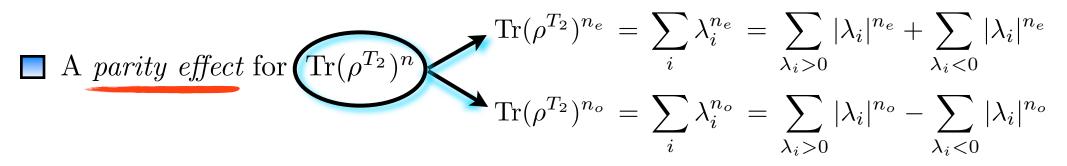
 \mathcal{E} measures "how much" the eigenvalues of ρ^{T_2} are negative

Bipartite system $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ in any state ρ

$$\mathcal{E}_1 = \mathcal{E}_2$$

[Calabrese, Cardy, E.T., (2012)]

[Calabrese, Cardy, E.T., (2012)]



[Calabrese, Cardy, E.T., (2012)]

Tr(
$$\rho^{T_2}$$
) ^{n_e} = $\sum_{i} \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e}$
Tr(ρ^{T_2}) ^{n_o} = $\sum_{i} \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}$

Analytic continuation on the even sequence $\text{Tr}(\rho^{T_2})^{n_e}$ (make 1 an even number)

$$\mathcal{E} = \lim_{n_e \to 1} \log \left[\operatorname{Tr}(\rho^{T_2})^{n_e} \right] \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr} \rho^{T_2} = 1$$

[Calabrese, Cardy, E.T., (2012)]

Tr(
$$\rho^{T_2}$$
) ^{n_e} = $\sum_{i} \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e}$
Tr(ρ^{T_2}) ^{n_o} = $\sum_{i} \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}$

Analytic continuation on the even sequence $\operatorname{Tr}(\rho^{T_2})^{n_e}$ (make 1 an even number)

$$\mathcal{E} = \lim_{n_e \to 1} \log \left[\operatorname{Tr}(\rho^{T_2})^{n_e} \right] \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr} \rho^{T_2} = 1$$

■ Pure states $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2)$

[Calabrese, Cardy, E.T., (2012)]

Tr(
$$\rho^{T_2}$$
) ^{n_e} = $\sum_i \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e}$
Tr(ρ^{T_2}) ^{n_o} = $\sum_i \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}$

Analytic continuation on the even sequence $\text{Tr}(\rho^{T_2})^{n_e}$ (make 1 an even number)

$$\mathcal{E} = \lim_{n_e \to 1} \log \left[\operatorname{Tr}(\rho^{T_2})^{n_e} \right] \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr} \rho^{T_2} = 1$$

Pure states $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2)$

$$\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr} \rho_2^n & n = n_o \text{ odd} \\ \left(\operatorname{Tr} \rho_2^{n/2}\right)^2 & n = n_e \text{ even} \end{cases}$$

[Calabrese, Cardy, E.T., (2012)]

Tr(
$$\rho^{T_2}$$
) ^{n_e} = $\sum_i \lambda_i^{n_e} = \sum_{\lambda_i > 0} |\lambda_i|^{n_e} + \sum_{\lambda_i < 0} |\lambda_i|^{n_e}$
Tr(ρ^{T_2}) ^{n_o} = $\sum_i \lambda_i^{n_o} = \sum_{\lambda_i > 0} |\lambda_i|^{n_o} - \sum_{\lambda_i < 0} |\lambda_i|^{n_o}$

Analytic continuation on the even sequence $\text{Tr}(\rho^{T_2})^{n_e}$ (make 1 an even number)

$$\mathcal{E} = \lim_{n_e \to 1} \log \left[\operatorname{Tr}(\rho^{T_2})^{n_e} \right] \qquad \lim_{n_o \to 1} \operatorname{Tr}(\rho^{T_2})^{n_o} = \operatorname{Tr} \rho^{T_2} = 1$$

Pure states $\rho = |\Psi\rangle\langle\Psi|$ and bipartite system $(\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2)$

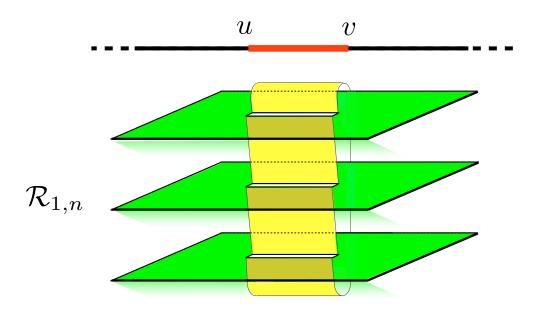
$$\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr} \rho_2^n & n = n_o \text{ odd} \\ \left(\operatorname{Tr} \rho_2^{n/2}\right)^2 & n = n_e \text{ even} \end{cases}$$

Taking $n_e \to 1$ we have $\mathcal{E} = 2 \log \text{Tr} \rho_2^{1/2}$

$$\mathcal{E} = 2\log \mathrm{Tr} \rho_2^{1/2}$$

(Renyi entropy 1/2)

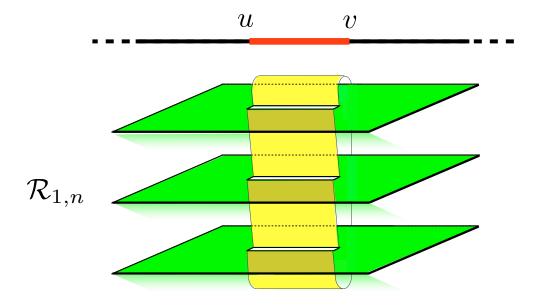
2D CFT: Renyi entropies as correlation functions



 $\mathrm{Tr}\rho_A^n$

2D CFT: Renyi entropies as correlation functions

One interval (N = 1): the Renyi entropies can be written as a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]



$$\operatorname{Tr} \rho_A^n = \frac{\mathcal{Z}_{1,n}}{\mathcal{Z}^n} = \langle \mathcal{T}_n(u)\bar{\mathcal{T}}_n(v)\rangle = \frac{c_n}{|u-v|^{2\Delta_n}}$$

$$\Delta_n = \frac{c}{12}$$

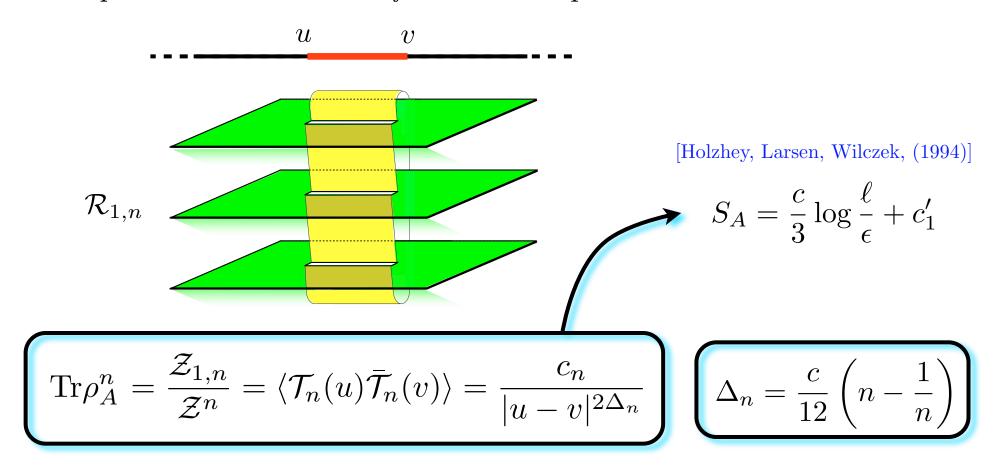
$$\Delta_n = \frac{c}{12} \left(n - \frac{1}{n} \right)$$

Twist fields have been largely studied in the 1980s

[Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

2D CFT: Renyi entropies as correlation functions

One interval (N = 1): the Renyi entropies can be written as a two point function of *twist fields* on the sphere [Calabrese, Cardy, (2004)]



Twist fields have been largely studied in the 1980s

[Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)] [Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

 \square N disjoint intervals \implies 2N point function of twist fields

	A_1		A_2		A_N	A_{N-1}		A_N	
u_1	v_1	u_2	v_2	• • •	u_{N-1}	v_{N-1}	u_N	v_N	
\mathcal{T}_n	$ar{\mathcal{T}}_n$	\mathcal{T}_n	$ar{\mathcal{T}}_n$		\mathcal{T}_n	$ar{\mathcal{T}}_n$	\mathcal{T}_n	$ar{\mathcal{T}}_n$	

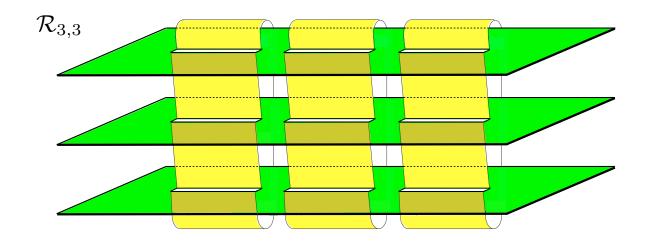
 \square N disjoint intervals \implies 2N point function of twist fields

$$\operatorname{Tr} \rho_A^n = \frac{\mathcal{Z}_{N,n}}{\mathcal{Z}^n} = \langle \prod_{i=1}^N \mathcal{T}_n(u_i) \bar{\mathcal{T}}_n(v_i) \rangle = c_n^N \left| \frac{\prod_{i < j} (u_j - u_i)(v_j - v_i)}{\prod_{i,j} (v_j - u_i)} \right|^{2\Delta_n} \mathcal{F}_{N,n}(\boldsymbol{x})$$

 \longrightarrow N disjoint intervals \Longrightarrow 2N point function of twist fields

$$\operatorname{Tr} \rho_A^n = \frac{\mathcal{Z}_{N,n}}{\mathcal{Z}^n} = \langle \prod_{i=1}^N \mathcal{T}_n(u_i) \bar{\mathcal{T}}_n(v_i) \rangle = c_n^N \left| \frac{\prod_{i < j} (u_j - u_i)(v_j - v_i)}{\prod_{i,j} (v_j - u_i)} \right|^{2\Delta_n} \mathcal{F}_{N,n}(\boldsymbol{x})$$

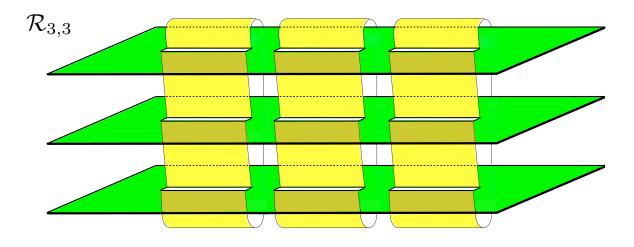
 $\mathbb{Z}_{N,n}$ partition function of $\mathcal{R}_{N,n}$, a particular Riemann surface of genus g = (N-1)(n-1) obtained through replication

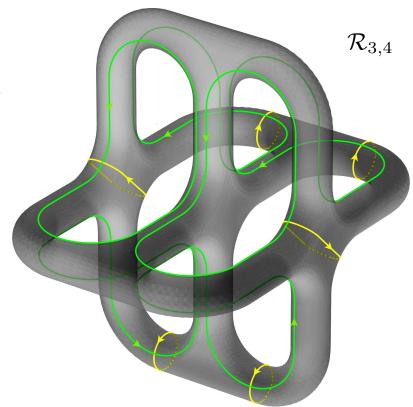


 \longrightarrow N disjoint intervals \Longrightarrow 2N point function of twist fields

$$\operatorname{Tr} \rho_A^n = \frac{\mathcal{Z}_{N,n}}{\mathcal{Z}^n} = \langle \prod_{i=1}^N \mathcal{T}_n(u_i) \bar{\mathcal{T}}_n(v_i) \rangle = c_n^N \left| \frac{\prod_{i < j} (u_j - u_i)(v_j - v_i)}{\prod_{i,j} (v_j - u_i)} \right|^{2\Delta_n} \mathcal{F}_{N,n}(\boldsymbol{x})$$

 $\mathbb{Z}_{N,n}$ partition function of $\mathcal{R}_{N,n}$, a particular Riemann surface of genus g = (N-1)(n-1) obtained through replication



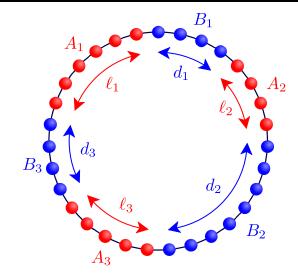


Periodic harmonic chain

 \blacksquare Harmonic chain on a circle (critical for $\omega = 0$)

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right]$$

[Peschel, Chung, (1999)] [Botero, Reznik, (2004)] [Audenaert, Eisert, Plenio, Werner, (2002)]



Periodic harmonic chair

Harmonic chain on a circle (c

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1})^2 \right]$$

[Peschel, Chung, (1999)] [Botero, Reznik, [Audenaert, Eisert, Plenio, Werner, (2002)]

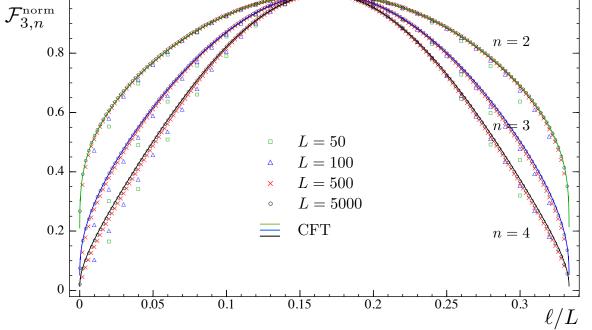
Decompactification regime

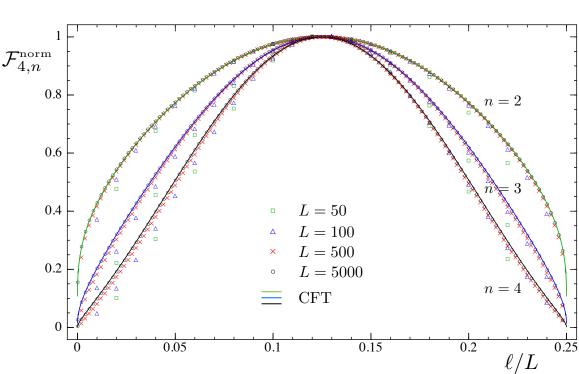
[Dijkgraaf, Verlinde, Verlinde, (1988)] [...] [Coser, Tagliacozzo, E.T., (2013)]

$$\mathcal{F}_{N,n}^{ ext{dec}}(oldsymbol{x}) = rac{\eta^{g/2}}{\sqrt{\det(\mathcal{I})}\,|\Theta(oldsymbol{0}| au)|^2}$$

- period matrix $\tau = \mathcal{R} + i\mathcal{I}$ [Enolski, Grava, (2003)]
- \blacksquare Riemann theta function Θ

 \rightarrow Nasty n dependence



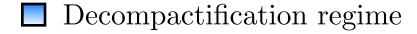


Periodic harmonic chair

Harmonic chain on a circle (c

$$H = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1})^2 \right]$$

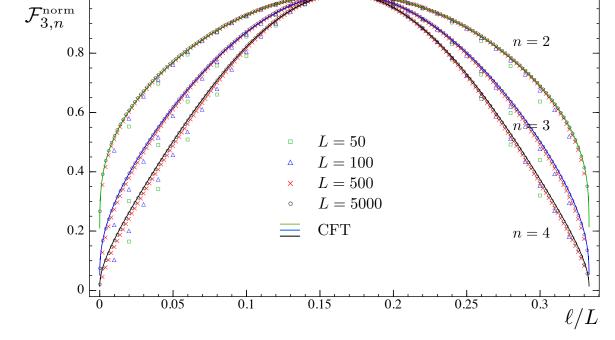
[Peschel, Chung, (1999)] [Botero, Reznik, [Audenaert, Eisert, Plenio, Werner, (2002)]

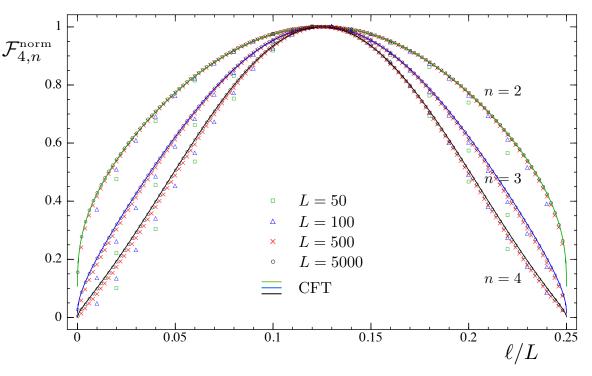


[Dijkgraaf, Verlinde, Verlinde, (1988)] [...] [Coser, Tagliacozzo, E.T., (2013)]

$$\mathcal{F}_{N,n}^{ ext{dec}}(oldsymbol{x}) = rac{\eta^{g/2}}{\sqrt{\det(\mathcal{I})}\,|\Theta(oldsymbol{0}| au)|^2}$$

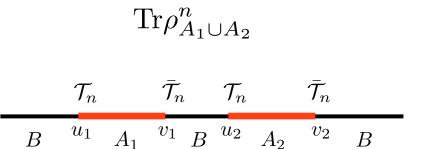
- period matrix $\tau = \mathcal{R} + i\mathcal{I}$ [Enolski, Grava, (2003)]
- \blacksquare Riemann theta function Θ
- \rightarrow Nasty n dependence

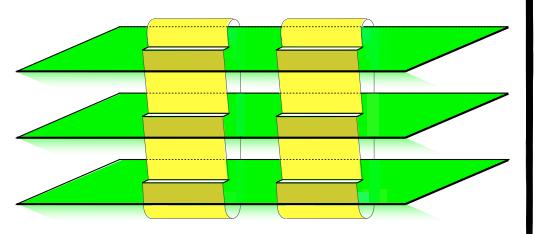




Numerical checks for the Ising model through Matrix Product States

Partial transposition: two disjoint intervals





$$\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u_1) \bar{\mathcal{T}}_n(v_1) \mathcal{T}_n(u_2) \bar{\mathcal{T}}_n(v_2) \rangle$$

[Caraglio, Gliozzi, (2008)]

[Furukawa, Pasquier, Shiraishi, (2009)]

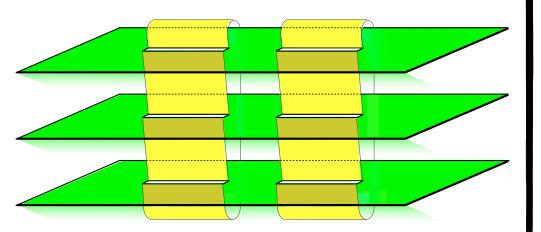
[Calabrese, Cardy, E.T., (2009), (2011)]

[Fagotti, Calabrese, (2010)]

[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Partial transposition: two disjoint intervals

$$\operatorname{Tr}\rho_{A_1\cup A_2}^n$$



$$\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u_1) \bar{\mathcal{T}}_n(v_1) \mathcal{T}_n(u_2) \bar{\mathcal{T}}_n(v_2) \rangle$$

[Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)]

[Calabrese, Cardy, E.T., (2009), (2011)]

[Fagotti, Calabrese, (2010)]

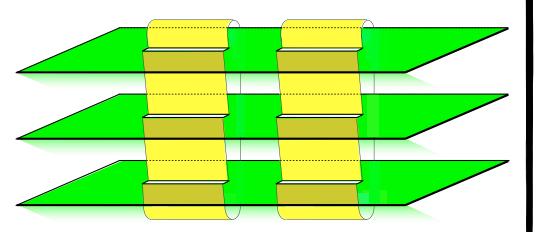
[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

$$\operatorname{Tr}(\rho_{A_1 \cup A_2}^{T_2})^n$$

■ The partial transposition exchanges \mathcal{T}_n and $\bar{\mathcal{T}}_n$

[Calabrese, Cardy, E.T., (2012)]

Partial transposition: two disjoint intervals



$$\operatorname{Tr} \rho_A^n = \langle \mathcal{T}_n(u_1) \bar{\mathcal{T}}_n(v_1) \mathcal{T}_n(u_2) \bar{\mathcal{T}}_n(v_2) \rangle$$

[Caraglio, Gliozzi, (2008)]

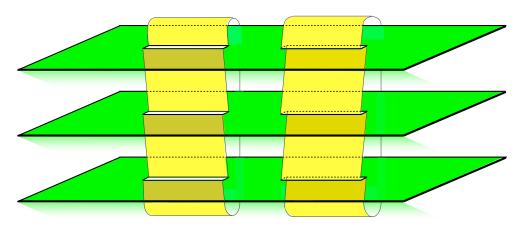
[Furukawa, Pasquier, Shiraishi, (2009)]

[Calabrese, Cardy, E.T., (2009), (2011)]

[Fagotti, Calabrese, (2010)]

[Alba, Tagliacozzo, Calabrese, (2010), (2011)]

$$\operatorname{Tr}(\rho_{A_1 \cup A_2}^{T_2})^n$$



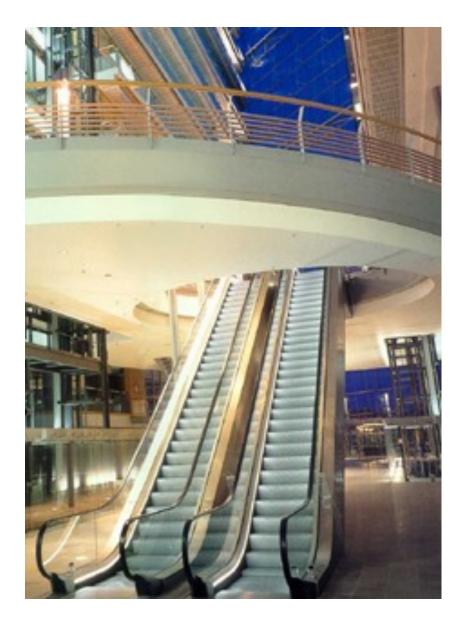
$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(u_1)\bar{\mathcal{T}}_n(v_1)\bar{\mathcal{T}}_n(u_2)\mathcal{T}_n(v_2)\rangle$$

■ The partial transposition exchanges \mathcal{T}_n and $\bar{\mathcal{T}}_n$

[Calabrese, Cardy, E.T., (2012)]

Renyi entropies vs traces of the Partial Transpose

 $\operatorname{Tr} \rho_{A_1 \cup A_2}^n$



Renyi entropies vs traces of the Partial Transpose

 $\operatorname{Tr} \rho_{A_1 \cup A_2}^n$

$$\operatorname{Tr}(\rho_{A_1 \cup A_2}^{T_2})^n$$

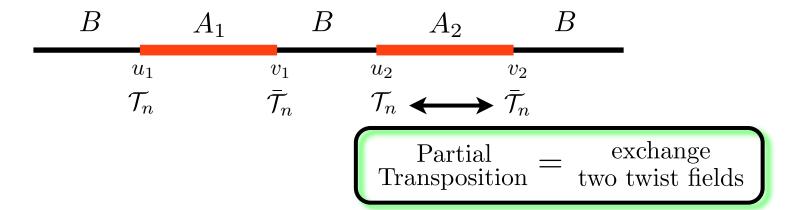
Partial Transposition for bipartite systems: pure states

$$\mathcal{H}=\mathcal{H}_{A_1}\otimes\mathcal{H}_{A_2}$$

$$\mathcal{H}=\mathcal{H}_{A_1}\otimes\mathcal{H}_{A_2}$$

В	A_1	B	A_2	В
u_1		v_1	u_2	v_2
\mathcal{T}_n		$ar{\mathcal{T}}_n$	\mathcal{T}_n	$ar{\mathcal{T}}_n$

$$\mathcal{H}=\mathcal{H}_{A_1}\otimes\mathcal{H}_{A_2}$$



$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \bar{\mathcal{T}}_n \end{array} \right)$$

$$\frac{\text{Partial }}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$$

$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \overline{\mathcal{T}}_n & \mathcal{T}_n & \overline{\mathcal{T}}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\overline{\mathcal{T}}_n^2(v_2) \rangle$$

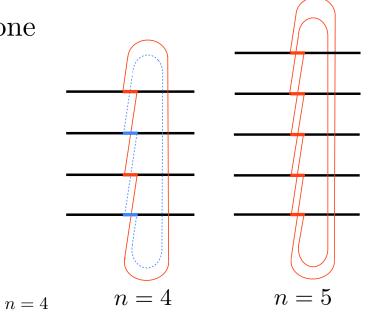
$$\operatorname{Partial}_{\text{Transposition}} = \underset{\text{two twist fields}}{\operatorname{exchange}}$$

$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 \\ \hline u_1 & v_1 & u_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2) \bar{\mathcal{T}}_n^2(v_2) \rangle$$

$$\frac{\text{Partial}}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$$



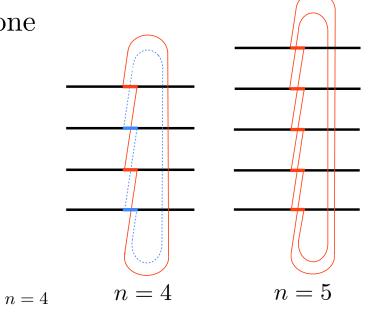
$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 \\ \hline & u_1 & v_1 & u_2 \\ & \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \longrightarrow \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$

$$\frac{\text{Partial}}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = \left(\langle \mathcal{T}_{n_e/2}(u_2) \bar{\mathcal{T}}_{n_e/2}(v_2) \rangle \right)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2) \bar{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o}$$



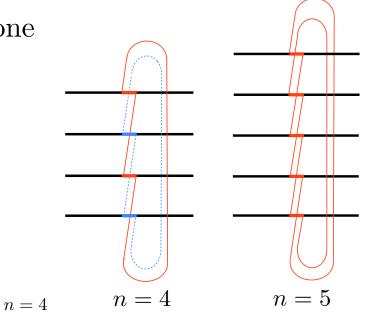
$$\mathcal{H}=\mathcal{H}_{A_1}\otimes\mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \bar{\mathcal{T}}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$

 $\frac{\text{Partial}}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = \left(\langle \mathcal{T}_{n_e/2}(u_2) \bar{\mathcal{T}}_{n_e/2}(v_2) \rangle \right)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2) \bar{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o}$$



$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

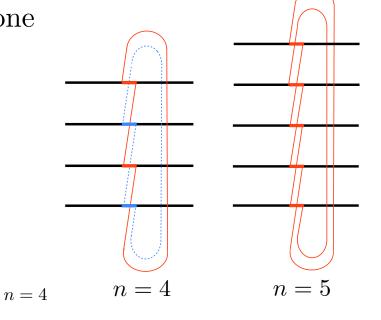
$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \bar{\mathcal{T}}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$

 $\frac{\text{Partial}}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = \left(\langle \mathcal{T}_{n_e/2}(u_2) \bar{\mathcal{T}}_{n_e/2}(v_2) \rangle \right)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2) \bar{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o}$$

$$\Delta_{\mathcal{T}_{n_o}^2} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right) = \Delta_{\mathcal{T}_{n_o}}$$



$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

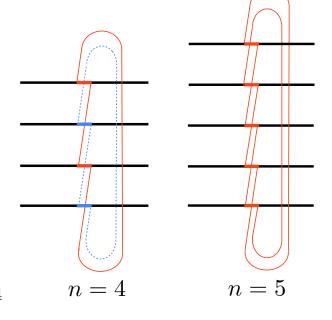
$$\lim_{B \to \emptyset} \left(\begin{array}{cccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \bar{\mathcal{T}}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$

$$\frac{\text{Partial}}{\text{Transposition}} = \frac{\text{exchange}}{\text{two twist fields}}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = \left(\langle \mathcal{T}_{n_e/2}(u_2) \bar{\mathcal{T}}_{n_e/2}(v_2) \rangle \right)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2) \bar{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o}$$

$$\Delta_{\mathcal{T}_{n_o}^2} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right) = \Delta_{\mathcal{T}_{n_o}} \qquad \Delta_{\mathcal{T}_{n_e}^2} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right)$$



$$\mathcal{H} = \mathcal{H}_{A_1} \otimes \mathcal{H}_{A_2}$$

$$\lim_{B \to \emptyset} \left(\begin{array}{ccccc} B & A_1 & B & A_2 & B \\ \hline u_1 & v_1 & u_2 & v_2 \\ \hline \mathcal{T}_n & \bar{\mathcal{T}}_n & \mathcal{T}_n & \mathcal{T}_n \end{array} \right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n^2(u_2)\bar{\mathcal{T}}_n^2(v_2) \rangle$$

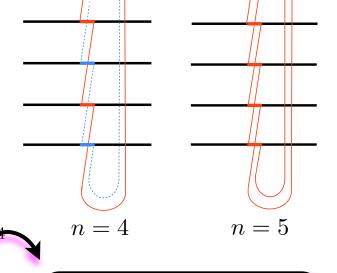
 \mathcal{T}_n^2 connects the j-th sheet with the (j+2)-th one Even $n = n_e \implies \text{decoupling}$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} = \left(\langle \mathcal{T}_{n_e/2}(u_2) \bar{\mathcal{T}}_{n_e/2}(v_2) \rangle \right)^2 = \left(\operatorname{Tr} \rho_{A_2}^{n_e/2} \right)^2$$
$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} = \langle \mathcal{T}_{n_o}(u_2) \bar{\mathcal{T}}_{n_o}(v_2) \rangle = \operatorname{Tr} \rho_{A_2}^{n_o}$$

 $\Delta_{\mathcal{T}_{n_o}^2} = \frac{c}{12} \left(n_o - \frac{1}{n_o} \right) = \Delta_{\mathcal{T}_{n_o}} \left[\Delta_{\mathcal{T}_{n_e}^2} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right) \right]$

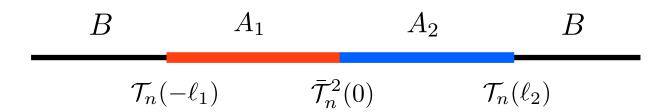
Two dimensional CFTs

$$\Delta_{\mathcal{T}_{n_e}^2} = \frac{c}{6} \left(\frac{n_e}{2} - \frac{2}{n_e} \right)$$



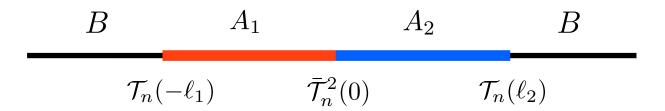
$$\mathcal{E} = \frac{c}{2} \ln \ell + \text{const}$$

 $B \qquad A_1 \qquad A_2 \qquad B$



■ Three point function

$$\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle$$

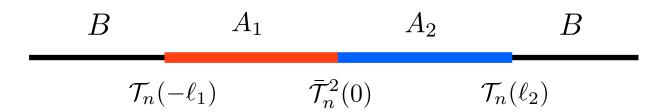


■ Three point function

$$Tr(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1 \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} - \frac{2}{n_e})} (\ell_1 + \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} + \frac{1}{n_e})}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1 \ell_2 (\ell_1 + \ell_2))^{-\frac{c}{12}(n_o - \frac{1}{n_o})}$$



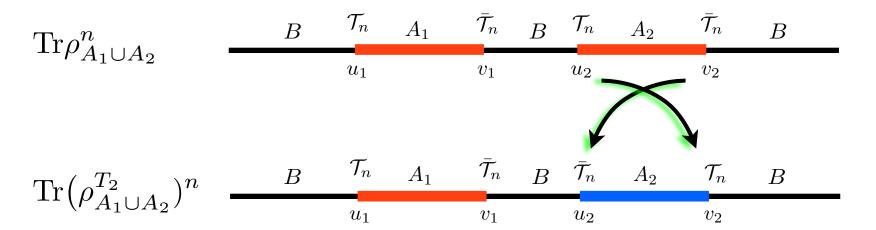
■ Three point function

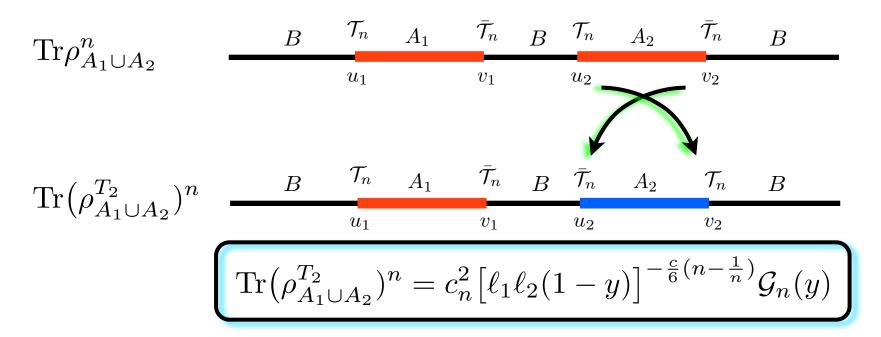
$$\left(\operatorname{Tr}(\rho_A^{T_2})^n = \langle \mathcal{T}_n(-\ell_1)\bar{\mathcal{T}}_n^2(0)\mathcal{T}_n(\ell_2)\rangle\right)$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_e} \propto (\ell_1 \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} - \frac{2}{n_e})} (\ell_1 + \ell_2)^{-\frac{c}{6}(\frac{n_e}{2} + \frac{1}{n_e})}$$

$$\operatorname{Tr}(\rho_A^{T_2})^{n_o} \propto (\ell_1 \ell_2 (\ell_1 + \ell_2))^{-\frac{c}{12}(n_o - \frac{1}{n_o})}$$

$$\mathcal{E} = \frac{c}{4} \ln \left(\frac{\ell_1 \ell_2}{\ell_1 + \ell_2} \right) + \text{const}$$





$$\operatorname{Tr} \rho_{A_1 \cup A_2}^n = \frac{B \quad \mathcal{T}_n \quad A_1 \quad \bar{\mathcal{T}}_n \quad B \quad \mathcal{T}_n \quad A_2 \quad \bar{\mathcal{T}}_n \quad B}{u_1 \quad v_1 \quad u_2 \quad v_2}$$

$$\operatorname{Tr} (\rho_{A_1 \cup A_2}^{T_2})^n = \frac{B \quad \mathcal{T}_n \quad A_1 \quad \bar{\mathcal{T}}_n \quad B \quad \bar{\mathcal{T}}_n \quad A_2 \quad \mathcal{T}_n \quad B}{u_1 \quad v_1 \quad u_2 \quad v_2}$$

$$\operatorname{Tr} (\rho_{A_1 \cup A_2}^{T_2})^n = c_n^2 \left[\ell_1 \ell_2 (1-y)\right]^{-\frac{c}{6}(n-\frac{1}{n})} \mathcal{G}_n(y)$$

 \blacksquare Tr $(\rho_{A_1\cup A_2}^{T_2})^n$ is obtained from Tr $(\rho_{A_1\cup A_2}^{T_2})^n$ by exchanging two twist fields

$$\mathcal{G}_n(y) = \left(1 - y\right)^{\frac{c}{3}(n - \frac{1}{n})} \mathcal{F}_n\left(\frac{y}{y - 1}\right)$$

 \blacksquare Tr $(\rho_{A_1 \cup A_2}^{T_2})^n$ is obtained from Tr $(\rho_{A_1 \cup A_2}^{T_2})^n$ by exchanging two twist fields

$$\mathcal{G}_n(y) = \left(1 - y\right)^{\frac{c}{3}(n - \frac{1}{n})} \mathcal{F}_n\left(\frac{y}{y - 1}\right)$$

$$\mathcal{E}(y) = \lim_{n_e \to 1} \mathcal{G}_{n_e}(y) = \lim_{n_e \to 1} \left[\mathcal{F}_n\left(\frac{y}{y-1}\right) \right]$$

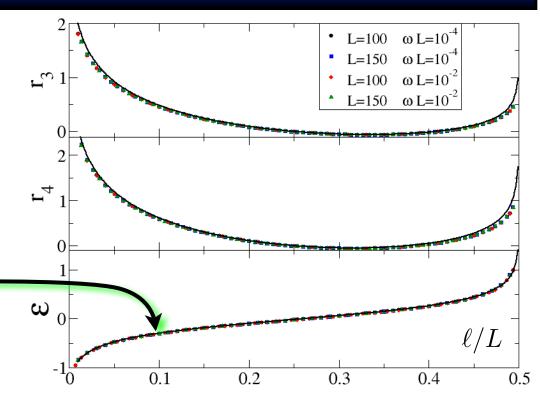
Two adjacent intervals: harmonic chain & Ising model

Critical periodic harmonic chain

Finite system: $\ell \longrightarrow (L/\pi)\sin(\pi\ell/L)$

$$r_n = \ln \frac{\operatorname{Tr}(\rho_A^{T_{A_2}=\ell})^n}{\operatorname{Tr}(\rho_A^{T_{A_2}=L/4})^n}$$

$$\frac{1}{4}\log\frac{\sin(\pi\ell_1/L)\sin(\pi\ell_2/L)}{\sin(\pi[\ell_1+\ell_2]/L)} + \text{cnst}$$



Two adjacent intervals: harmonic chain & Ising model

 ω_0

Critical periodic harmonic chain

Finite system: $\ell \longrightarrow (L/\pi)\sin(\pi\ell/L)$

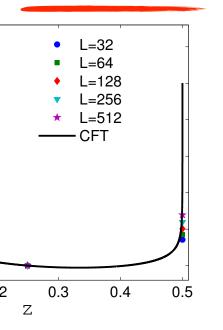
$$r_n = \ln \frac{\operatorname{Tr}(\rho_A^{T_{A_2}=\ell})^n}{\operatorname{Tr}(\rho_A^{T_{A_2}=L/4})^n}$$

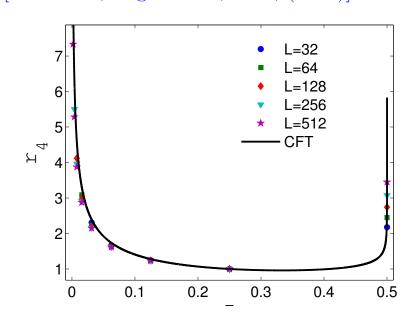
$$\frac{1}{4}\log\frac{\sin(\pi\ell_1/L)\sin(\pi\ell_2/L)}{\sin(\pi[\ell_1+\ell_2]/L)} + \text{cnst}$$

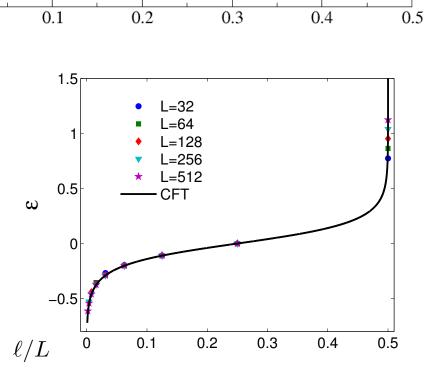
■ Ising model:

Monte-Carlo analysis [Alba, (2013)]

Tree Tensor Network [Calabrese, Tagliacozzo, E.T., (2013)]







L=100 ω L=10
 L=150 ω L=10

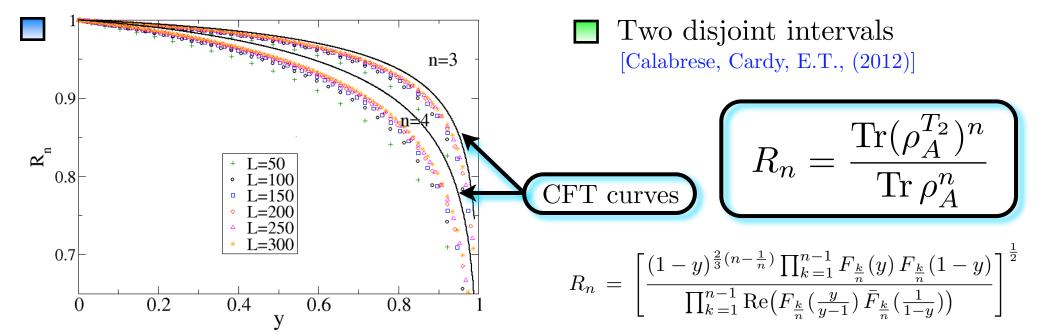
L=100 ω L=10⁻² L=150 ω L=10⁻²

 ℓ/L

Two disjoint intervals: periodic harmonic chains

Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains

[Wichterich, Molina-Vilaplana, Bose, (2009)] [Marcovitch, Retzker, Plenio, Reznik, (2009)]

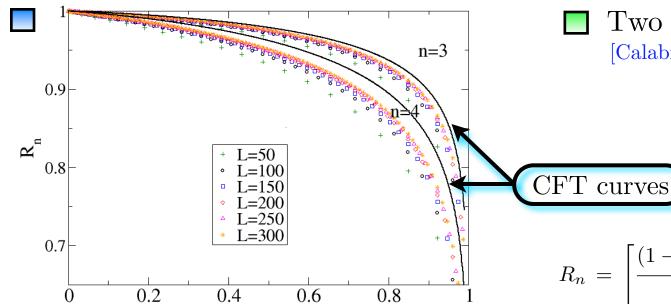


Two disjoint intervals: periodic harmonic chains

0.8

0.6

- Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains
- [Wichterich, Molina-Vilaplana, Bose, (2009)] [Marcovitch, Retzker, Plenio, Reznik, (2009)]



0.6

0.2

0.2

0.4

Two disjoint intervals

[Calabrese, Cardy, E.T., (2012)]

 $R_n = \frac{\operatorname{Tr}(\rho_A^{T_2})^n}{\operatorname{Tr}\rho_A^n}$

$$R_{n} = \left[\frac{(1-y)^{\frac{2}{3}(n-\frac{1}{n})} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(y) F_{\frac{k}{n}}(1-y)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{y}{y-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-y}\right)\right)} \right]^{\frac{1}{2}}$$

- lacksquare Analytic continuation for $y \sim 1$
- $\mathcal{E} = -\frac{1}{4}\log(1-y) + \log K(y) + \text{cnst}$
- Analytic continuation $n_e \to 1$ for 0 < y < 1 is missing
- It goes to zero faster than any power

Two disjoint intervals: Ising model

[Calabrese, Tagliacozzo, E.T., (2013)]

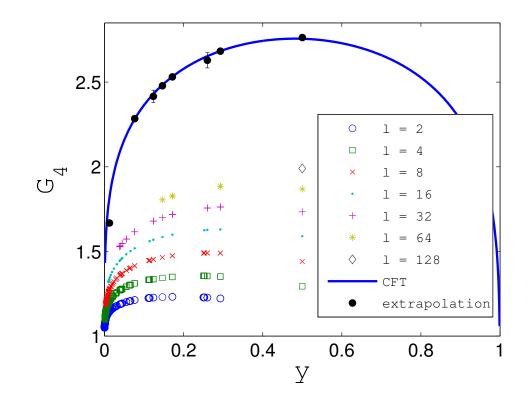
$$\square \quad \text{CFT} \quad \mathcal{G}_n(y) = (1-y)^{(n-1/n)/6} \frac{\sum_{\mathbf{e}} |\Theta[\mathbf{e}](\mathbf{0}|\tau(\frac{y}{y-1}))|}{2^{n-1} \prod_{k=1}^{n-1} |F_{k/n}(\frac{y}{y-1})|^{1/2}} \quad 0 < y < 1$$

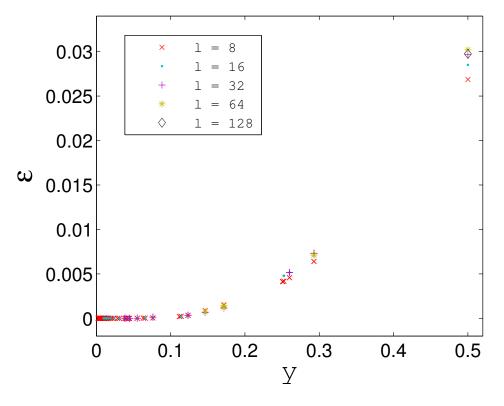
Two disjoint intervals: Ising model

[Calabrese, Tagliacozzo, E.T., (2013)]

$$\mathcal{G}_n(y) = (1-y)^{(n-1/n)/6} \frac{\sum_{\mathbf{e}} |\Theta[\mathbf{e}](\mathbf{0}|\tau(\frac{y}{y-1}))|}{2^{n-1} \prod_{k=1}^{n-1} |F_{k/n}(\frac{y}{y-1})|^{1/2}}$$

Tree tensor network:





Global quantum quench: CFT evolution

Global quench: \bigcirc System prepared in the ground state $|\psi_0\rangle$ of H_0

At t=0 sudden change of the Hamiltonian $H_0 \to H$

Unitary evolution:

$$|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$$

$$\rho(t) = |\psi(t)\rangle\langle\psi(t)|$$

Global quantum quench: CFT evolution

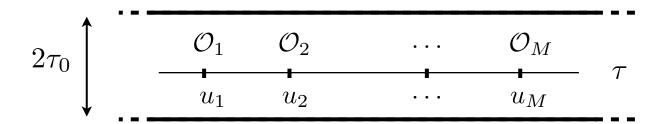
- Global quench: \bigcirc System prepared in the ground state $|\psi_0\rangle$ of H_0
 - At t=0 sudden change of the Hamiltonian $H_0 \to H$

Unitary evolution:

$$|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$$
 $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$

$$\rho(t) = |\psi(t)\rangle\langle\psi(t)|$$

Path integral formulation and critical H: correlation functions on the strip [Calabrese, Cardy, (2005), (2006), (2007)]



Analytic continuation $\tau = \tau_0 + it$, then $t \gg \tau_0$ and $|u_i - u_j| \gg \tau_0$

Global quantum quench: CFT evolution

- Global quench: \bigcirc System prepared in the ground state $|\psi_0\rangle$ of H_0
 - igodot At t=0 sudden change of the Hamiltonian $H_0 \to H$

Unitary evolution:

$$|\psi(t)\rangle = e^{-iHt} |\psi_0\rangle$$

$$\rho(t) = |\psi(t)\rangle\langle\psi(t)|$$

$$\rho(t) = |\psi(t)\rangle\langle\psi(t)|$$

Path integral formulation and critical H: correlation functions on the strip [Calabrese, Cardy, (2005), (2006), (2007)]

Analytic continuation $\tau = \tau_0 + it$, then $t \gg \tau_0$ and $|u_i - u_j| \gg \tau_0$

- Rényi entropies and traces of the partial transpose:

 - [Calabrese, Coser, E.T., 14xx.xxxx]

Negativity after a global quench: bipartition of the system

Global quench of the mass in the periodic harmonic chain

$$H(\omega) = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right] \qquad \omega_0 = 100 \longrightarrow \omega = 10^{-5}$$

Negativity after a global quench: bipartition of the system

Global quench of the mass in the periodic harmonic chain

$$H(\omega) = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right] \qquad \omega_0 = 100 \longrightarrow \omega = 10^{-5}$$

Bipartition of the system: pure state $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ t > 0

$$\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr}\rho_{A_2}^n & \text{odd } n \\ \left(\operatorname{Tr}\rho_{A_2}^{n/2}\right)^2 & \text{even } n \end{cases} \longrightarrow \left(\mathcal{E}_{A_2}(t) = S_{A_2}^{(1/2)}(t)\right)$$

Negativity after a global quench: bipartition of the system

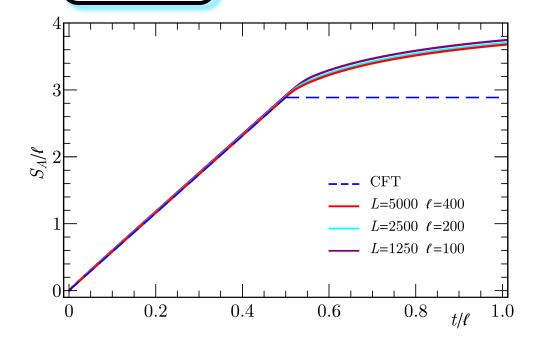
Global quench of the mass in the periodic harmonic chain

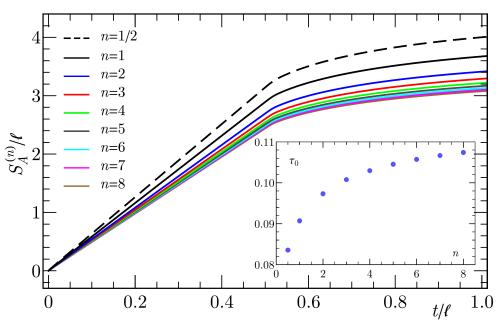
$$H(\omega) = \frac{1}{2} \sum_{j=1}^{L} \left[p_j^2 + \omega^2 q_j^2 + (q_{j+1} - q_j)^2 \right] \qquad \omega_0 = 100 \longrightarrow \omega = 10^{-5}$$

Bipartition of the system: pure state $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ t > 0

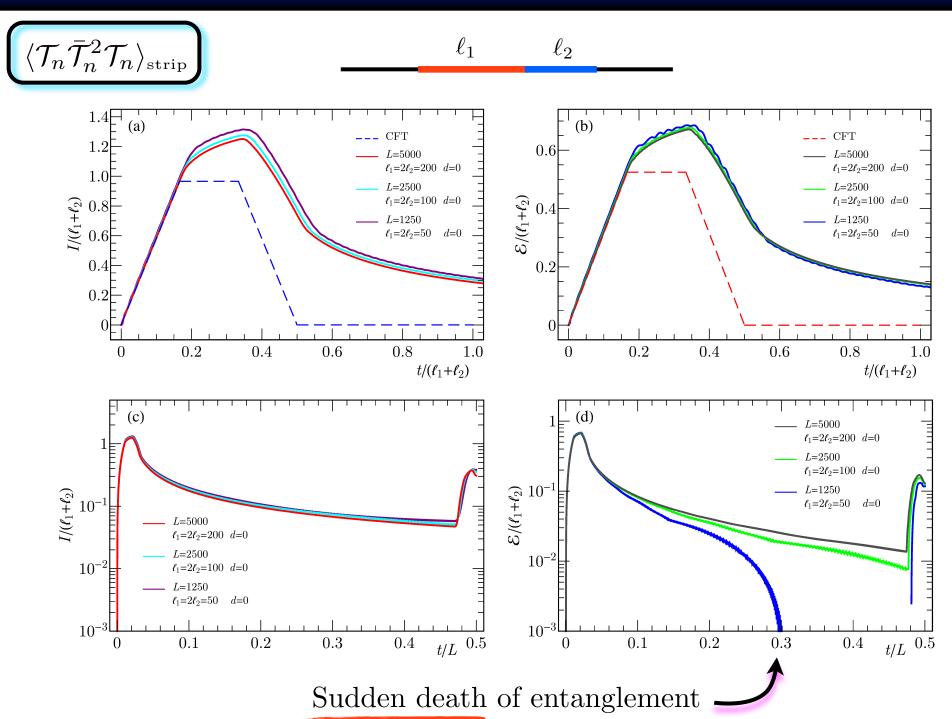
$$\rho(t) = |\psi(t)\rangle\langle\psi(t)| \qquad t > 0$$

$$\operatorname{Tr}(\rho^{T_2})^n = \begin{cases} \operatorname{Tr}\rho_{A_2}^n & \text{odd } n \\ \left(\operatorname{Tr}\rho_{A_2}^{n/2}\right)^2 & \text{even } n \end{cases} \longrightarrow \left(\mathcal{E}_{A_2}(t) = S_{A_2}^{(1/2)}(t)\right)$$

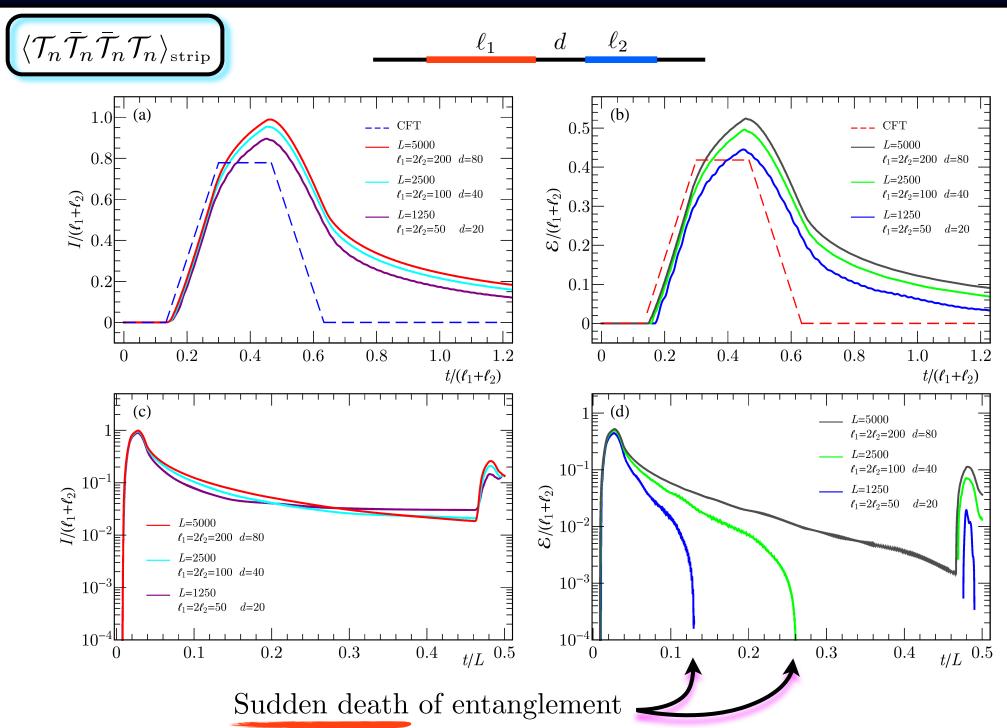




Negativity after a global quench: two adjacent intervals



Negativity after a global quench: two disjoint intervals



Conclusions & open issues

Entanglement for mixed states.

Entanglement negativity in QFT (1+1 CFTs): $\text{Tr}(\rho^{T_2})^n$ and \mathcal{E}

free boson on the line and Ising model

Some generalizations:

free compactified boson, systems with boundaries and massive case

→ topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]

Conclusions & open issues

- Entanglement for mixed states.
 - Entanglement negativity in QFT (1+1 CFTs): $\text{Tr}(\rho^{T_2})^n$ and \mathcal{E}
 - → free boson on the line and Ising model
- Some generalizations:
 - free compactified boson, systems with boundaries and massive case
 - → topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
 - Further checks of the CFT formulas
 - Analytic continuations
 - Finite temperature
 - Negativity for fermions
 - Higher dimensions
 - Interactions
 - Negativity in AdS/CFT

Conclusions & open issues

- Entanglement for mixed states.
 - Entanglement negativity in QFT (1+1 CFTs): $\text{Tr}(\rho^{T_2})^n$ and \mathcal{E}
 - → free boson on the line and Ising model
- Some generalizations:
 - free compactified boson, systems with boundaries and massive case
 - → topological systems (toric code) [Lee, Vidal, (2013)] [Castelnovo, (2013)]
 - Further checks of the CFT formulas
 - Analytic continuations
 - Finite temperature
 - Negativity for fermions
 - Higher dimensions
 - Interactions
 - Negativity in AdS/CFT

Free compactified boson & Ising model

Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]

Riemann theta function $\Theta[\boldsymbol{e}](\boldsymbol{0}|\Omega) = \sum_{\boldsymbol{m}} \exp\left[i\pi(\boldsymbol{m} + \boldsymbol{\varepsilon})^{t} \cdot \Omega \cdot (\boldsymbol{m} + \boldsymbol{\varepsilon}) + 2\pi i(\boldsymbol{m} + \boldsymbol{\varepsilon})^{t} \cdot \boldsymbol{\delta}\right]$ with characteristic

Free compactified boson $(\eta \propto R^2)$

[Coser, Tagliacozzo, E.T., (2013)]

$$\mathcal{F}_{N,n}(\boldsymbol{x}) = \frac{\Theta(\mathbf{0}|T_{\eta})}{|\Theta(\mathbf{0}|\tau)|^2} \qquad T_{\eta} = \begin{pmatrix} i \eta \mathcal{I} & \mathcal{R} \\ \mathcal{R} & i \mathcal{I}/\eta \end{pmatrix} \qquad \tau = \mathcal{R} + i \mathcal{I}$$
period matrix

Ising model
$$\mathcal{F}_{N,n}^{\text{Ising}}(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{e}} |\Theta[\boldsymbol{e}](\boldsymbol{0}|\tau)|}{2^g |\Theta(\boldsymbol{0}|\tau)|}$$

Nasty n dependence

Two intervals case: [Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)] [Calabrese, Cardy, E.T., (2009), (2011)]

[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]