Structure Constants and Integrable Bootstrap in Planar N=4 SYM Theory

Benjamin Basso ENS Paris

Strings 2015 ICTS-TIFR, Bengaluru

based on work with Shota Komatsu and Pedro Vieira

Plan / Goal

Compute Structure Constants of Single Trace Operators in Planar N=4 SYM theory

$$\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3)\rangle = \frac{C_{123}}{x_{12}^{\Delta_{12}}x_{23}^{\Delta_{23}}x_{13}^{\Delta_{13}}}$$

Question : How Do We Compute That At Finite Coupling?

Answer : Use Integrability and Hexagon Bootstrap Program

Part of a Bigger Program = Solving Strings in AdS

Spectrum Success Story

Lessons From The Cylinder

2pt Function

2pt Function

Finite-Volume Problem Are Difficult Start with Large Volume First

Decompactification = Cutting Procedure

Very Large Length

Asymptotic or Infinite Volume L Description

Power of Symmetry

Left / Right S-Matrix

Fixed by Symmetry and Crossing [Janik'05]

Power of Symmetry

Asymptotic = IR Solution

 $\vec{p_1}$ $\vec{p_2}$

Energy

$$E = 1 + 2g(\frac{i}{x^+} - \frac{i}{x^-})$$

Momentum

$$p = \frac{1}{i} \log \frac{x^+}{x^-}$$

Rapidity

$$x^{\pm} + \frac{1}{x^{\pm}} = \frac{u \pm i/2}{g}$$

Scattering Phase

[Beisert, Eden, Staudacher'06]

[Beisert'05]

$$S_{12}^{0} = \frac{x_1^+ - x_2^-}{x_1^- - x_2^+} \frac{1 - 1/x_1^- x_2^+}{1 - 1/x_1^+ x_2^-} \frac{1}{\sigma_{12}^2}$$

Systematic Improvement

Include Finite Size Effects = so-called Wrapping Effects

Wrapping Corrections =
$$e^{-L \times E} \sim O(g^{2L})$$

Systematic Improvement

Include Finite Size Effects = so-called Wrapping Effects

Resummation of All Finite Size Corrections = TBA Eqs

[Kazakov et al.'09] [Arutyunov et al.'09] [Bombardelli et al.'09]

3-pt Function

3-pt Function / Pair of Pants

Three Punctures Sphere

Pair of Pants

Toward Asymptotic Description

Slogan : Pair of Pants = (Hexagon)^2

New Finite Size Effects

Can Get a Good Asymptotic Description When These New Effects Are Small

Dual Spin Chain Picture

Three Bridges In Total = Three-Distance Problem

New Wrapping Effects = $O(g^{l_{ij}})$ at Weak Coupling

How to Combine Hexagons Into Asymptotic = IR Description

Split The Wave Funtion :

Leftover Information About Spin Chain State :

Sum Over Bipartite Partition of Bethe Roots

Summary Hexagon Picture

3-pt Function = Finite Volume Correlator of Two Hexagons

Building Blocks = Hexagon Form Factors

Mirror/Crossing Moves

How To Fix The Hexagon Form Factors?

Use Super-Symmetry

 $3pt-Function = (BMN)^3$

Two BMN vacua + One Twisted BMN Vacuum

 $\tilde{Z} = Z + \bar{Z} + Y - \bar{Y}$

Needed for overlap with ops 1 and 2

Needed for BPS condition

 $\mathcal{O}_2 = \operatorname{tr} \bar{Z}(\infty)^{L_2}$ \star $\mathcal{O}_3 = \operatorname{tr} \tilde{Z}(1)^{L_3}$ $\mathcal{O}_1 = \operatorname{tr} Z(0)^{L_1}$

Part of Family of Twisted Correlators

see [Drukker,Plefka'09]

Use Super-Symmetry

Total :

PSU(2|2)

i.e. Diagonal Subgroup of BMN Group

 $PSU(2|2) \times PSU(2|2)$ Right

Power of Symmetry

Fix I-pt Hex Form Factor = Invariant Left-Right Inner Product

Power of Symmetry

Fix 2-pt Hex Form Factor

Fixed by Symmetry up to a Scalar Factor

$$\mathfrak{h}^{A_1\dot{A}_1,A_2\dot{A}_2} = (-1)^{\dot{f}_1f_2} \times h_{12} \times \langle \chi_2^{\dot{A}_2}\chi_1^{\dot{A}_1} | \mathcal{S}_{12} | \chi_1^{A_1}\chi_2^{A_2} \rangle$$

Generalization

N-pt Hexagon Form Factor (conjecture)

Watson Equation

Hex preserved by S-matrix $\langle \mathfrak{h} | (\mathbb{S}_{ii+1} - \mathbb{I}) | \dots \chi_i^{A_i \dot{A}_i} \chi_{i+1}^{A_{i+1} \dot{A}_{i+1}} \dots \rangle = 0$

This is Automatic if

$$h_{12}/h_{21} = S_{12}^0 = \frac{x_1^+ - x_2^-}{x_1^- - x_2^+} \frac{1 - 1/x_1^- x_2^+}{1 - 1/x_1^+ x_2^-} \frac{1}{\sigma_{12}^2}$$

Decoupling Condition

Pair particle-antiparticle with zero energy must decouple

This is Automatic if

$$h(u_1^{2\gamma}, u_2)h(u_1, u_2) = \frac{x_1^- - x_2^-}{x_1^- - x_2^+} \frac{1 - 1/x_1^+ x_2^-}{1 - 1/x_1^+ x_2^+}$$

Solution to Watson and Crossing

(Not unique but conjectured to be the right one :)

$$h_{12} = \frac{x_1^- - x_2^-}{x_1^- - x_2^+} \frac{1 - 1/x_1^- x_2^+}{1 - 1/x_1^+ x_2^+} \frac{1}{\sigma_{12}}$$

Our Hexagons Are Now Fully Determined

All-Loop Asymptotic Formula

Consider 2 BPS Operators and I non-BPS Operator

$$\left(\frac{C_{123}^{\bullet\circ\circ}}{C_{123}^{\circ\circ\circ}}\right)^{2} = \frac{\prod_{k=1}^{S}\mu(u_{k})}{\det \partial_{u_{i}}\phi_{j}\prod_{i< j}S(u_{i}, u_{j})} \times \mathcal{A}^{2}$$

$$\sum_{\substack{\text{Normalization of Spin Chain State}}} Normalization of Spin Chain State}$$

i.e.

$$\langle \mathcal{O}_{1}\mathcal{O}_{2}\mathcal{O}_{3}\rangle = C_{123}^{\bullet\circ\circ} \times \frac{\text{tensor}}{x_{12}^{\Delta_{12}}x_{23}^{\Delta_{23}}x_{31}^{\Delta_{31}}}$$

e.g. $\mathcal{O}_{1} = \text{tr}D^{S}Z^{L_{1}}$

All-Loop Asymptotic Formula

Consider 2 BPS Operators and I non-BPS Operator

$$\left(\frac{C_{123}^{\bullet\circ\circ}}{C_{123}^{\circ\circ\circ}}\right)^2 = \frac{\prod_{k=1}^S \mu(u_k)}{\det \,\partial_{u_i}\phi_j \prod_{i< j} S(u_i, u_j)} \times \mathcal{A}^2$$

$$\begin{array}{ll} \textbf{Hexagon Part} & \text{Sum Over Partition of Bethe} \\ \textbf{Roots} \geqslant & \\ \mathcal{A} = \prod_{i < j} h(u_i, u_j) \sum_{\alpha \cup \bar{\alpha} = \mathbf{u}} (-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{ip_j \ell} \prod_{i \in \alpha, j \in \bar{\alpha}} \frac{1}{h(u_i, u_j)} \end{array}$$

Valid to All Loops Up to Finite Size Effects

Include Leading Finite Size Corrections

First Finite Size Effect

Corrections coming from exchange of a single particle in the three mirror channels

$$\mathcal{A} \to \mathcal{A} + \delta \mathcal{A}_{12} + \delta \mathcal{A}_{23} + \delta \mathcal{A}_{31}$$
Asymptotic = $\int_{\text{vacuum}} \delta \mathcal{A}_{31}$

Integral over Momenta of Exchanged Particle

$$\delta \mathcal{A} = \sum_{a \ge 1} \int \frac{du}{2\pi} \mu_a^{\gamma}(u) \times \left(\frac{1}{x^{[+a]}x^{[-a]}}\right)^{\ell} \times \operatorname{int}_a(u|\{u_i\})$$
Include hexagon interaction between exchanged mirror particle and magnons on spin chain

Applications / Tests At Weak Coupling

Shortest Probes With Ops of Length 2 or 3

Asymptotic Result the Same for Both : - Valid up to 1-loop on the left - Valid up to 2-loop on the right

Getting Data From OPE of BPS Correlators

A lot of recent high-loop results

e.g. [Eden,Heslop,Korchemsky,Sokatchev'11] [Eden'12],[Chicherin,Sokatchev'14]

We can get what we want playing with external states

Comparison with Data

 $\frac{C_{123}^{\bullet\circ\circ}}{C_{123}^{\circ\circ\circ}}$

 $\mathbf{2}$

4

6

8

10

Perfect Agreement with Hexagon Prediction Including Zeta's Coming From Wrapping

Conclusions

Strategy for Computing Structure Constants :
- Cut Open Pair of Pants into Hexagons
- Glue Hexagons Back Together in the end

Integrable Bootstrap Leads to All-Loop Conjecture for the Hexagons

Outlook

Is the Gluing Prescription Complete? Can We Resum / Control All Finite Size Effects?

Strong Coupling Resummation Test

String Theory Predicts :

Area Minimal Surface
(classical)

$$\log C_{123}^{\bullet\circ\circ} = \frac{\sqrt{\lambda}}{2\pi}$$
Area + one-loop determinant

Semiclassical Result :

Comes from asymptotic part

$$\frac{\sqrt{\lambda}}{2\pi}\operatorname{Area} = \oint \frac{du}{2\pi} \left[\operatorname{Li}_2(e^{ip_1 + ip_2 - ip_3}) - \frac{1}{2}\operatorname{Li}_2(e^{2ip_1})\right]$$

+finite size contributions

Can we reproduce the infinite sequence of finite size effects predicted by the classical string theory?

Outlook

Is the Gluing Prescription Complete? Can We Resum / Control All Finite Size Effects?

What About Extremal Correlators?

Extremal = Octagon

Should be related to SFT vertex (see Janik's talk)

Can we bootstrap it? What is the group of residual symmetries?

Further Outlook

Is the Gluing Prescription Complete? Can We Resum / Control Finite Size Effects?

What About Extremal Correlators?

Embedding Inside Quantum Spectral Curve? (Finite Volume Bootstrap)

Add Boundaries and Describe Open Strings or Mixed Correlators?

Etc.

THANK YOU!