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Motivation

I We have a very good understanding of
the spectrum of a string on AdS5 × S5

≡ quantized energy levels of a string for
any value of λ ≡ g2YMNc
≡ equivalently (anomalous) dimensions
of operators in N = 4 SYM

I This is due to the integrability of the
worldsheet theory
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Motivation

Key question:

I Extend the use of integrability to
describe string interactions for strings
in AdS5 × S5

Aim:

I Formulate the Light-cone String Field
Theory vertex...
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Motivation

More generally:

I Provide methods for constructing the LC
SFT vertex in case of an arbitrary
integrable worldsheet theory

I Previously we knew how to proceed only
for a free worldsheet theory

I massless free bosons and fermions in
the case of flat spacetime

Mandelstam; Green, Schwartz
I massive free bosons and fermions in

the case of pp-wave background
geometry

Spradlin, Volovich; Stefanski; Russo..
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Motivation

Of course all this has direct AdS/CFT motivation...

Energy levels of a single string ≡ Anomalous dimensions

String interactions −→
OPE coefficients

1/Nc corrections?

see also next talk by Basso...
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Our approach

Look for guidance from the case of two known problems:

1. Integrable bootstrap for the spectal problem...

2. Integrable bootstrap for form factors...
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How to solve the spectral problem? ≡ energy levels of a string

I) solve the worldsheet theory on an
infinite plane

1. Particle momenta/rapidities can be
analytically continued into the complex
plane...

2. We get crossing equation + unitarity

3. ... and symmetry + Yang-Baxter
equation

4. determines analytically the S-matrix

Works equally for relativistic and AdS5 × S5 case...

Key role of the infinite plane −→ only there do we have
crossing+analyticity which allows for solving for the S-matrix
(functional equations for the S-matrix)
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How to solve the spectral problem?

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

e ipkL
∏
l 6=k

S(pk , pl) = 1

2. Get the energies from

E =
∑
k

E (pk) =
∑
k

√
1 +

λ

π2
sin2

pk
2

This gives the spectrum up to wrapping corrections...

relativistic ∼ e−mL weak coupling ∼ λL strong coupling ∼ e−
2πL√

λ

Main message: Simple passage to finite volume (up to wrapping)
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Proceed to form factors...
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Form factors

I Form factors are expectation values of a local operator
sandwiched between specific multiparticle in and out
states pk = m sinh θ

I Form factors in infinite volume (on an infinite plane)
satisfy a definite set of functional equations

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i res
θ′=θ

fn+2(θ′, θ + iπ, θ1, .., θn) = (1−
∏
i

S(θ, θi )) fn(θ1, .., θn)

I Simple passage to a cylinder: Pozsgay, Takacs

〈∅|O (0) |θ1, θ2〉L =
1√

ρ2 · S(θ1, θ2)
·f (θ1, θ2)+O

(
e−mL

)
where θ1, θ2 satisfy Bethe ansatz quantization
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Lessons from these examples:

1. The necessity of an infinite volume formulation in order to have
analyticity/crossing and other functional equations

2. Simple passage to finite volume neglecting wrapping..

Question: Can we hope to have similar structure for the SFT vertex??
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Light-cone String Field Theory Vertex – the pp-wave

I pp-wave ≡ free massive boson φ
I impose continuity conditions for φ and Π ≡ ∂tφ
I φ expressed in terms of cos 2πnLr and sin 2πnLr modes...

looks like an inherently finite-volume computation...
I solution is surprisingly complicated...
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Light-cone String Field Theory Vertex – the pp-wave

I The SFT vertex is implemented as a state |VSFT 〉 ∈ H1 ⊗H2 ⊗H3

|VSFT 〉 = (Prefactor) · exp

{
1
2

3∑
r ,s=1

∑
n,m

N rsnm a+(r)
n a+(s)

m

}
|0〉

I The Neumann coefficient N rsnm has the interpretation of a SFT
amplitude/matrix element involving only 2 particles

I Obtaining the Neumann coefficients N rsnm is surprisingly nontrivial as
it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich
Lucietti, Schafer-Nameki, Sinha

I Exact expressions involve novel special functions Γµ(z)
Lucietti, Schafer-Nameki, Sinha

Γµ(z) =
e−γ
√
z2+µ2

z
·
∞∏
n=1

n√
n2 + µ2 +

√
z2 + µ2

e
√
z2+µ2

n
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Light-cone String Field Theory Vertex – the pp-wave

I In the pp-wave times, people used simplified expressions for N rsnm
neglecting exponential e−µαr terms αr = Lr/L3

(these are exactly wrapping terms e−MLr !!)
I Going to an exponential basis (BMN basis) one got in this limit

N rsmn =

[√
(ωrm + µαr )(ωsn + µαs)

ωrm + ωsn
−
√

(ωrm − µαr )(ωsn − µαs)
ωrm + ωsn

]
·(simple)

I Instead of integer mode numbers use rapidities... pk=M sinh θk

N33(θ1, θ2) =
−1

cosh θ1−θ2
2

· sin
p1L1

2
sin

p2L1
2

I The integer mode numbers (characteristic of finite volume) are
completely inessential – they only obscure a simple underlying
structure

I Pole at θ1 = θ2 + iπ (position of kinematical singularity as for form
factors!) −→ there should be some underlying axioms...

I Still some surprising features — the sin pkL12 factors
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The language of mode expansions and enforcing continuity does
not generalize for interacting integrable QFT’s...

Questions:

1. How to formulate an infinite volume version of the string
vertex?

2. Can we propose functional equations for the Neumann
coefficients (more generally amplitudes with various numbers of
particles in each string)?
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Step I) The decompactified string vertex

I The emission of string #1 can be understood as an insertion of
some macroscopic (not completely local) operator...

I Looks like some kind of generalized form factor with ingoing
particles in string #3 and outgoing ones in string #2

I Key new feature: string #1 ‘eats up volume’ −→ the operator
should have a e ipL branch cut defect...

Formulate functional equations...
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Step I) The decompactified string vertex

Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

I The exact pp-wave solution, involving the Γµ(θ) special function
solves these equations and can be reconstructed from them!

n(θ)n(θ + iπ) = − 1
2π2

ML sinh θ sin
p(θ)L

2

I This includes all exponential wrapping corrections e−µα1 = e−ML

for the #1 string
I Straightforward generalization of the axioms to an interacting

integrable QFT
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Step II) The string vertex — back to finite volume

We considered so far the ‘decompactified string vertex’...

but ultimately we are interested in the finite volume one...

Use the same prescription as for
form factors...

We neglect exponential corrections
for strings #2 and #3 but keep all
size dependence of string #1...
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What happens in AdS5 × S5?

Novel kinematics

I Complex rapidities are defined on a covering of an elliptic curve
I Only e ip (and not the momentum p itself) is a well defined elliptic

function
I The phase factors e ip L make sense directly only for integer L

which is nice from the point of view of N = 4 SYM...

Complicated dynamics

I The S-matrix does not depend on the difference of rapidities
I The S-matrix is nondiagonal which drastically complicates solving

form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...
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The AdS5 × S5 Neumann coefficient

Factorize the AdS5 × S5 Neumann coefficient as

N33L (z1, z2)i1i2 = F(z1, z2)i1,i2︸ ︷︷ ︸
form factor

· N33L (z2, z1)︸ ︷︷ ︸
includes all L dependence

I The N33L (z2, z1) includes all dependence on the size of the string L
at any coupling (≡ infinite set of wrapping corrections)

I Currently we have a solution of the functional equations for any
even L at arbitrary coupling

N33L (z2, z1) ∼ conventional elliptic functions× Elliptic Gamma

I This goes over to the pp-wave answer up to an overall normalization
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Conclusions

I We propose a framework for formulating functional equations for
string interactions (light cone string field theory vertex) when the
worldsheet theory is integrable

I This approach should work in particular for strings in the full
AdS5 × S5 geometry

I A key step is the existence of an infinite volume setup, which allows
for formulating functional equations incorporating e.g. crossing

I Second step involves reduction to (large) finite size of two of the
three strings

I We reproduced pp-wave string field theory formulas for the
Neumann coefficients

I We solved for the ‘kinematical’ part of the AdS5 × S5 Neumann
coefficient describing exact volume dependence (currently for even L)
at any coupling – may describe all order wrapping w.r.t. one string
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