and

Higher-Spin Holography

arXiv:1312.6673 O.A.Gelfond, M.V.
+ work in progress

M.A.Vasiliev

Lebedev Institute, Moscow

Strings 2014
Princeton, June 25, 2014

HS AdS/CFT correspondence

```
General idea of HS duality Sundborg (2001), witten (2001)
```

$A d S_{4}$ HS theory is dual to $3 d$ vectorial conformal models
Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009); Maldacena, Zhiboedov (2011,2012); MV (2012); Giombi, Klebanov; Tseytlin $(2013,2014)$...
$A d S_{3} / C F T_{2}$ correspondence Gaberdiel and Gopakumar (2010)

Analysis of HS holography helps to uncover the origin of $A d S / C F T$

Unfolded Dynamics

$$
d W^{\Omega}(x)=G^{\Omega}(W(x)), \quad G^{\Omega}(W)=\sum_{n=1}^{\infty} f^{\Omega} \wedge_{1} \ldots \wedge_{n} W^{\wedge_{1}} \wedge \ldots \wedge W^{\wedge_{n}}
$$

$d>1$: Compatibility conditions

$$
G^{\wedge}(W) \wedge \frac{\partial G^{\Omega}(W)}{\partial W^{\wedge}} \equiv 0
$$

Manifest (HS) gauge invariance under the gauge transformation

$$
\delta W^{\Omega}=d \varepsilon^{\Omega}+\varepsilon^{\wedge} \frac{\partial G^{\Omega}(W)}{\partial W^{\wedge}}, \quad \varepsilon^{\Omega}(x):\left(p_{\Omega}-1\right)-\text { form }
$$

Geometry is encoded by $G^{\Omega}(W)$: unfolded equations make sense in any space-time
$d W^{\Omega}(x)=G^{\Omega}(W(x)), \quad x \rightarrow X=(x, z), \quad d_{x} \rightarrow d_{X}=d_{x}+d_{z}, \quad d_{z}=d z^{u} \frac{\partial}{\partial z^{u}}$ X-dependence is reconstructed in terms of $W\left(X_{0}\right)=W\left(x_{0}, z_{0}\right)$ at any X_{0} Classes of holographically dual models: different G

Rank-one conformal massless equations

$$
\left(\frac{\partial}{\partial x^{\alpha \beta}} \pm i \frac{\partial^{2}}{\partial y^{\alpha} \partial y^{\beta}}\right) C_{j}^{ \pm}(y \mid x)=0, \quad \alpha, \beta=1,2, \quad j=1, \ldots \mathcal{N}
$$

Bosons (fermions) are even (odd) functions of $y: C_{i}(-y \mid x)=(-1)^{p_{i}} C_{i}(y \mid x)$ Rank-two equations: conserved currents

$$
\left\{\frac{\partial}{\partial x^{\alpha \beta}}-\frac{\partial^{2}}{\partial y^{(\alpha} \partial u^{\beta)}}\right\} J(u, y \mid x)=0
$$

$J(u, y \mid x)$: generalized stress tensor. Rank-two equation is obeyed by

$$
J(u, y \mid x)=\sum_{i=1}^{\mathcal{N}} C_{i}^{-}(u+y \mid x) C_{i}^{+}(y-u \mid x)
$$

Primaries: $3 d$ currents of all integer and half-integer spins

$$
\begin{gathered}
J(u, 0 \mid x)=\sum_{2 s=0}^{\infty} u^{\alpha_{1}} \ldots u^{\alpha_{2 s}} J_{\alpha_{1} \ldots \alpha_{2 s}}(x), \quad \tilde{J}(0, y \mid x)=\sum_{2 s=0}^{\infty} y^{\alpha_{1}} \ldots y^{\alpha_{2 s}} \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x) \\
J^{a s y m}(u, y \mid x)=u_{\alpha} y^{\alpha} J^{a s y m}(x) \\
\Delta J_{\alpha_{1} \ldots \alpha_{2 s}}(x)=\Delta \tilde{J}_{\alpha_{1} \ldots \alpha_{2 s}}(x)=s+1 \quad \Delta J^{a s y m}(x)=2
\end{gathered}
$$

Conservation equation: $\frac{\partial}{\partial x^{\alpha \beta}} \frac{\partial^{2}}{\partial u_{\alpha} \partial u_{\beta}} J(u, 0 \mid x)=0$

Extension to $S p(2 M)$-invariant space

$$
\left(\xi^{A B} \frac{\partial}{\partial X^{A B}} \pm i \sigma_{-}\right) C^{ \pm}(Y \mid X)=0, \quad \sigma_{-}=\xi^{A B} \frac{\partial^{2}}{\partial Y^{A} \partial Y^{B}}
$$

Y^{A} - auxiliary commuting variables
$X^{A B}$ matrix coordinates of $\mathcal{M}_{M}, X^{A B}=X^{B A}\left(A, B=1, \ldots, M=2^{n}\right)$
Fronsdal (1985), Bandos, Lukierski, Sorokin (1999), MV (2001)
$\xi^{M N}=d X^{M N}$ are anti-commuting differentials $\xi^{M N} \xi^{A D}=-\xi^{A D} \xi^{M N}$

Rank-one primary (dynamical) fields: $\quad \sigma_{-} C(X \mid Y)=0: C(X), C_{A}(X) Y^{A}$

Unfolded equations \Rightarrow dynamical equations

$$
\begin{equation*}
\frac{\partial}{\partial X^{\mathrm{AE}}} \frac{\partial}{\partial X^{\mathrm{BD}}} C(X)-\frac{\partial}{\partial X^{\mathrm{BE}}} \frac{\partial}{\partial X^{\mathrm{AD}}} C(X)=0 \quad \text { Klein-Gordon-like } \tag{2001}
\end{equation*}
$$

$$
\frac{\partial}{\partial X^{\mathrm{BD}}} C_{\mathrm{A}}(X)-\frac{\partial}{\partial X^{\mathrm{AD}}} C_{\mathrm{B}}(X)=0 \quad \text { Dirac-like }
$$

Rank-r unfolded equations: \mathbf{r} twistor variables $Y_{i}^{A} i, j, \ldots=1, \ldots, \mathbf{r}$

$$
\left(\xi^{A B} \frac{\partial}{\partial X^{A B}} \pm i \sigma_{-}^{\mathbf{r}}\right) C^{ \pm}(Y \mid X)=0, \quad \sigma_{-}^{\mathbf{r}}=\xi^{A B} \sum_{j=1}^{\mathbf{r}} \frac{\partial^{2}}{\partial Y_{j}^{A} \partial Y_{i}^{B}} \delta_{i j}
$$

A rank-r field in $\mathcal{M}_{M} \sim$ a rank-one field in $\mathcal{M}_{\mathbf{r} M}$ with coordinates $X_{i j}^{A B}$.

$$
Y_{i}^{A} \rightarrow Y^{\widetilde{A}}, \quad \widetilde{A}=1 \ldots \mathbf{r} M
$$

Embedding of \mathcal{M}_{M} into $\mathcal{M}_{\mathrm{r} M}: X^{A B} \longrightarrow \tilde{X}^{\tilde{A} \tilde{B}}$

$$
X_{11}^{A B}=X_{22}^{A B}=\ldots=X_{r r}^{A B}=X^{A B}
$$

The map $\mathcal{M}_{M} \longrightarrow \mathcal{M}_{\mathrm{r} M}$ preserves $S p(2 M)$
Field-current correspondence: Flato-Fronsdal (1978) for $M=2$

Alternative interpretation: multi-particle states (=higher-rank field) in lower dimension=single-particle states in higher dimensions

Problem: pattern of the holographic reduction of higher-dimensional models to the lower-dimensional ones

Rank-r fields and equations

Rank-r primary fields: $\quad \sigma_{-}^{\mathbf{r}} C(Y \mid X)=0, \quad \sigma_{-}^{\mathbf{r}}=\xi^{A B} \sum_{j=1}^{\mathbf{r}} \frac{\partial^{2}}{\partial Y_{j}^{A} \partial Y_{i}^{B}} \delta_{i j}$

$$
C(Y \mid X)=\sum_{n} C_{A_{1} ; \ldots ; A_{n}}^{i_{1} ; \ldots ; i_{n}}(X) Y_{i_{1}}^{A_{1}} \cdots Y_{i_{n}}^{A_{n}} \Rightarrow \text { tracelessness: } \delta_{\mathrm{i}_{1} \mathrm{i}_{2}} C_{\ldots}^{\mathrm{i}_{1} ; \mathrm{i}_{2} ; \ldots}(X)=0
$$

by -Young diagrams $\mathrm{Y}^{0}\left[h_{1}, \ldots, h_{m}\right]$ obeying $h_{1}+h_{2} \leq \mathbf{r}, \quad h_{1} \leq M$
Rank-r primary fields $C_{\mathrm{Y}^{0}}(Y \mid X)$ satisfy rank-r dynamical equations

$$
\begin{aligned}
& \underbrace{\frac{\partial}{\partial X^{A_{1}^{h_{1}+1}} A_{2}^{h_{2}+1}} \cdots \frac{\partial}{\partial X_{1}^{A_{1}^{\mathrm{r}-h_{2}+1}} A_{2}^{\mathrm{r}-h_{1}+1}}}_{\mathrm{r}+1-h_{1}-h_{2}} C_{\mathrm{Y}^{0}}(Y \mid X)=0 .
\end{aligned}
$$

The parameter $\mathcal{E} \ldots .$. projects to $\mathrm{Y}^{0}\left[h_{1}, h_{2}, h_{3}, \ldots, h_{n}\right]$ and to its rank-r two-column dual $\mathrm{Y}^{1}\left[\mathbf{r}+1-h_{2}, \mathbf{r}+1-h_{1}, h_{3}, \ldots, h_{n}\right]$
with respect to the lower and upper indices, respectively

Multi-linear currents

For $\mathbf{r}=2 \kappa$, $\mathbf{a}\left(\kappa M-\frac{\kappa(\kappa-1)}{2}\right)$-form

$$
\Omega(J)=\left.\mathcal{F}_{i_{1}[\kappa], \ldots, i_{N}[\kappa]} \mathcal{D}^{A_{1}[\kappa], \ldots, A_{N}[\kappa]} \underbrace{\frac{\partial}{\partial Y_{i 1}^{A_{1}^{1}}} \cdots \frac{\partial}{\partial Y_{i_{1}^{\kappa}}^{A_{1}^{\kappa}}}}_{\kappa} \cdots \underbrace{\frac{\partial}{\partial Y_{N}^{A_{N}^{1}}} \cdots \frac{\partial}{\partial Y_{N}^{A_{N}^{\kappa}}}}_{\kappa} J(Y \mid X)\right|_{Y=0}
$$

where $N=M+1-\kappa \mathcal{F}$ is described by traceless diagram $\underbrace{[}_{N} \underbrace{\kappa, \ldots \kappa}_{N}]$, and

$$
\begin{aligned}
& \mathcal{D}^{A_{1}[\kappa], \ldots, A_{N}[\kappa]}=\epsilon_{D_{1}^{1} \ldots D_{1}^{M}} \ldots \epsilon_{D_{\kappa}^{1} \ldots D_{\kappa}^{M}} \xi^{D_{1}^{1} D_{2}^{1}} \xi^{D_{1}^{2} D_{3}^{1}} \ldots \xi^{D_{1}^{\kappa-1} D_{\kappa}^{1}} \xi^{D_{1}^{\kappa} A_{1}^{1}} \ldots \xi^{D_{1}^{M} A_{N}^{1}} \ldots \\
& \xi^{D_{n}^{n} D_{n+1}^{n}} \xi^{D_{n}^{n+1} D_{n+2}^{n}} \ldots \xi^{D_{n}^{\kappa-1} D_{\kappa}^{n}} \xi^{D_{n}^{\kappa} A_{1}^{n}} \ldots \xi^{D_{n}^{M} A_{N}^{n}} \ldots \xi^{D_{\kappa}^{\kappa} A_{1}^{\kappa}} \xi^{D_{\kappa}^{\kappa+1}} A_{2}^{\kappa} \ldots \xi^{D_{\kappa}^{M} A_{N}^{\kappa}}
\end{aligned}
$$

is closed provided that $J(Y \mid X)$ obeys the rank-r $=2 \kappa$ equations.
The current

$$
J_{\eta}(Y \mid X)=\eta^{j_{1}, \ldots, j_{\mathbf{r}}}(\mathcal{A}) C_{j_{1}}\left(Y_{j_{1}} \mid X\right) \ldots C_{j_{\mathbf{r}}}\left(Y_{j_{\mathbf{r}}} \mid X\right)
$$

where $\mathcal{A}_{j}^{1 B}\left(Y_{j} \mid X\right)=2 X^{A B} \frac{\partial}{\partial Y_{j}^{A}}+Y_{j}^{B}, \quad \mathcal{A}_{j C}^{2}\left(Y_{j} \mid X\right)=\frac{\partial}{\partial Y_{j}^{C}}$
and $C_{j}(Y \mid X)$ - rank-one fields, generates \mathbf{r}-linear charge $Q_{\eta}^{\mathbf{r}}(C)$
Multiparticle algebra: string-like HS algebra

Rank-r primary fields and field equations are represented by the cohomology groups $H^{0}\left(\sigma_{-}^{\mathrm{r}}\right)$ and $H^{1}\left(\sigma_{-}^{\mathrm{r}}\right)$, respectively.

Higher $H^{p}\left(\sigma_{-}\right)$(and their twisted cousins) are responsible for HS gauge fields and their field equations

General $H^{p}\left(\sigma_{-}\right)$via homotopy trick: conjugated operators Ω and Ω^{*}

$$
\Omega:=\sigma_{-}^{\mathbf{r}}=T_{A B} \xi^{A B}, \quad \Omega^{*}=T^{A B} \frac{\partial}{\partial \xi^{C D}}
$$

$$
\begin{equation*}
T_{A B}=\frac{\partial}{\partial Y_{i}^{A}} \frac{\partial}{\partial Y_{j}^{B}} \delta^{i j}, \quad T^{C D}=Y_{i}^{C} Y_{j}^{D} \delta^{i j}, \quad T_{B}^{A}=Y_{j}^{A} \frac{\partial}{\partial Y_{j}^{B}} \tag{2M}
\end{equation*}
$$

$\Delta=\left\{\Omega, \Omega^{*}\right\}=\frac{1}{2} \tau_{m k} \tau^{m k}+\nu_{B}^{A} \nu_{B}^{A}-(M+1-\mathbf{r}) \nu_{A}^{A}$
$\tau_{m k}=Y_{m}^{A} \frac{\partial}{\partial Y^{k A}}-Y_{k}^{A} \frac{\partial}{\partial Y^{m A}}$ are $\mathfrak{o}(\mathbf{r})-$-generators
$\nu_{B}^{A}=2 \xi^{A D} \frac{\partial}{\partial \xi^{B D}}+T_{B}^{A}$ are $\mathfrak{g}_{M}^{\text {tot }}$-generators that act on Y_{i}^{A} and $\xi^{A B}$
Δ is semi positive-definite

$$
\mathrm{H}(\Omega) \subset \operatorname{ker} \Delta
$$

Young diagrams and South-West principle

$$
Y^{\prime}\left[B_{1} \ldots\right] \subset Y\left[h_{1} \ldots\right] \otimes\left(\otimes_{n} Y_{\delta}[1,1]\right) \otimes Y_{A}\left[a_{1}, \ldots\right]
$$

where n is a number of $\mathfrak{o}(\mathrm{r})$ metric tensors $\delta_{i j}$,
$\mathrm{Y}\left[h_{1} \ldots, h_{k}\right] \mathfrak{o}(\mathrm{r}) \mathrm{YD}, \quad \mathrm{Y}^{\prime}\left[B_{1} \ldots, B_{m}\right] \mathfrak{g l}_{M}: \mathrm{YD}, \quad \mathrm{Y}_{A}\left[a_{1}, \ldots\right]: \xi^{A B} \mathrm{YD}$ $\tau_{m k} \tau^{m k}=2 \sum_{j} h_{j}\left(h_{j}-\mathbf{r}-2(i-1)\right), \quad \nu_{B}^{A} \nu_{B}^{A}=-\sum_{i} B_{i}\left(B_{i}-M-1-2(i-1)\right)$,
$\Rightarrow \quad \Delta=-\sum_{i} B_{i}\left(B_{i}-2(i-1)\right)+\sum_{j} h_{i}\left(h_{i}-2(i-1)\right)+\mathbf{r} \sum_{i}\left(B_{i}-h_{i}\right)$.
$\chi^{a}(\mathcal{S}(i, j))=i-j+a, \quad a \in \mathbb{R}$,
$\mathcal{S}(i, j)$ - a sell on the intersection of $j-t h$ row and $i-t h$ column

$$
\begin{aligned}
& \mathrm{Y}=\bigcup \mathcal{S}(i, j) \quad \chi^{a}(\mathrm{Y})=-\frac{1}{2} \sum_{i} h_{i}\left(h_{i}-2 i+1-2 a\right) \\
& \mathcal{S}(i, j) \in \mathrm{Y}
\end{aligned}
$$

Δ semi-positive $\Rightarrow \quad \min (\Delta)$ is reached when all cells of Y^{\prime}
are maximally south-west. This allows us to find $H^{p}\left(\sigma_{-}^{\mathbf{r}}\right) \forall p$
Higher-differential forms are relevant to the nonlinear field equations and invariant Lagrangians for multiparticle theory

Invariant functionals

Unfolded equations

$$
d F(W)=Q F(W)
$$

$F(W)$ is an arbitrary function of W

$$
Q=G^{\Omega} \frac{\partial}{\partial W^{\Omega}}, \quad Q^{2}=0
$$

Q-closed p-form functions $L_{p}(W)$ are d-closed, giving rise to the gauge invariant functionals represented by Q-cohomology

$$
S=\int_{\Sigma p} L_{p}
$$

So defined L_{p} is d-closed in any space-time realization
S is gauge invariant in any space-time

Nonlinear HS Equations

One-form $\mathcal{W}=d_{x}+d x^{\nu} W_{\nu}+d Z^{A} S_{A}$ and zero-form B :

$$
\begin{gathered}
\mathcal{W} \star \mathcal{W}=i\left(d Z^{A} d Z_{A}+F\left(B, d z^{\alpha} d z_{\alpha} \star k \kappa, d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} \star \bar{k} \bar{\kappa}\right)\right) \\
\mathcal{W} \star B-B \star \mathcal{W}=0
\end{gathered}
$$

HS star product

$$
\begin{gathered}
(f \star g)(Z, Y)=\int d S d T f(Z+S, Y+S) g(Z-T, Y+T) \exp -i S_{A} T^{A} \\
{\left[Y_{A}, Y_{B}\right]_{\star}=-\left[Z_{A}, Z_{B}\right]_{\star}=2 i C_{A B}, \quad Z-Y: Z+Y \text { normal ordering }}
\end{gathered}
$$

Inner Klein operators:
$\kappa=\exp i z_{\alpha} y^{\alpha}, \quad \bar{\kappa}=\exp i \bar{z}_{\dot{\alpha}} \bar{y}^{\dot{\alpha}}, \quad \kappa \star f(y, \bar{y})=f(-y, \bar{y}) \star \kappa, \quad \kappa \star \kappa=1$
Nontrivial equations are free of the space-time differentials d

Action is not known but probably is not needed

Generating functional

$C(y, \bar{y} \mid x)=B(0, y, \bar{y} \mid x): d=4$ rank-one field as $d=3$ rank-two currents
$\omega(y, \bar{y} \mid x):=W(0, y, \bar{y} \mid x): d=4$ gauge field as $d=3$ conformal gauge field

$$
C(y, \bar{y} \mid x)=D^{s} \omega(y, \bar{y} \mid x)
$$

Quadratic functional

$$
S=\frac{1}{2} \int d^{3} x\left\langle e_{0} e_{0} \omega C\right\rangle
$$

Non-linear on-shell Lagrangian L results from the extended HS system

$$
\mathcal{W} \star \mathcal{W}=i\left(d Z^{A} d Z_{A}+F\left(\mathcal{B}, d z^{\alpha} d z_{\alpha} \star k \kappa, d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} \star \bar{k} \bar{\kappa}\right)\right), \quad \mathcal{W} \star \mathcal{B}-\mathcal{B} \star \mathcal{W}=0
$$

$$
\mathcal{W}=d_{x}+d x^{\nu} W_{\nu}+d Z^{A} S_{A}+d x^{\nu_{1}} d x^{\nu_{2}} d x^{\nu_{3}} W_{\nu_{1} \nu_{2} \nu_{3}}+\ldots, \quad \mathcal{B}=B+d x^{\nu_{1}} d x^{\nu_{2}} B_{\nu_{1} \nu_{2}}+.
$$

Generating functional

HS fields are meromorphic at $z=0$ (at least in the lowest orders) 2012

Extension to complex z via unfolded formulation

Generating functional:

$$
Z(\omega)=\operatorname{expi} S, \quad S=\oint_{S^{1}} \int_{\partial A d S} L,
$$

n-point functions

$$
\left\langle J\left(x_{1}\right) \ldots J\left(x_{n}\right)\right\rangle=\left.\frac{\delta^{n}}{\delta \omega\left(x_{1}\right) \ldots \delta \omega\left(x_{n}\right)} Z(\omega)\right|_{\omega=0}
$$

Conclusions

All $S p(2 M)$ invariant fields, currents and field equations in \mathcal{M}_{M}

Higher-rank fields as multiparticle states and/or single-particle states in higher dimensions

Construction of invariant functionals in interacting HS theories

Nonlinear terms in $F(B)$ are ruled out by conformal symmetry

