Structure Constants and Integrable Bootstrap in Planar N=4 SYM Theory

Benjamin Basso
ENS Paris

Strings 2015
ICTS-TIFR, Bengaluru

based on work with Shota Komatsu and Pedro Vieira

Plan / Goal

Compute Structure Constants of Single Trace Operators in Planar N=4 SYM theory

$$
\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle=\frac{C_{123}}{x_{12}^{\Delta_{12}} x_{23}^{\Delta_{33}} x_{13}^{\Delta_{13}}}
$$

Question : How Do We Compute That At
Finite Coupling?

Answer: Use Integrability and Hexagon Bootstrap Program

Part of a Bigger Program = Solving Strings in AdS

Spectrum Success Story

Can we follow a similar path for structure constants?

Lessons From The Cylinder

2pt Function

$$
\left\langle\mathcal{O}(x)^{\dagger} \mathcal{O}(0)\right\rangle=\frac{1}{x^{2 \Delta}}
$$

Δ = Energy Eigenvalue In Finite Volume L

$$
\operatorname{tr} Z^{L}
$$

Length = Number of Adjoint Fields $=\mathrm{L}$

2pt Function

Finite-Volume Problem Are Difficult ...
... Start with Large Volume First

Decompactification $=$ Cutting Procedure

Very Large Length

Cut Open Here

Asymptotic or Infinite Volume L Description

Power of Symmetry

Magnon in bi-fund irrep of residual symmetry group of BMN vacuum :
[Beisert'05]

$\operatorname{PSU}(2 \mid 2) \times \operatorname{PSU}(2 \mid 2) \ltimes \mathbb{R}^{3}$
Left
Right

Central extensions : contain BMN energy

Beisert S-Matrix

Left / Right S-Matrix
Fixed by Symmetry and Crossing
[Janik'05]

Power of Symmetry

Asymptotic $=$ IR Solution

Energy

$$
E=1+2 g\left(\frac{i}{x^{+}}-\frac{i}{x^{-}}\right)
$$

Momentum

$$
p=\frac{1}{i} \log \frac{x^{+}}{x^{-}}
$$

Rapidity

$$
x^{ \pm}+\frac{1}{x^{ \pm}}=\frac{u \pm i / 2}{g}
$$

Scattering Phase
[Beisert,Eden,Staudacher’06]

$$
S_{12}^{0}=\frac{x_{1}^{+}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{-}} \frac{1}{\sigma_{12}^{2}}
$$

Systematic Improvement

Include Finite Size Effects = so-called Wrapping Effects

[Ambjorn,Janik,Kristjansen’05]
[Bajnok,Janik'08]

Vacuum (in Mirror = double Wick rotated Theory)

Virtual Effect : Exchange of 1-particle in Mirror Channel

Wrapping Corrections $=e^{-L \times E} \sim O\left(g^{2 L}\right)$

Systematic Improvement

Include Finite Size Effects = so-called Wrapping Effects

[Ambjorn,Janik,Kristjansen’05]
[Bajnok,Janik'08]

Vacuum (in mirror = double Wick rotated theory)

More mirror particles exchanged

Virtual effect : Exchange of 1-particle in mirror channel

Resummation of All Finite Size Corrections = TBA Eqs

3-pt Function

3-pt Function / Pair of Pants

Three Punctures
Sphere
Pair of Pants

Toward Asymptotic Description

Cutting Procedure

Philosophy:
Closed String
=
(Open String)^2

Slogan : Pair of Pants = (Hexagon)^2

New Finite Size Effects

Can Get a Good Asymptotic Description When These New Effects Are Small

Dual Spin Chain Picture

Three Bridges In Total = Three-Distance Problem
New Wrapping Effects $=O\left(g^{l_{i j}}\right)$ at Weak Coupling

How to Combine Hexagons Into Asymptotic $=$ IR Description

Split The Wave Funtion :

Leftover Information About Spin Chain State :

Sum Over Bipartite Partition of Bethe Roots

Summary Hexagon Picture

3-pt Function = Finite Volume Correlator of Two Hexagons

(momentum of) mirror particles where we glue

Elementary Patch : Hexagon Form Factor
magnons in mirror channels

spin chain 1 and 3

Building Blocks $=$ Hexagon Form Factors

Mirror/Crossing Moves

All-On-Top = Creation Form Factor
Spin Chain State $=$ String of bifundamentals

$$
\begin{aligned}
\mathfrak{h}^{A_{1} \dot{A}_{1}, \ldots, A_{N} \dot{A}_{N}}\left(u_{1}, \ldots, u_{N}\right)= & \langle\mathfrak{h}|\left(\left|\chi_{1}^{A_{1} \dot{A}_{1}} \cdots \chi_{N}^{A_{N} \dot{A}_{N}}\right\rangle_{1} \otimes|0\rangle_{2} \otimes|0\rangle_{3}\right) \\
& \left(\begin{array}{l}
\text { Hexagon Vertex }
\end{array}\right.
\end{aligned}
$$

How To Fix The Hexagon Form Factors?

Use Super-Symmetry

3pt-Function $=(B M N)^{\wedge} \mathbf{3}$

Two BMIN vacua
One Twisted BMNN Vacuum

Needed for overlap with ops 1 and 2

$$
\mathcal{O}_{2}=\operatorname{tr} \bar{Z}(\infty)^{L_{2}}
$$

Part of Family of
Twisted Correlators
see [Drukker,Plefka'09]

Use Super-Symmetry

3pt-Function $=(B M N)^{\wedge} \mathbf{3}$

Bosonic Subgroup :

Fix a Line
in Spacetime $\begin{aligned} & \text { Fix Three } \\ & \text { (real) Scalars } \\ & \text { Out of Six }\end{aligned}$
Fix a Line
in Spacetime $\begin{aligned} & \text { Fix Three } \\ & \text { (real) Scalars } \\ & \text { Out of Six }\end{aligned}$
$O(3) \times O(3)$ (real) Scalars
Out of Six

$$
\mathcal{O}_{2}=\operatorname{tr} \bar{Z}(\infty)^{L_{2}}
$$

$$
\mathcal{O}_{3}=\operatorname{tr} \tilde{Z}(1)^{L_{3}}
$$

+ 8 Supercharges : $\quad \mathcal{Q}^{a}{ }_{\alpha}+\epsilon^{a b} \epsilon_{\alpha \beta} \dot{\mathcal{S}}^{\beta}{ }_{b}$

Total :

$$
\operatorname{PSU}(2 \mid 2)
$$

i.e. Diagonal Subgroup of BMNN Group

$$
P S U(2 \mid 2)_{\text {Left }} \times P S U(2 \mid 2)_{\text {Right }}
$$

Power of Symmetry

Fix I-pt Hex Form Factor = Invariant Left-Right Inner Product

Invariant Inner
Product

$$
\mathfrak{h}^{A \dot{A}}=\left\langle\chi^{\dot{A}} \mid \chi^{A}\right\rangle
$$

$$
\mathfrak{h}^{a \dot{a}}=\left\langle\mathfrak{h} \mid \Phi^{a \dot{a}}\right\rangle=\epsilon^{a \dot{a}} \quad \mathfrak{h}^{\alpha \dot{\alpha}}=\left\langle\mathfrak{h} \mid \mathcal{D}^{\alpha \dot{\alpha}}\right\rangle=N \epsilon^{\alpha \dot{\alpha}}
$$

Power of Symmetry

Fix 2-pt Hex Form Factor

Fixed by Symmetry up to a Scalar Factor

$$
\mathfrak{h}^{A_{1} \dot{A}_{1}, A_{2} \dot{A}_{2}}=(-1)^{\dot{f}_{1} f_{2}} \times h_{12} \times\left\langle\chi_{2}^{\dot{A}_{2}} \chi_{1}^{\dot{A}_{1}}\right| \mathcal{S}_{12}\left|\chi_{1}^{A_{1}} \chi_{2}^{A_{2}}\right\rangle
$$

Generalization

N-pt Hexagon Form Factor (conjecture)

$$
\left\{\begin{array}{l}
\\
\mathfrak{h}^{A_{1} \dot{A}_{1} \cdots A_{N} \dot{A}_{N}}=(-1)^{\mathfrak{f}} \prod_{i<j}^{N} h_{i j}\left\langle\chi_{N}^{\dot{A}_{N}} \cdots \chi_{1}^{\dot{A}_{1}}\right| \mathcal{S}\left|\chi_{1}^{A_{1}} \ldots \chi_{N}^{A_{N}}\right\rangle
\end{array}\right.
$$

Watson Equation

Hex preserved by S-matrix $\langle\mathfrak{h}|\left(\mathbb{S}_{i i+1}-\mathbb{I}\right)\left|\ldots \chi_{i}^{A_{i} \dot{A}_{i}} \chi_{i+1}^{A_{i+1} \dot{A}_{i+1}} \ldots\right\rangle=0$

This is Automatic if

$$
h_{12} / h_{21}=S_{12}^{0}=\frac{x_{1}^{+}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{-}} \frac{1}{\sigma_{12}^{2}}
$$

Decoupling Condition

Pair particle-antiparticle with zero energy must decouple

This is Automatic if

$$
h\left(u_{1}^{2 \gamma}, u_{2}\right) h\left(u_{1}, u_{2}\right)=\frac{x_{1}^{-}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{+} x_{2}^{-}}{1-1 / x_{1}^{+} x_{2}^{+}}
$$

Solution to Watson and Crossing

(Not unique but conjectured to be the right one :)

$$
h_{12}=\frac{x_{1}^{-}-x_{2}^{-}}{x_{1}^{-}-x_{2}^{+}} \frac{1-1 / x_{1}^{-} x_{2}^{+}}{1-1 / x_{1}^{+} x_{2}^{+}} \frac{1}{\sigma_{12}}
$$

Our Hexagons Are Now Fully Determined

All-Loop Asymptotic Formula

Consider 2 BPS Operators and I non-BPS Operator

$$
\left(\frac{C_{123}^{\bullet \circ \circ}}{C_{123}^{\circ \circ \circ}}\right)^{2}=\frac{\prod_{k=1}^{S} \mu\left(u_{k}\right)}{\operatorname{det} \partial_{u_{i}} \phi_{j} \prod_{i<j} S\left(u_{i}, u_{j}\right)} \times \mathcal{A}^{2}
$$

i.e.

$$
\begin{aligned}
& \qquad \int_{1}^{\text {BPS }} \\
& \text { e.g. } \mathcal{O}_{2}=\operatorname{tr} D^{S} Z^{L_{1}}
\end{aligned}
$$

All-Loop Asymptotic Formula

Consider 2 BPS Operators and I non-BPS Operator

$$
\left(\frac{C_{123}^{\bullet \circ \circ}}{C_{123}^{\circ \circ \circ}}\right)^{2}=\frac{\prod_{k=1}^{S} \mu\left(u_{k}\right)}{\operatorname{det} \partial_{u_{i}} \phi_{j} \prod_{i<j} S\left(u_{i}, u_{j}\right)} \times \mathcal{A}^{2}
$$

$$
\begin{aligned}
& \text { Hexagon Part } \\
& \qquad \mathcal{A}=\prod_{i<j} h\left(u_{i}, u_{j}\right) \sum_{\alpha \cup \bar{\alpha}=\mathbf{u}}^{\substack{\text { Sum Over Partition of Bethe } \\
\text { Roots }}}(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{i p_{j} \ell} \prod_{i \in \alpha, j \in \bar{\alpha}} \frac{1}{h\left(u_{i}, u_{j}\right)}
\end{aligned}
$$

Valid to All Loops Up to Finite Size Effects

Include Leading Finite Size Corrections

First Finite Size Effect
Corrections coming from exchange of a single particle in the three mirror channels

Integral over Momenta of Exchanged Particle

$$
\delta \mathcal{A}=\sum_{a \geqslant 1} \int \frac{d u}{2 \pi} \mu_{a}^{\gamma}(u) \times\left(\frac{1}{x^{[+a]} x^{[-a]}}\right)^{\ell} \times \operatorname{int}_{a}\left(u \mid\left\{u_{i}\right\}\right)
$$

Applications / Tests At Weak Coupling

Shortest Probes With Ops of Length 2 or 3

Asymptotic Result the Same for Both :

- Valid up to I-loop on the left
- Valid up to 2-loop on the right

Getting Data From OPE of BPS Correlators

A lot of recent high-loop results

[Eden,Heslop,Korchemsky,Sokatchev'II]
[Eden' 12],[Chicherin,Sokatchev' I4]

Bridge of length $\mathbf{2}$

Bridge of length 1

We can get what we want playing with external states

Comparison with Data

Spin	"Long" Bridge i.e. length $\ell=2$
2	$\frac{1}{6}-2 g^{2}+28 g^{4}+\ldots$
4	$\frac{1}{70}-\frac{205}{882} g^{2}+\frac{36653}{9261} g^{4}+\ldots$
6	$\frac{1}{924}-\frac{553}{27225} g^{2}+\frac{826643623}{2156220000} g^{4}+\ldots$
8	$\frac{1}{12870}-\frac{14380057}{9018009000} g^{2}+\frac{2748342985341731}{85305405235050000} g^{4}+\ldots$
10	$\frac{1}{184756}-\frac{3313402433}{27991929747600} g^{2}+\frac{156422034186391633909}{62201169404983234080000} g^{4}+\ldots$

Spin	"Short" Bridge i.e. length $\ell=1$	
2	$\frac{1}{6}-2 g^{2}+\left(28+12 \zeta_{3}\right) g^{4}+\ldots$	New 2-loop wrapping-like
4	$\frac{1}{70}-\frac{205}{882} g^{2}+\left(\frac{76393}{18522}+\frac{10}{7} \zeta_{3}\right) g^{4}+\ldots$	effect
6	$\frac{1}{924}-\frac{553}{27225} g^{2}+\left(\frac{880821373}{2156220000}+\frac{7}{55} \zeta_{3}\right) g^{4}+\ldots$	
8	$\frac{1}{12870}-\frac{14380057}{9018009000} g^{2}+\left(\frac{5944825782678337}{170610810470100000}+\frac{761}{75075} \zeta_{3}\right) g^{4}+\ldots$	
10	$\frac{1}{184756}-\frac{3313402433}{27991929747600} g^{2}+\left(\frac{171050793565932326659}{62201169404983234080000}+\frac{671}{881790} \zeta_{3}\right) g^{4}+\ldots$	

Perfect Agreement with Hexagon Prediction Including Zeta's Coming From Wrapping

Conclusions

Strategy for Computing Structure Constants :

- Cut Open Pair of Pants into Hexagons
- Glue Hexagons Back Together in the end

Integrable Bootstrap Leads to All-Loop Conjecture for the Hexagons

Outlook

Is the Gluing Prescription Complete?
Can We Resum / Control All Finite Size Effects?

Strong Coupling Resummation Test

String Theory Predicts :

Area Minimal Surface
$\log C_{123}^{\bullet \circ \circ}=\frac{\sqrt{\lambda}}{2 \pi}$ Area + one-loop determinant
Semiclassical Result : Comes from asymptotic part

$$
\frac{\sqrt{\lambda}}{2 \pi} \text { Area }=\oint \frac{d u}{2 \pi}\left[\operatorname{Li}_{2}\left(e^{i p_{1}+i p_{2}-i p_{3}}\right)-\frac{1}{2} \operatorname{Li}_{2}\left(e^{2 i p_{1}}\right)\right]
$$

+ finite size contributions
Can we reproduce the infinite sequence of finite size effects predicted by the classical string theory?

Outlook

Is the Gluing Prescription Complete?
 Can We Resum / Control All Finite Size Effects?

What About Extremal Correlators?

Extremal = Octagon

Should be related to SFT vertex (see Janik's talk)

Can we bootstrap it?
What is the group of residual symmetries?

Further Outlook

Is the Gluing Prescription Complete?
Can We Resum / Control Finite Size Effects?

What About Extremal Correlators?

Embedding Inside Quantum Spectral Curve? (Finite Volume Bootstrap)

Add Boundaries and Describe Open Strings or Mixed Correlators?

Etc.

THANK YOU!

