Walter Burke Institute for Theoretical Physics

Four point scattering from Amplituhedron

Jaroslav Trnka
Caltech

Nima Arkani-Hamed, JT, 1312.2007
Sebastian Franco, Daniele Galloni, Alberto Mariotti, JT, in progress $J T$, in progress

Object of interest

- Scattering amplitudes in planar $\mathcal{N}=4$ SYM.
- Huge progress in recent years both at weak and strong coupling.
- Generalized unitarity, Twistor string theory, BCFW recursion relations, Leading singularity methods, Relation between amplitudes and Wilson loops, Yangian symmetry, Strong coupling via AdS/CFT, Symbol of amplitudes, Flux tube S-matrix, Positive Grassmannian and Amplituhedron,...
- Planar $\mathcal{N}=4$ SYM is integrable: It is believed that scattering amplitudes in this theory should be exactly solvable.
- Long list of people involved in these discoveries....

Integrand

- The amplitude $\mathcal{M}_{n, k, L}$ is labeled by three indices: n - number of particles, $k-S U(4)$ R-charge, L is the number of loops.
- Integrand: Well-defined rational function to all loop orders in planar limit: sum of all Feynman diagrams prior to integration.

$$
\mathcal{M}_{n, k, L}=\int d^{4} \ell_{1} d^{4} \ell_{2} \ldots d^{4} \ell_{L} \mathcal{I}_{n, k, L}
$$

- It is completely fixed by its singularities: locality (position of poles) and unitarity (residues on these poles).
- This is an object of our interest: there is a purely geometric definition of this object which does not make any reference to field theory - Amplituhedron.
- There is also a strong evidence of similar structures in the integrated amplitudes.

Positive Grassmannian and On-shell diagrams

- Different expansion of scattering amplitudes using fully on-shell gauge-invariant objects.

given by gluing together on-shell 3pt amplitudes.
- Explicitly constructed for Yang-Mills theory, and found the expansion of the amplitude in planar $\mathcal{N}=4$ SYM but these objects exist in any QFT.
- On-shell diagrams make the Yangian symmetry of planar $\mathcal{N}=4$ SYM manifest, not local in space-time.
- Direct relation between on-shell diagrams and Positive Grassmannian $G_{+}(k, n)$.

Positive Grassmannian and On-shell diagrams

[Arkani-Hamed, Bourjaily, Cachazo, Goncharov, Postnikov, JT, 1212.5605]

- $G_{+}(k, n):(k \times n)$ matrix $\bmod G L(k)$

$$
C=\left(\begin{array}{cccc}
* & * & \ldots & * \\
\vdots & \vdots & \ldots & \vdots \\
* & * & \ldots & *
\end{array}\right)
$$

where all maximal minors are positive, $\left(a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}\right)>0$.

- Stratification: cell of $G_{+}(k, n)$ of dimensionality d given by a set of constraints on consecutive minors.
- For each cell of dimensionality d we can find d positive coordinates x_{i}, and associate a logarithmic form

$$
\Omega_{0}=\frac{d x_{1}}{x_{1}} \ldots \frac{d x_{d}}{x_{d}}
$$

- The particular linear combination of on-shell diagrams (cells of $\left.G_{+}(k, n)\right)$ is provided by recursion relations.
- Idea: they glue together into a bigger object.

Amplituhedron

[Arkani-Hamed, JT, 1312.2007]

- We can define Amplituhedron $A_{n, k, L}$ which is a generalization of positive Grassmannian.
- For tree-level $L=0$, it is a map: $G_{+}(k, n) \rightarrow G(k, k+4)$ defined as

$$
Y=C \cdot Z \quad \text { where } Z \in M_{+}(k+4, n)
$$

- There is a generalization for the loop integrand which involves new mathematical objects.
- In addition we also describe L lines $\mathcal{L}_{1}, \ldots, \mathcal{L}_{L}$.

$$
C \in G_{+}(k, n), \quad D_{i_{1} \ldots i_{m}} \in G(k+2 m, n)
$$

where D is combination of C and m lines \mathcal{L}_{i}. Then we do the same map,

$$
Y=C \cdot Z, \quad \mathcal{Y}=D \cdot Z
$$

Amplituhedron

[Arkani-Hamed, JT, 1312.2007]

- The amplitude is then given by the form with logarithmic singularities on the boundaries of this space.
- Logarithmic singularities: if the boundary is characterized by $x=0$, it is just $\Omega \rightarrow \frac{d x}{x} \Omega_{0}$.
- This is a purely bosonic form but we can extract a supersymmetric amplitude from it: instead of (Z, η) we have one $(4+k)$-dimensional bosonic variables.
- Two ways how to calculate the form:
- Fix it from the definition (it is unique).
- Triangulate the space: for each term in the triangulation we have trivial form

$$
\Omega=\frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} \ldots \frac{d x_{d}}{x_{d}}
$$

and we sum all pieces. On-shell diagrams via recursion relations provide a particular triangulation.

Four-point amplitudes

- The number of Feynman diagrams grows extremely rapidly. Natural strategy: find a basis of scalar and tensor integrals.
- The calculation of integrand of 4pt amplitudes has a long history
- 1-loop: Brink, Green, Schwarz (1982)
- 2-loop: Bern, Rozowski, Yan (1997)
- 3-loop: Bern, Dixon, Smirnov (2005)
- 4-loop: Bern, Czakon, Dixon, Kosower, Smirnov (2006)
- 5-loop: Bern, Carrasco, Johannson, Kosower (2007)
- 6,7-loop: Bourjaily, DiRe, Shaikh, Spradlin, Volovich (2011)
- Even in a suitable basis there is a fast growth of the number of diagrams - no sign of simplification.

L	1	2	3	4	5	6	7
\# of diagrams	1	1	2	8	34	256	2329

The 7-loop result is several millions of terms.

Four-point amplitudes

- BDS ansatz [Bern, Dixon, Smirnov, 2005] for the integrated expression for MHV amplitudes in dimensional regularization

$$
M_{n, L}=\exp \left[\sum_{L=1}^{\infty} \lambda^{L}\left(f^{(L)}(\epsilon) M_{n, 1}(L \epsilon)+C^{(L)}+\mathcal{O}(\epsilon)\right)\right]
$$

where

$$
f^{(L)}(\epsilon)=f_{0}^{(L)}+\epsilon f_{1}^{(L)}+\epsilon^{2} f_{2}^{(L)}
$$

- The leading IR divergent piece is given by

$$
f(\lambda)=\sum_{L=1}^{\infty} f_{0}^{(L)} \lambda^{L}
$$

is known as cusp anomalous dimension, which also governs the scaling of twist-two operators in the limit of large spin S,

$$
\Delta\left(\operatorname{Tr}\left[Z D^{S} Z\right]\right)-S=f(\lambda) \log S+\mathcal{O}\left(S^{0}\right)
$$

It satisfies BES [Beisert, Eden, Staudacher, 2006] integral equation which can be solved analytically to arbitrary order.

Four-point amplitudes

- There is a tension between results for the integrand and the integrated answer.
- Integrand is a rational function with infinite complexity for $L \rightarrow \infty$ (it must capture all cuts) but the non-trivial part of the integrated result is given by simple functions of coupling.
- Important question: Is there a sign of this simplification at the integrand level? What is the role of integrability?
- The ultimate goal:
- Describe the Amplituhedron space for integrand, its stratification and topological properties.
- Try to find the form with log singularities to all loops (if it exists in a closed form).
- If yes, try to find a way how to extract (perhaps some natural deformation [Beisert, Broedel, Ferro, Lukowski, Meneghelli, Plefka, Rosso, Staudacher,...]) a BES equation - ie. understand the integration process as some kind of geometric map.

Four-point amplitudes from Amplituhedron

[Arkani-Hamed, JT, 1312.7878]

- The definition of the Amplituhedron in case of four point amplitudes at arbitrary L is very simple:
- Let us have $4 L$ positive parameters,

$$
x_{i}, y_{i}, z_{i}, w_{i} \geq 0 \quad \text { for } i=1,2, \ldots L
$$

which satisfy $L(L-1) / 2$ quadratic inequalities.

$$
\left(x_{i}-x_{j}\right)\left(w_{i}-w_{j}\right)+\left(y_{i}-y_{j}\right)\left(z_{i}-z_{j}\right) \leq 0 \quad \text { for all pairs } i, j
$$

- The amplitude is then the form with logarithmic singularities on the boundaries of this space.
- In this special case the Z-map is not present and the external data are irrelevant.

One-loop amplitude

- We have four parameters $x_{1}, y_{1}, z_{1}, w_{1} \geq 0$
- There is no quadratic condition, the form with logarithmic singularities on the boundaries $(0, \infty)$ is just

$$
\Omega=\frac{d x_{1}}{x_{1}} \frac{d y_{1}}{y_{1}} \frac{d z_{1}}{z_{1}} \frac{d w_{1}}{w_{1}}
$$

- We can solve for parameters $x_{1}, y_{1}, z_{1}, w_{1}$ in terms of kinematical variables

$$
\Omega=\frac{\left\langle A B d^{2} Z_{A}\right\rangle\left\langle A B d^{2} Z_{B}\right\rangle\langle 1234\rangle^{2}}{\langle A B 12\rangle\langle A B 23\rangle\langle A B 34\rangle\langle A B 41\rangle}=\frac{d^{4} \ell s t}{\ell^{2}\left(\ell+p_{1}\right)^{2}\left(\ell+p_{1}+p_{2}\right)^{2}\left(\ell-p_{4}\right)^{2}}
$$

Two-loop amplitude

- For $L=2$ we have $x_{1}, y_{1}, z_{1}, w_{1}, x_{2}, y_{2}, z_{2}, w_{2} \geq 0$ which satisfy quadratic relation

$$
\left(x_{1}-x_{2}\right)\left(w_{1}-w_{2}\right)+\left(y_{1}-y_{2}\right)\left(z_{1}-z_{2}\right) \leq 0
$$

- The form has the form

$$
\Omega=\frac{d x_{1} d x_{2} \ldots d z_{2} N\left(x_{1}, x_{2} \ldots z_{2}\right)}{x_{1} y_{1} w_{1} z_{1} x_{2} y_{2} w_{2} z_{2}\left[\left(x_{1}-x_{2}\right)\left(w_{1}-w_{2}\right)+\left(y_{1}-y_{2}\right)\left(z_{1}-z_{2}\right)\right]}
$$

It is a 8 -form with 9 poles - non-trivial numerator.

- There are two different strategies to find this form:
- Expand it as a sum of terms with 8 poles with no numerator triangulation. [Arkani-Hamed, JT, 1312.7878]
- Fix the numerator directly. [JT, in progress]

Fixing the two-loop amplitude

- Example 1: calculate residuum $y_{1}=y_{2}=x_{2}=0$,

$$
\Omega=\frac{d x_{1} d z_{1} d z_{2} d w_{1} d w_{2} \tilde{N}}{x_{1}^{2} w_{1} z_{1} w_{2} z_{2}\left(w_{1}-w_{2}\right)} \quad \rightarrow \quad \widetilde{N} \sim x_{1}
$$

- Example 2: For $x_{2}=w_{2}=y_{2}=z_{2}=0$ we have

$$
x_{1} w_{1}+y_{1} z_{1} \leq 0
$$

and therefore the numerator must vanish $\widetilde{N}=0$.

- These conditions fix completely the numerator up to overall constant to be

$$
N=x_{1} w_{2}+x_{2} w_{1}+y_{1} z_{2}+y_{2} z_{1}
$$

Topology of Amplituhedron

[Franco, Galloni, Mariotti, JT, in progress]

- Topology of $G_{+}(k, n)$: Euler characteristic $=1$, it is a very non-trivial property of the space.
- The $L=1$ case is just $G_{+}(2,4)$

dim	4	3	2	1	0
\# of boundaries	1	4	10	12	6

with Euler characteristic $\mathcal{E}=1$.

- We can count boundaries of $L=2$,

dim	8	7	6	5	4	3	2	1	0
\# of boundaries	1	9	44	144	286	340	266	136	34

Alternating sum of these numbers gives $\mathcal{E}=2$.

- There are preliminary results for $L=3,4$ which show similar topological properties.
- The non-trivial topology is probably closely related to the complexity of the logarithmic form.

Amplitude at L-loops

- At L-loops we have $4 L$ positive parameters $x_{i}, y_{i}, z_{i}, w_{i} \geq 0$ with
$\left(x_{i}-x_{j}\right)\left(w_{i}-w_{j}\right)+\left(y_{i}-y_{j}\right)\left(z_{i}-z_{j}\right) \leq 0 \quad$ for all pairs i, j
- We can write the general form
$\Omega=\frac{d x_{1} d y_{1} \ldots d z_{L} N\left(x_{1}, \ldots, z_{L}\right)}{x_{1} y_{1} w_{1} z_{1} \ldots x_{L} y_{L} w_{L} z_{L} \prod_{i j}\left[\left(x_{i}-x_{j}\right)\left(w_{i}-w_{j}\right)+\left(y_{i}-y_{j}\right)\left(z_{i}-z_{j}\right)\right]}$
and fix the numerator from constraints. So far this is too hard to solve in general.
- There are two types of special cases we can solve at this moment:
- Find the form on certain residues (cuts of the amplitude).
- Smaller set of positivity conditions.

Cuts of L-loop amplitude

[Arkani-Hamed, JT, 1312.7878]

- There are certain residues of Ω (cuts of the amplitude) we can solve for all L.
- Example: quadratic equations factorize, $z_{i}=0$.

$$
\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right) \leq 0
$$

- All x_{i}, y_{j} are then ordered. The form is

$$
\Omega=\frac{1}{w_{1} \ldots w_{L}} \sum_{\sigma} \Omega_{\sigma}
$$

where
$\Omega_{1 \ldots n}=\frac{1}{x_{1}\left(x_{1}-x_{2}\right) \ldots\left(x_{L-1}-x_{L}\right) y_{L}\left(y_{L}-y_{L-1}\right) \ldots\left(y_{2}-y_{1}\right)}$

Toy model for L-loop amplitude

[JT, in progress]

- Let us consider a reduced version of our problem: $4 L$ positive variables $x_{i}, y_{i}, z_{i}, w_{i} \geq 0$, ordered $i=1,2, \ldots n$.
- We impose quadratic conditions only between adjacent indices

$$
\left(x_{i}-x_{i+1}\right)\left(w_{i}-w_{i+1}\right)+\left(y_{i}-y_{i+1}\right)\left(z_{i}-z_{i+1}\right) \leq 0
$$

- The form is then

$$
\Omega=\frac{d x_{1} d y_{1} \ldots d z_{L} N_{L}\left(x_{1}, \ldots, z_{L}\right)}{x_{1} y_{1} w_{1} z_{1} \ldots x_{L} y_{L} w_{L} z_{L} \prod_{j=i+1}\left[\left(x_{i}-x_{j}\right)\left(w_{i}-w_{j}\right)+\left(y_{i}-y_{j}\right)\left(z_{i}-z_{j}\right)\right]}
$$

We can fully constrain the numerator N_{L} and write down the explicit solution for any L.

- The solution has an interesting structure:

$$
N_{L}=N_{2}(12) N_{2}(23) \ldots N_{2}(L 1)+\Delta_{L}
$$

where N_{2} is the $L=2$ numerator.

Conclusion

- The problem of calculating the integrand of four-point amplitudes in planar $\mathcal{N}=4 \mathrm{SYM}$ can be reformulated in the context of the Amplituhedron.
- We can easily define the problem but to find the solution to all loop orders is hard. I showed some partial results but the complete solution is still missing.
- There must be a close relation between the topology of the space and non-triviality of the form.
- Four point amplitudes as an ideal test case: if the full perturbative expansion for amplitudes can be solved exactly (despite there is no evidence for it so far) we should see it here.

